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Öz 

Bu çalışma, ICBHI 2017 solunum sesi veri seti üzerinde geliştirilmiş bir derin öğrenme yaklaşımıyla, normal ve patolojik 

solunum seslerini otomatik olarak sınıflandırmayı amaçlamaktadır. Çalışmada, segmentlenmiş solunum seslerinden 

MFCC, Mel spektrogram ve spektral öznitelikler elde edilmiş; ardından bu öznitelikler klasik makine öğrenmesi 

algoritmaları (XGBoost, SVM, KNN, Rastgele Orman) ve derin öğrenme modelleri (GhostNet v1-v4, EfficientNet-B0, 

ResNet50, MobileNetV3) ile eğitilmiştir. Veri artırma tekniklerinin (augmentasyon) katkısı da sistematik olarak 

incelenmiştir. Sonuçlar, GhostNet v4 modelinin %89 doğruluk ve 0.89 F1-skoru ile en iyi performansı gösterdiğini ortaya 

koymaktadır. Bu doğruluk oranı, ICBHI 2017 veri seti ile literatürde rapor edilen birçok yöntemi geride bırakmaktadır. 

Ayrıca, karışıklık matrisi analizleri modelin normal ve patolojik sınıfları yüksek tutarlılıkla ayırt edebildiğini 

göstermektedir. Elde edilen sonuçlar, akciğer seslerinin otomatik analizi için derin öğrenme temelli modellerin etkinliğini 

ortaya koymakta ve klinik karar destek sistemlerine entegre edilebilecek potansiyel çözümler sunmaktadır. 

Anahtar Kelimeler: Solunum sesi analizi, Derin öğrenme, Makine Öğrenmesi, MFCC, Mel spektrogram, GhostNet. 

 

Comparison of Classical and Deep Learning Models for Respiratory Sound 

Classification 

 

Abstract 

This study aims to automatically classify normal and pathological respiratory sounds using a deep learning-based 

approach developed on the ICBHI 2017 respiratory sound dataset. MFCCs, Mel spectrograms, and spectral features were 

extracted from segmented respiratory sound recordings. These features were then used to train classical machine learning 

algorithms (XGBoost, SVM, KNN, Random Forest) and deep learning models (GhostNet v1–v4, EfficientNet-B0, 

ResNet50, MobileNetV3). The impact of data augmentation techniques was also systematically examined. The results 

demonstrate that the GhostNet v4 model achieved the highest performance with 89% accuracy and an F1-score of 0.89. 

This accuracy outperforms many existing methods reported in the literature using the same dataset. Confusion matrix 

analyses further indicate that the model reliably distinguishes between normal and pathological classes. These findings 

highlight the effectiveness of deep learning-based models in the automatic analysis of respiratory sounds and suggest 

promising solutions for integration into clinical decision support systems. 
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1. Giriş 

 

1.1. Solunum Sesi Analizinin Önemi 

 

Akciğer oskültasyonu (steteskop ile dinleme) uzun yıllardır solunum hastalıklarının tanısında 

vazgeçilmez bir yöntem olmuştur. Solunum sisteminden kaynaklanan anormal sesler (örneğin ral 

olarak da bilinen crackle sesleri, hışıltı veya wheeze, ve rhonchi) pek çok akciğer hastalığının önemli 

belirtileridir. Örneğin, kısa ve patlayıcı karakterdeki crackle sesleri genellikle pnömoni, interstisyel 

akciğer fibrozu veya akciğer ödemi gibi parankimal akciğer hastalıklarında duyulur; yüksek frekanslı 

ıslık sesi şeklindeki wheeze ise astım ve KOAH gibi hava yolu daralması ile ilgili hastalıklarda 

görülür (Kim ve ark., 2021). Bu tip patolojik seslerin varlığı, klinisyene hastalığın türü ve ciddiyeti 

hakkında önemli ipuçları verir. Solunum hastalıkları dünya genelinde başlıca sağlık sorunlarından 

biridir ve örneğin Avrupa’da tüm ölümlerin yaklaşık beşte birini oluşturmaktadır. Bu hastalıklar 

genellikle sinsi seyirli olup erken evrede belirti vermeyebilir; dolayısıyla teşhis konulduğunda 

hastalık ilerlemiş olabilmektedir (Türkiye Solunum Araştırmaları Derneği, t.y.). Bu durum, solunum 

hastalıklarının erken teşhisinin önemini vurgulamaktadır. Erken tanı sayesinde hastalığın seyri 

yavaşlatılabilir, hastaların yaşam kalitesi korunabilir ve ciddi komplikasyonların önüne geçilebilir. 

 

1.2. Solunum Hastalıklarında Erken Teşhis ve Dijital Yaklaşımlar 

 

Geleneksel stetoskop muayenesi ucuz, hızlı ve invaziv olmayan bir yöntem olmakla birlikte, 

tamamen hekimin deneyimine ve subjektif değerlendirmesine dayanır. Araştırmalar, eğitim 

aşamasındaki hekimlerin akciğer seslerini yorumlamada önemli hatalar yapabildiğini göstermektedir. 

Örneğin bir çalışmada, asistan hekimlerin ve tıp öğrencilerinin akciğer seslerinin yaklaşık yarısını 

yanlış tanımladığı rapor edilmiştir (Kim ve ark., 2021). Farklı gözlemciler arasında, aynı hastada 

solunum seslerini yorumlamada ciddi tutarsızlıklar olabilmektedir. Bu nedenle solunum seslerinin 

otomatik analizine olan ihtiyaç giderek artmıştır. Elektronik stetoskoplar ve gelişen sayısal ses işleme 

teknolojileri sayesinde, akciğer sesleri artık kaydedilebilir ve bilgisayar destekli yöntemlerle nesnel 

olarak analiz edilebilir hale gelmiştir. Yapay zekâ destekli oskültasyon, klinik tanıyı standardize 

etmeye ve doğruluğunu artırmaya yardımcı olabilir. Nitekim, AI tabanlı bir sistem doğru 

sınıflandırma yaparak kritik hastaların erken tespitini mümkün kılabilir; astım, KOAH, pnömoni gibi 

çeşitli akciğer hastalıklarının taranması ve takibinde kullanılabilir. Veri ve algoritmalara dayalı bu 

yaklaşımlar, insan dinleyiciler arasındaki yorum farklarını ortadan kaldırma, çok miktarda veriyi 

hızlıca değerlendirebilme ve insan kulağının kaçırabileceği ince akustik paternleri tespit edebilme 
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avantajlarına sahiptir (Kim ve ark., 2021). Dolayısıyla, solunum seslerinin otomatik analizi erken 

teşhis imkânlarını geliştirerek hastalara zamanında tedavi şansı sunma potansiyeline sahiptir. 

 

1.3. Veri Tabanlı Yaklaşımların Avantajları 

 

Son yıllarda derin öğrenme başta olmak üzere veri tabanlı yaklaşımlar, tıpta görüntüleme ve 

sinyal analizinde çığır açan başarılar elde etmiştir. Akciğer sesleri alanında da çok sayıda çalışma, 

makine öğrenmesi teknikleriyle normal ve anormal solunum seslerini ayırt etmeye odaklanmaktadır 

(Kim ve ark., 2021). Bu yöntemlerin en büyük avantajlarından biri, karmaşık özellik çıkarımını insan 

müdahalesine gerek kalmadan doğrudan veriden öğrenebilmeleridir. Özellikle derin sinir ağları, 

zaman-frekans düzlemindeki ince farklılıkları yakalayarak ral, hırıltı gibi sesleri yüksek doğrulukla 

tespit edebilmiştir. Öte yandan, klasik makine öğrenmesi yöntemleri elle tasarlanan özniteliklere 

dayanır ve performansları büyük ölçüde bu özniteliklerin kalitesine bağlıdır. Veri temelli yaklaşımlar 

ise büyük veri kümelerinde insan uzmanların fark edemeyeceği paternlere karşı duyarlıdır. Nitekim 

bir çalışmada, mel spektrogramlarından derin öğrenme ile özellik çıkarıp sınıflandırma yapan bir 

modelin, aynı özellikleri kullanan SVM tabanlı bir sınıflandırıcıdan daha yüksek performans ve hız 

sağladığı gösterilmiştir (Kim ve ark., 2021). Bu gibi bulgular, yapay öğrenmenin solunum sesi 

analizinde klasik yöntemlere kıyasla üstünlük sağlayabildiğini ortaya koymaktadır. Bununla birlikte, 

başarılı bir yapay zekâ modelinin geliştirilmesi için yeterli miktarda ve kaliteli veriye ihtiyaç vardır. 

Geleneksel yöntemlerin aksine, derin öğrenme modelleri veri açlığı yaşar ve dengesiz veri 

dağılımlarına karşı hassastır. Dolayısıyla, veri artırma ve uygun ön işleme tekniklerinin kullanımı 

kritik önem taşır. 

 

1.4. Bu Çalışmanın Amacı ve Kapsamı 

 

Bu makale çalışmasında, solunum sesi sinyallerinin otomatik sınıflandırılması için modern 

derin öğrenme yaklaşımları ile klasik makine öğrenmesi yöntemlerini karşılaştırmalı olarak 

değerlendirdik. Çalışmada, alanın standart veri setlerinden biri olan ICBHI 2017 solunum sesi veri 

tabanı kullanılmıştır. ICBHI veri seti, 126 bireyden toplanmış 920 ses kaydı içermekte olup, her 

solunum döngüsü bir uzman tarafından normal, yalnız crackle, yalnız wheeze veya hem crackle hem 

wheeze olmak üzere dört sınıftan biriyle etiketlenmiştir. Bu zengin veri seti, pnömoni, bronşektazi, 

bronşiolit, KOAH gibi çeşitli solunum hastalıklarından kaynaklanan sesleri barındırdığı için 

çalışmalarımız için sağlam bir temel oluşturmuştur (Huang ve ark., 2023). Kayıtlar üzerinde öncelikle 

solunum döngüsü bazında segmentasyon işlemi gerçekleştirilmiştir. Ardından, ön işleme adımları 

olarak düşük ve yüksek frekanslı parazitleri engellemek amacıyla bir bant geçiren filtre uygulanmış, 
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çevresel gürültü ve kalp atımı gibi istenmeyen bileşenler azaltılmış, sinyal genliği normalizasyon ile 

standart hale getirilmiştir. Nitekim literatürde de benzer şekilde kayıtların ortak bir frekansta yeniden 

örneklenmesi, 5. dereceden Butterworth bant geçiren filtreyle istenmeyen gürültülerin giderilmesi ve 

sinyalin –1 ile 1 aralığına normalize edilmesi yaygın bir uygulamadır (Gairola ve ark., 2021). Bu 

şekilde temizlenen zaman serisi verisi, derin öğrenme modellerine girdi olarak verilebilmesi için Mel 

spektrogram dönüşümüne tabi tutulmuştur. Mel ölçeğinde log-spektrogramlar, insan kulağının 

frekans algısına uygun bir zaman-frekans gösterimi sağladığı için ses sınıflandırma çalışmalarında en 

başarılı özellik temsilcilerinden biri olarak kabul edilmektedir (Poirè ve ark., 2022). Ayrıca 

karşılaştırma amacıyla, yaygın bir diğer öznitelik olan MFCC (Mel Frekans Kepstrum Katsayıları) 

de özellik çıkarımı için değerlendirilmiştir. Makale kapsamında CNN tabanlı evrişimsel sinir ağı 

modelleri (GhostNet, ResNet50, EfficientNet ve MobileNet gibi farklı mimariler) ile klasik makine 

öğrenmesi algoritmaları (Destek Vektör Makineleri – SVM, En Yakın Komşu – KNN, Rastgele 

Orman – RF ve XGBoost karar ağaçları) kullanılarak sınıflandırma modelleri geliştirilmiştir. Model 

eğitiminde, veri setindeki dengesiz sınıf dağılımını iyileştirmek amacıyla veri artırma (data 

augmentation) teknikleri uygulanmıştır. Özellikle nadir görülen sınıflara ait örneklerin sayısını 

artırmak ve modellerin genelleme kabiliyetini yükseltmek için zaman ölçeğini esnetme (time 

stretching), ses perdesini değiştirme (pitch shifting) ve mevcut kayıtlara yapay gürültü ekleme gibi 

yöntemlerle yeni sentetik örnekler üretilmiştir. Bu sayede, eğitim verisi içerisinde sınıf dengesi 

sağlanmaya çalışılmıştır. Makalenin devamında, öncelikle literatürde son yıllarda gerçekleştirilmiş 

benzer çalışmalar ve bulguları özetlenecek; ardından önerilen yöntem ve elde edilen deneysel 

sonuçlar detaylandırılacaktır. Şekil 1’de, bu çalışmada izlenen genel metodolojik yaklaşım adım adım 

özetlenmiştir. Bu diyagram, solunum sesi analizine yönelik geleneksel yöntemlerden başlayarak, 

dijitalleşme süreci ve kullanılan yapay öğrenme tekniklerine kadar olan araştırma akışını bütüncül 

şekilde görselleştirmektedir. 
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Şekil 1. Solunum sesi analizinde kullanılan metodolojik akış. 
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2. Literatür Taraması 

 

2.1. ICBHI Veri Seti ve Özellik Çıkarımı 

 

Solunum sesi analizinde kullanılan açık erişimli veri setleri arasında en yaygın olanı ICBHI 

2017 Solunum Sesleri veri tabanıdır. 2017 yılında gerçekleştirilen bu uluslararası değerlendirme, 

araştırmacılara standart bir karşılaştırma zemini sağlamış ve bu alandaki çalışmaları hızlandırmıştır. 

ICBHI veri seti, farklı elektronik stetoskop cihazlarıyla kaydedilmiş geniş bir yelpazede solunum sesi 

örneği içerir. Toplam 5,5 saat uzunluğundaki kayıtlar 4 kHz – 44.1 kHz arasında değişen örnekleme 

hızlarına sahiptir ve her biri uzmanlarca solunum döngüsü seviyesinde etiketlenmiştir (Gairola ve 

ark., 2021). Bu veri setinin önemli bir özelliği, sınıf dengesizliği sorunudur: kayıtlı solunum 

döngülerinin yaklaşık %53’ü normal sesler iken geri kalanı anormal (crackle, wheeze veya ikisi 

birden) olarak dağılmıştır. Bu dengesizlik, modellerin eğitimi sırasında normal sınıfa aşırı uyum 

sağlama (overfitting) riskini doğurur ve literatürde çeşitli yöntemlerle ele alınmıştır. 

ICBHI veri setinde ve diğer solunum sesi çalışmalarında, ham ses sinyallerinden anlamlı 

özellikler çıkarmak kritik bir adımdır. Mel spektrogramlar bu bağlamda en çok kullanılan özellik 

temsilidir. Örneğin, Yu ve ark. (2022) ICBHI veri setindeki kayıtları mel-scaled spektrogram 

görüntülerine dönüştürüp bir derin CNN modeline girdi olarak vererek crackle ve wheeze tespitinde 

yüksek başarı elde etmişlerdir (özgüllük %84,9, duyarlılık %84,5) (Huang ve ark., 2023). Mel 

spektrogram, kısa zamanlı Fourier dönüşümü ile elde edilen güç spektrumunun mel frekans skalasına 

göre yeniden ölçeklendirilmesiyle elde edilir ve insan işitme düzeneğine uygun bir çözünürlük sağlar. 

Birçok çalışma, mel spektrogramların yanı sıra MFCC özniteliklerini de kullanmıştır. MFCC’ler, 

sesin kaba spektral zarfını özetleyen daha kompakt özellik vektörleridir ve özellikle klasik makine 

öğrenmesi modelleriyle sıkça tercih edilmiştir (Tariq ve ark., 2022). Nitekim Rocha ve arkadaşları, 

ICBHI 2017 veri seti ile yaptıkları öncü çalışmada MFCC başta olmak üzere çeşitli spektral ve 

zamansal öznitelikleri çıkararak SVM ve yapay sinir ağı tabanlı sınıflandırıcılar denemişler, ancak 

veri gürültüsü ve dengesizliği gibi sorunlar nedeniyle istenen performansa ulaşamamışlardır (Tariq 

ve ark., 2022). Bu durum, verinin daha ileri işleme tabi tutulması ve özellik çıkarımında daha gelişmiş 

yöntemlere ihtiyaç olduğunu göstermiştir. 

Literatürde öne çıkan bir başka yaklaşım da transfer öğrenmesi ile önceden eğitilmiş görüntü 

sınıflandırma ağlarını solunum sesi spektrogramlarına uygulamaktır. InceptionV3, DenseNet201, 

ResNet50/101, VGG16/19 gibi başarılı CNN mimarileri, spektrogram görüntülerinden derin 

özellikler çıkarmak üzere kullanılmış ve böylece küçük ölçekli veriyle daha genelleştirilebilir 

modeller elde edilmeye çalışılmıştır (Kim ve ark., 2021). Örneğin, Demir ve arkadaşları 

çalışmalarında önceden ImageNet üzerinde eğitilmiş bir CNN modeli kullanarak ICBHI 
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spektrogramlarından özellik çıkarıp bu özellikleri bir SVM ile sınıflandırmayı denemişler; ikinci bir 

yaklaşım olarak da ön eğitimli modeli ince ayar (fine-tuning) yaparak doğrudan sınıflandırıcı olarak 

kullanmışlardır. Ancak her iki yöntemde de en yüksek doğruluk oranı %65 civarında kalmıştır (SVM 

ile %65,5, doğrudan fine-tuned CNN ile %63,1) (Tariq ve ark., 2022). Bu sonuçlar, klasik transfer 

öğrenmesi yaklaşımının tek başına yeterli olmadığını, veriye özgü iyileştirmelerin gerekli 

olabileceğini göstermiştir. 

Özetle, ICBHI veri seti kullanan çalışmalar genellikle zaman-frekans özellikleri (özellikle mel 

spektrogram ve MFCC) üzerine yoğunlaşmıştır. Ham ses sinyalleri önce solunum döngülerine ayrılıp 

filtreleme, normalizasyon gibi işlemlerden geçirilmekte; ardından spektrogram, cepstrum veya 

dalgacık dönüşümü ile öznitelikler elde edilmektedir. Bu ortak çerçeve üzerine inşa edilen farklı 

model ve yöntemler, son yıllarda literatürün odağını oluşturmuştur. 

 

2.2. Derin Öğrenme Tabanlı Yöntemler 

 

Derin öğrenme, özellikle Convolutional Neural Network (CNN) mimarileri ile, ses sinyallerinin 

otomatik sınıflandırılmasında çığır açmıştır. Son 5 yıldaki çalışmaların büyük kısmı, solunum 

seslerinden elde edilen spektrogram görüntülerini girdi alan CNN tabanlı modeller üzerinde 

yoğunlaşmaktadır. Bu modeller, verideki zaman ve frekans boyutundaki karmaşık örüntüleri 

öğrenerek insan uzmanlara yakın veya daha iyi performans sergileyebilmektedir. 

ICBHI veri seti üzerinde gerçekleştirilen derin öğrenme çalışmalarından bazı dikkate değer 

örnekler şunlardır: 

• Yu ve arkadaşları; ICBHI 2017 verisindeki normal, crackle, wheeze ve kombinasyon 

seslerini ayırt etmek için Glance-and-Gaze adlı özel bir CNN mimarisi önerilmiş ve mel spektrogram 

tabanlı girişler kullanılmıştır. Model, %84’ün üzerinde duyarlılık ve özgüllük değerleriyle dört sınıfta 

başarılı bir performans sergilemiştir (Yu ve ark., 2022). Bu sonuç, derin öğrenme yaklaşımlarının 

ilgili problemde insan seviyesine yakın doğruluklara ulaşabildiğini göstermektedir. 

• Gairola ve arkadaşları bu çalışmada derin CNN modeli basit tutulmuş ancak veri 

kullanımını maksimize etmek için çeşitli yenilikçi teknikler uygulanmıştır. ResNet-34 tabanlı bir ağ, 

ICBHI veri setinde iki sınıflı (normal vs anormal) ayrım görevinde eğitilmiştir. Veri setinin görece 

küçük ve dengesiz oluşu, transfer öğrenmesi (ImageNet ile ön eğitim) ve özel veri artırma 

yöntemleriyle telafi edilmiştir. Örneğin, farklı cihazlardan gelen kayıtlar için cihaz-temelli ince ayar, 

solunum döngülerinin uç uca eklenmesi (concatenation) ve boş kısımların kırpılması gibi yaklaşımlar 

entegre edilmiştir. Sonuçta, RespireNet modeli ICBHI’nin resmi eğitim-test ayrımında %77’lik bir 

ICBHI skoruna (duyarlılık ve özgüllüğün ortalaması) ulaşarak o dönemdeki en iyi değeri elde etmiştir 
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(Gairola ve ark., 2021). Bu skor, önceki yöntemlerin aynı veri bölümünde aldığı yaklaşık %65’lik 

skora göre belirgin bir iyileşme anlamına gelmektedir.  

• Hai ve ark. (2021): Kamuya açık bir solunum sesi veri setinde (muhtemelen ICBHI veya 

benzeri) üç sınıflı (wheeze, crackle, normal) sınıflandırma problemi ele alınmıştır. Bu çalışmada 

geleneksel Fourier temelli spektrogram yerine Optimizasyonlu S-dönüşümü (OST) kullanılarak daha 

etkin bir özellik çıkarımı sağlanmış; ardından derin Residual Network (ResNet) mimarisi ile 

sınıflandırma yapılmıştır. OST ile elde edilen ölçeklenmiş zaman-frekans görüntülerini kullanan 

derin model, deneylerde son derece yüksek bir başarı göstererek %98,7 gibi bir doğruluk oranına 

ulaşmıştır (Chen ve ark., 2019). Bu değerin literatürdeki en yüksek sonuçlardan biri olduğu 

söylenebilir. 

• Samiul ve arkadaşları; hafif (lightweight) bir CNN modeli tasarlayarak solunum 

seslerinden solunum hastalıklarının tespitini amaçlamışlardır. ICBHI 2017 veri setinde üç sınıflı 

(kronik hastalık düzeyi) ve altı sınıflı (patoloji türü) ayırımlar yapmışlar; sinyal özelliklerini 

zenginleştirmek için Empirik Mod Decomposition (EMD) ve Sürekli Dalgacık Dönüşümü (CWT) ile 

bir skalogram tabanlı giriş oluşturmuşlardır. Sadece ~3 milyon öğrenilebilir parametreye sahip hafif 

bir CNN ile %98’e varan doğruluk oranları elde etmişlerdir (Shuvo ve ark., 2020). Bu çalışma, derin 

öğrenme modellerinin optimize mimariler ve uygun ön işlemler ile hem yüksek doğruluk hem de 

düşük hesaplama yükü sağlayabileceğini göstermektedir. 

• Kim ve arkadaşları; klinik ortamdaki gerçek ses kayıtlarıyla (rhonchi dahil) çalışılan bir 

derin öğrenme araştırmasında, transfer öğrenimi ile görüntü sınıflandırma modelleri solunum sesi 

tanımasına uyarlanmıştır. InceptionV3, ResNet50, DenseNet201, VGG16 gibi farklı ağlar öncelikle 

spektrogram görüntülerinde özellik çıkarıcı olarak kullanılmış; son katmanda bu özellikleri 

sınıflandırmak için yumuşak çıktılı bir CNN ile karşılaştırmalı olarak SVM de denenmiştir. Sonuçlar, 

tüm ağlar için derin modelin SVM’den daha yüksek doğruluk verdiğini ve en iyi kombinasyonun 

VGG16 tabanlı derin model olduğunu göstermiştir. Ayrıca CNN tabanlı uçtan uca modele kıyasla, 

pre-trained özellik + SVM yaklaşımının daha yavaş ve daha düşük performanslı olduğu rapor 

edilmiştir (Kim ve ark., 2021). Bu bulgu, derin öğrenmenin solunum sesi sınıflandırmasında sadece 

doğruluk değil hız açısından da avantaj sağlayabileceğini vurgulamaktadır. 

Yukarıdaki çalışmalar, derin öğrenme yöntemlerinin uygun önişleme ve özellik temsil 

teknikleriyle birleştirildiğinde akciğer sesi analizinde yüksek başarılar elde ettiğini ortaya 

koymaktadır. Özellikle CNN tabanlı mimariler, hem iki sınıflı normal/patojen ayrımında hem de çok 

sınıflı anormal ses tiplerinin tanınmasında yaygın olarak kullanılmış ve %90’ların üzerine varan 

duyarlılık/özgüllük veya doğruluklar bildirilmiştir. Yine de bazı ekstrem yüksek başarı oranlarının 

(örneğin %98-99) veri setinin belirli bölümlerine veya özelleştirilmiş görev tanımlarına özgü 

olabileceği not edilmelidir; zira ICBHI gibi zorlayıcı ve gürültülü bir veri üzerinde genel kabul gören 
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metrikler genelde bu seviyelerin altındadır. Sonuç olarak, derin öğrenme tabanlı yaklaşımlar 

literatürde baskın hale gelmiş olup, her geçen yıl daha başarılı ve optimize modeller geliştirilmektedir. 

 

2.3. Klasik Makine Öğrenmesi Yöntemleri 

 

Derin öğrenmenin yükselişi öncesinde ve paralelinde, klasik makine öğrenmesi teknikleri de 

solunum sesi sınıflandırmasında önemli rol oynamıştır. Bu yöntemler doğrudan ham veriyi değil, 

belirli öznitelikleri kullanarak daha basit sınıflandırıcılar eğitir. Özellikle Destek Vektör Makineleri 

(SVM) ve k-En Yakın Komşu (KNN) algoritmaları, Yapay Sinir Ağları (ANN) ve Karar Ağacı 

tabanlı yöntemlerle birlikte literatürde sıkça karşımıza çıkar. Bu yöntemlerin performansı büyük 

ölçüde kullanılan özniteliklerin ayrıştırıcılığına bağlı olduğundan, araştırmacılar ses sinyalinden 

anlamlı öznitelikler elde etmeye odaklanmıştır. En yaygın kullanılan özellikler arasında MFCC, temel 

istatistiksel özellikler (enerji, entropi, güç spektrumu bant enerjileri), zaman domeininde tanımlanan 

özellikler ve dalgacık dönüşümü tabanlı katsayılar sayılabilir (Tariq ve ark., 2022). 

Önceki çalışmalarda klasik yöntemlerle elde edilen sonuçlar karışıktır. Bazı araştırmacılar, 

sınırlı da olsa başarı elde etmişlerdir. Örneğin Serbes ve arkadaşları, zaman-frekans ölçek analizinden 

çıkardıkları çeşitli özellik setlerini birleştirip bir ensemble yöntemiyle crackle (ral) tespitinde SVM 

ve benzeri klasik sınıflandırıcılar kullanarak doktorlarla karşılaştırılabilir performanslar bildirmiştir 

(Serbes ve ark., 2011). Yine başka bir çalışmada, solunum sinyallerinin belirli frekans bantlarındaki 

entropi özelliklerini hesaplayarak ICBHI veri setindeki solunum hastalıklarını sınıflandırmak için 

SVM, KNN ve Karar Ağacı algoritmaları denenmiş; bunlar içinde SVM en yüksek ortalama doğruluk 

olan %98,2’yi sağlamıştır (Fraiwan ve ark., 2021). Bu denli yüksek bir başarı, klasik yöntemlerin 

uygun özellik seçimiyle oldukça iyi performans gösterebileceğine dair bir örnek olsa da söz konusu 

çalışma ICBHI verisinin yanı sıra ek klinik veriler de kullanmış ve hastalık düzeyinde sınıflandırma 

yapmıştır (dolayısıyla doğrudan anormal ses tespitine karşı daha kolay bir görev olabilir). 

Buna karşılık, pek çok araştırma derin öğrenme yöntemlerinin klasik yaklaşımları geride 

bıraktığını ortaya koymuştur. Özellikle aynı özellikler kullanıldığında bile, bir derin CNN tabanlı 

sınıflandırıcının SVM gibi bir geleneksel sınıflandırıcıdan daha yüksek başarı ve verim sağladığı 

rapor edilmiştir (Kim ve ark., 2021). Klasik yöntemler çoğu zaman ayrı bir özellik çıkarım adımı 

gerektirdiği ve her bir özellik seti için modelin elle yeniden tasarlanması gerektiği için, derin 

öğrenmenin esnekliğine sahip değildir. Nitekim Demir ve arkadaşlarının çalışmasında, ön eğitimli bir 

CNN’den elde edilen özelliklerle eğitilen SVM modeli ~%65 doğruluk elde ederken, uçtan uca 

eğitilen CNN modeli benzer seviyelerde kalmıştır; bu sonuç, veriye özgü optimizasyon 

yapılmadığında her iki yaklaşımın da sınırlı kalabileceğini gösterse de daha sonra yapılan çalışmalar 

uygun optimizasyonlarla derin modellerin potansiyelini ortaya koymuştur (Demir ve ark., 2019). 
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Örneğin Dalal ve arkadaşları ICBHI veriseti üzerinde SVM, KNN, GMM ve CNN algoritmalarını 

karşılaştırmalı olarak denemiş, bu yöntemler için giriş özellik seti olarak spektrogram, MFCC ve LBP 

(yerel ikili örüntü) özelliklerini birlikte kullanmıştır. Bu kapsamlı denemede CNN tabanlı model açık 

ara en iyi sonucu vererek yaklaşık %97 doğruluğa ulaşmış; SVM ve diğer klasik metotlar daha geride 

kalmıştır. Ancak bu yüksek başarıyı yakalayabilmek için 1 milyona yakın iterasyon (epoch) eğitimi 

gibi aşırı bir hesaplama yükü gerektiği belirtilmiştir (Bardou ve ark., 2018).  Daha sonrasında 

geliştirilen modeller, çok daha az eğitim süresiyle benzer başarımları elde edebildiklerini göstermiştir. 

Genel olarak, klasik makine öğrenmesi yöntemleri küçük ölçekli veri setlerinde veya belirli alt 

problemlerde (örneğin sadece crackle tespiti gibi) kabul edilebilir sonuçlar vermiş olsa da derin 

öğrenmenin esnekliği ve otomatik özellik öğrenme kabiliyeti ile boy ölçüşmekte zorlanmaktadır. 

Özellikle veri miktarının arttığı ve problem tanımının karmaşıklaştığı senaryolarda, CNN ve türevi 

derin modellerin bariz üstünlüğü literatürde ortaya konmuştur. Bu nedenle son beş yılda yayınlanan 

çalışmaların büyük bir kısmı klasik yöntemlerden ziyade derin öğrenme mimarileri ve bunların 

türevlerine odaklanmıştır. 

 

2.4. Veri Artırma ve Sınıf Dengesizliği Problemi 

 

ICBHI ve benzeri solunum sesi veri setlerinde araştırmacıların karşılaştığı en büyük 

zorluklardan biri, yetersiz veri miktarı ve dengesiz sınıf dağılımıdır. Derin öğrenme modelleri 

genellikle büyük veri gerektirdiğinden, sınırlı sayıda örnekle aşırı öğrenme (overfitting) riski ortaya 

çıkar. Ayrıca normal solunum sesi örneklerinin, anormal seslere göre çok daha fazla olması (dengesiz 

veri), modelin azınlık sınıfları ihmal etmesine yol açabilir. Bu sorunları gidermek için literatürde 

yaygın olarak veri artırma (data augmentation) tekniklerine başvurulmaktadır. Veri artırma, mevcut 

veriler üzerinde çeşitli dönüşümler uygulayarak yapay yeni örnekler üretilmesi işlemidir. Solunum 

sesi analizinde kullanılan başlıca augmentasyon teknikleri şunlardır: 

• Zaman Ölçeğini Esnetme (Time Stretching): Ses sinyalinin çalınma hızını az miktarda 

değiştirerek (uzatıp kısaltarak) yeni örnekler türetme. Bu sayede frekans içeriği büyük oranda 

korunurken süre değişir, gerçekçi varyasyonlar elde edilir (Nguyen ve ark., 2020).  

• Frekans/Ton Kaydırma (Pitch Shifting): Sinyalin frekans içeriğini belirli bir oranda 

kaydırarak (örneğin tüm frekansları birkaç yarım ton yükseltip alçaltarak) farklı bir versiyon 

oluşturma. Bu yöntem, vokal traktus uzunluğu değişimi benzeri etkiler yaratabilir ve özellikle wheeze 

gibi tonal seslerde veri çeşitliliğini arttırır (Nguyen ve ark., 2020).   

• Gürültü Ekleme: Kayıtlara düşük genlikli beyaz gürültü, steteskop dokunuş sesi veya 

ortam gürültüsü ekleyerek modelin gürültüye karşı dayanıklılığını artırma ve veriyi genişletme (Xu 

ve ark., 2023). 
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• Zaman Kaydırma: Sinyali başlangıç veya bitişinden ufak miktarda kaydırarak (sessiz 

kısımlar ekleyerek veya çıkararak) solunum döngüsünün zamanlamasında varyasyon oluşturma (Xu 

ve ark., 2023). 

Bunlar dışında literatürde daha ileri teknikler de uygulanmıştır: Örneğin bazı çalışmalar birden 

fazla solunum döngüsünü art arda ekleyerek birleştirme (concatenation) yoluyla daha uzun ses 

örnekleri üretmişler ve modeli bu daha uzun sekanslar üzerinde eğiterek performansı artırmışlardır. 

Benzer şekilde, veri setindeki kayıtların kaynaklandığı cihazların karakteristik farklarını gidermek 

için cihaz-temelli ince ayar yöntemleri önerilmiştir (Gairola ve ark., 2021). Ayrıca, üreteç adversyal 

ağlar (GAN) kullanarak sentetik solunum sesi üretmek de denenen yaklaşımlardandır; örneğin 

koşullu GAN tabanlı augmentasyon ile anormal sınıfların başarımla tanınmasını belirgin şekilde 

iyileştiren çalışmalar mevcuttur (bazı örneklerde sınıflandırma doğruluğu %90’ların üzerine 

çıkarılmıştır). Ancak bu ileri düzey yöntemler daha karmaşık olup, uygulanmaları dikkat ve ek 

hesaplama maliyeti gerektirmektedir. 

Veri artırmanın etkinliği, literatürde açıkça ortaya konmuştur. Standart augmentasyon 

tekniklerinin uygulanması bile model performansında anlamlı artışlar sağlayabilmektedir. Gairola ve 

arkadaşlarının RespireNet çalışmasında, temel modele herhangi bir artırma yapılmadığında anormal 

sesleri yakalamada oldukça düşük bir skor alınırken, gürültü ekleme, hız değiştirme gibi klasik 

augmentasyon teknikleri skoru %62’den %66’ya yükseltmiştir. Dahası, özgün bir augmentasyon 

yöntemi olan solunum döngülerini birleştirmenin eklenmesiyle skor %66,8’e kadar çıkmış, özellikle 

azınlık sınıflardaki duyarlılık %1,5 artmıştır (Gairola ve ark., 2021). Nguyen ve Pernkopf (2020) ise 

veri azlığı sorununu gidermek için snapshot ensemble denilen bir yöntemle birden çok CNN modeli 

eğitirken, eğitim verisine vokal traktus uzunluğu değişimi gibi özgün bir artırma da uygulamışlardır 

(bu yöntem, sesin formant frekanslarını ölçekleyerek yapay farklı konuşmacı efektleri yaratır) 

(Nguyen ve ark., 2020). Bu sayede anormal solunum seslerinin tespitinde başarıyı arttırdıklarını rapor 

etmişlerdir. 

Tariq ve ark. (2022) çalışmalarında ICBHI ve benzeri veri setlerindeki “veri sorunlarını” 

azaltmak için gürültü bozma, perde kaydırma, zaman esnetme gibi teknikleri kullandıklarını ve bu 

sayede model başarımını iyileştirdiklerini belirtmektedir (Tariq ve ark., 2022). Özellikle dengesiz 

veri dağılımını iyileştirmek amacıyla, az temsil edilen sınıflara ait örnekler bu yöntemlerle 

çoğaltıldığında, sınıflandırma modelinin bu sınıflardaki performans metriği (örneğin duyarlılığı) 

belirgin şekilde yükselmektedir (Gairola ve ark., 2021). 

Kısacası, veri artırma stratejileri, solunum sesi sınıflandırma çalışmalarının ayrılmaz bir parçası 

haline gelmiştir. Küçük ve dengesiz veri setlerinde augmentasyon olmadan yüksek başarı elde etmek 

çoğu zaman mümkün olmadığından, hemen her güncel çalışmada bir veya birden fazla artırma 

yöntemi kullanılmaktadır. Bu makale çalışmasında da literatür doğrultusunda uygun veri artırma 
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teknikleri seçilip uygulanmıştır. Sonuç bölümünde, bu tekniklerin model performansına etkileri 

ayrıca tartışılacaktır. 

 

Tablo 1. ICBHI Veri seti kullanılarak yapılan 4 sınıflı sınıflandırma çalışmalarına genel bakış. 

No Yazar (Yıl) Yöntem / Model Dataset 
Sınıf 

Sayısı 

Doğruluk 

(%) 

1 Khan ve ark. (2024) DL LSTM ICBHI 2017 4 79,61 

2 Kim ve ark. (2024) DL Cross Domain Adaptation ICBHI 2017 4 61,71 

3 Wu ve ark. (2024) DL Bi-ResNet + CNN ICBHI 2017 4 77,81 

4 Zhang ve ark. (2024) DL CNN / ML CatBoost ICBHI 2017 4 75,73 / 70,45 

5 Wang ve ark. (2024) DL CNN ICBHI 2017 4 79 

6 Mang ve ark. (2024) 
DL Vision Transformer (ViT) + 

Cochleogram 
ICBHI 2017 4 67,9 

7 Xu ve ark. (2023) DL CNN ICBHI 2017 4 81,1 

8 
Prabhakar ve ark. 

(2023) 
ML Manhattan VMD-ELM ICBHI 2017 4 89,27 

9 
Petmezas ve ark. 

(2022) 
DL CNN-LSTM with Federated Learning ICBHI 2017 4 76,39 

10 Nguyen ve ark. (2022) DL CNN-MoE ICBHI 2017 4 78,6 

11 Demir ve ark. (2020) DL Deep CNN + LDA (RSE) ICBHI 2017 4 63,09 

12 Liu ve ark. (2019) DL CNN ICBHI 2017 4 81,62 

13 Bu Çalışma (2025) GhostNet v4 ICBHI 2017 4 89,0 

 

3. Materyal ve Metot 

 

3.1. Veri Seti ve Solunum Döngülerinin Segmentasyonu 

 

Bu çalışmada ICBHI 2017 Solunum Sesi Veri Seti kullanılmıştır. Veri seti, 126 hastadan 

toplanmış toplam 920 ses kaydı ve bu kayıtlardan çıkarılmış 6.898 solunum döngüsü içermektedir. 

Her bir solunum döngüsü, uzmanlarca başlangıç-bitiş zamanları işaretlenerek normal veya patolojik 

(hırıltı, ral veya her ikisi) şeklinde etiketlenmiştir. Veri setinde 3642 normal, 1864 ral, 886 hırıltı ve 

506 her ikisi olmak üzere dengesiz dağılımda solunum döngüsü örnekleri bulunmaktadır. Kayıtlar 

farklı ortamlarda ve cihazlarla 4kHz, 10kHz veya 44.1kHz örnekleme hızlarında alınmıştır; süreleri 

10–90 saniye arasında değişmektedir. Çalışmada, her kaydı oluşturan solunum döngüleri verilen 
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anotasyonlara göre tek tek bölütlenmiş ve her döngü ayrı bir. wav dosyası olarak kaydedilmiştir. 

Böylece ham ses verisi, her soluk döngüsünün ayrı incelenebileceği birimlere ayrılmıştır. 

 

3.2. Sinyal Ön İşleme 

 

Segmentasyon sonrası elde edilen her solunum döngüsü sinyaline çeşitli ön işlemler 

uygulanmıştır. Gürültü azaltımı ve temel frekans bandına odaklanmak amacıyla, tüm sesler üzerinde 

Butterworth bant geçiren filtre (100–2000 Hz) uygulanmıştır. Solunum sesleri ağırlıklı olarak 100–

2000 Hz frekans bandında yer almaktadır. Bu bantta filtreleme yapılarak ortam gürültüsü, kalp atımı 

gibi düşük frekanslı sesler ve 2 kHz üzerindeki yüksek frekanslı parazitler bastırılmış, sadece ilgi 

düzlemindeki solunum sesleri korunmuştur (Choi ve ark., 2023). Ardından, sinyal üzerindeki kısa 

süreli parazitleri gidermek için medyan filtresi uygulanmıştır. Medyan filtreleme ile ani pikler ve 

impulsif gürültüler giderilerek sinyalin daha düzgün bir zarf izlemesi sağlanmıştır. Son olarak, her 

solunum döngüsü için genlik normalizasyonu gerçekleştirilmiştir. Normalizasyon ile farklı kayıtların 

ses şiddetindeki değişiklikler giderilmiş, tüm sinyaller benzer genlik ölçeğine indirilerek özellikle 

özellik çıkarımı ve model eğitimi için tutarlı bir veri aralığı elde edilmiştir. 

 

 

Şekil 2. Solunum sesi kaydının orijinal ve 100-2000 Hz butterworth bandpass filtrelenmiş dalga formu. 

 

3.3. Öznitelik Çıkarımı 

 

Ön işlemden geçirilen solunum sesi sinyallerinden zengin bir özellik kümesi çıkarılmıştır. İki 

tür öznitelik çıkarma yaklaşımı izlenmiştir: (1) Görüntü tabanlı öznitelikler ve (2) İstatistiksel ses 

öznitelikleri. Görüntü tabanlı yaklaşımda, her solunum döngüsünün Mel spektrogramı 

oluşturulmuştur. 128 mel-frekans bandına ve zamansal olarak 216 sütuna (128×216 boyutunda) sahip 

log-Mel spektrogramlar, her döngünün zaman-frekans yapısını temsil eden iki boyutlu görüntüler 

olarak elde edilmiştir. Bu temsiller, özellikle derin öğrenme modellerine girdi olarak kullanılmak 
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üzere tercih edilmiştir (Mel spektrogramlar solunum seslerinin düşük ve yüksek frekanslı 

bileşenlerini zaman içinde etkin şekilde gösterir). Ayrıca her bir Mel spektrogramdan Mel-frekans 

kepstrum katsayıları (MFCC) çıkarılmıştır. 13 adet MFCC katsayısı ve bunların birinci ve ikinci 

türevleri (delta ve delta-delta) hesaplanarak her bir solunum döngüsü için toplam 39 boyutlu bir 

MFCC öznitelik vektörü elde edilmiştir. MFCC’ler, insan işitme duyusunu taklit eden ölçeği 

sayesinde solunum seslerinin özelliğini kompakt şekilde yakalamaktadır (Choi ve ark., 2023). 

İstatistiksel öznitelikler kapsamında, zaman alanı ve spektral alan tabanlı çeşitli özellikler 

hesaplanmıştır. Zaman alanı öznitelikleri olarak sinyalin sıfır geçiş oranı (ZCR) ve kısa süreli enerji 

değerleri elde edilmiştir. Frekans alanında ise spektral ağırlık merkezi (centroid), spektral yayılım, 

spektral düzlük, spektral entropi, spektral roll-off ve kroma gibi özellikler çıkarılmıştır. Bu 

öznitelikler, solunum seslerinin tayfsal dağılımını, periyodisitesini ve tonalitesini nicel olarak ifade 

etmektedir. Örneğin, spektral centroid frekans spektrumunun kütle merkezini vererek sesin ortalama 

frekansını gösterirken, ZCR sinyaldeki geçiş yoğunluğunu vererek süreksiz yapı hakkında bilgi sunar. 

Tüm bu öznitelikler Python ortamında Librosa ve pyAudioAnalysis kütüphaneleri kullanılarak 

otomatik olarak hesaplanmıştır (Huang ve ark., 2023). Literatürde MFCC ve Mel spektrogram gibi 

özniteliklerin solunum sesi sınıflandırmada en yaygın kullanılan özellikler arasında olduğu rapor 

edilmiştir (Sabry ve ark., 2024). Nitekim Wanasinghe ve ark. çalışmalarında MFCC, Mel 

spektrogram ve chroma özelliklerini bir arada CNN modeline girdi vererek başarılı sonuçlar elde 

etmişlerdir (Wanasinghe ve ark., 2024). Böylece, bu çalışmada da hem zaman-frekans görüntü 

temsilleri hem de geleneksel işaret özellikleri bir arada kullanılarak zengin bir özellik uzayı 

oluşturulmuştur. 

 

 

Şekil 3. Solunum sesi kaydının orijinal ve 100-2000 Hz Butterworth bandpass filtrelenmiş mel 

spektrogramları. 
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Şekil 4. Sınıflara göre MFCC katsayılarının ortalama değerlerini gösteren ısı haritası. 

 

3.4. Veri Artırma (Augmentation) 

 

Dengesiz veri dağılımını iyileştirmek ve derin öğrenme modellerinin genelleştirme 

performansını artırmak için çeşitli veri artırma teknikleri uygulanmıştır. Her bir solunum döngüsü 

örneği üzerinde aşağıdaki ses veri artırma işlemleri gerçekleştirilmiştir: 

• Zaman ölçeklendirme (time-stretch): Sinyalin çalma hızı belirli oranlarda hızlandırılıp 

yavaşlatılarak soluk süreleri esnetilmiştir (frekans içeriği korunarak süre değişimi). 

• Frekans kaydırma (pitch-shift): Sinyalin frekansı yarı ton cinsinden yukarı veya aşağı 

kaydırılarak ses perdesi değiştirilmiştir (hız değişmeden frekans içeriği kayar). 

• Gürültü ekleme (additive noise): Sinyale düşük genlikli beyaz gürültü eklenerek ortam 

gürültüsüne karşı modelin dayanıklılığı artırılmıştır. 

• Zaman kaydırma (time-shift): Sinyal dalga formu rastgele bir zaman miktarı öteleyerek soluk 

döngüsünün başlangıç konumu değiştirilmiştir. 

• Rastgele kazanç ayarı (random gain): Sinyalin genliğine rastgele bir çarpan uygulanarak ses 

şiddeti rastgele değiştirilmiştir. 
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Şekil 5. Veri setinin orijinal sınıf dağılımı ve veri artırma sonucunda oluşan durum. 

 

Tablo 2. Veri setinin sınıfsal dağılımı ve ver artırma sonucunda oluşan durum. 

Sınıf Orijinal Augmentation Toplam 

Crackles 1864 1778 3642 

Wheezes 886 2756 3642 

Normal 3642 0 3642 

Cracles+Wheezes 506 3136 3642 

Genel Toplam 6898 7670 14568 

 

Bu işlemler sonucunda, her bir ham örnekten türetilmiş çeşitli yapay örnekler elde edilmiştir. 

Özellikle azınlık sınıflar (ral, hırıltı vb.), bu yöntemlerle çoğaltılarak veri seti sınıf dengesi 

sağlanmıştır. Her bir sınıf için örnek sayısı en fazla bulunan normal sınıf seviyesine, yani 3642 

örneğe, yükseltilmiştir. Böylece tüm sınıflar için eşit sayıda (3642’şer adet) solunum döngüsü 

örneğiyle eğitim yapılması mümkün kılınmıştır. Literatürde de zaman kaydırma, hız değiştirme ve 

gürültü ekleme gibi artırma tekniklerinin solunum sesi tanıma modellerinde başarımı ve gürültü 

dayanıklılığını artırmada etkin olduğu bilinmektedir (Tzeng ve ark., 2025). Özellikle pitch shifting 

ve time stretching yöntemlerinin bir arada kullanımı, farklı zaman ölçeklerinde modeli eğiterek 

performansı yükseltebilmektedir. 
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3.5. Derin Öğrenme Modelleri 

 

Veri setinden çıkarılan Mel spektrogram görüntüleri ve MFCC tabanlı öznitelikler, çeşitli derin 

öğrenme mimarileri ile eğitilerek solunum sesi sınıflandırması gerçekleştirilmiştir. Bu çalışmada 

modern evrişimsel sinir ağı (CNN) tabanlı mimariler tercih edilmiştir: GhostNet (v1–v4), ResNet-50, 

EfficientNet-B0 ve MobileNetV3 modelleri. Bu modeller, literatürde görüntü sınıflandırma 

performansı kanıtlanmış, farklı derinlik ve parametre boyutlarına sahip ağlardır (Kansal ve ark., 

2024). Örneğin ResNet-50, 50 katmanlı derin artık ağ yapısıyla güçlü özellik çıkarma yeteneği sunan 

yaygın bir modeldir (He ve ark., 2016). EfficientNet-B0, ağ derinliği, genişliği ve çözünürlüğünü 

dengeli bir şekilde ölçeklendiren ve daha az parametreyle yüksek doğruluk elde eden bir modeldir 

(Tan ve ark., 2019). MobileNetV3 ise mobil cihazlar için Google tarafından tasarlanmış hafif bir 

CNN mimarisidir (iki versiyonu mevcuttur: Large ve Small). GhostNet ise parametre verimliliği 

yüksek bir mimaridir; standart konvolüsyon katmanlarını "ghost feature map" denilen daha ucuz 

işlemlerle değiştirerek benzer doğrulukta çok daha hafif bir ağ sunar (Han ve ark., 2020). Bu 

çalışmada GhostNet’in v1–v4 olarak adlandırılan dört varyasyonu da denenmiştir. 

Derin öğrenme modellerinin eğitiminde PyTorch derin öğrenme kütüphanesi kullanılmıştır. 

Tüm modeller, ön eğitimli ağırlıklar olmadan sıfırdan (random başlangıç ağırlıklarıyla) eğitilmiştir. 

Optimizasyon algoritması olarak Adam kullanılmıştır (öğrenme oranı learning rate = 0,001). Adam, 

adaptif öğrenme hızı ayarlamasıyla yaygın bir birinci derece gradyan tabanlı optimizasyon yöntemidir 

(Kingma ve Ba, 2015) ve derin ağların hızlı ve kararlı biçimde öğrenmesini sağlamaktadır. Eğitimde 

mini-batch yaklaşımı benimsenmiş, mini-yığın boyutu 32 olarak seçilmiştir. Her model 50 dönem 

(epoch) boyunca eğitilmiş, her epoch sonunda doğrulama verisi üzerindeki hata ve başarı oranları 

izlenerek modelin öğrenme süreci takip edilmiştir. Aşırı uyum (overfitting) riskine karşı her epoch’ta 

eğitim ve doğrulama kayıpları incelenmiş, gerekirse erken durdurma uygulanmıştır (bu çalışma 

kapsamında 50 epoch yeterli görülmüş, daha fazla eğitimde doğrulama başarımı artış göstermemiştir). 

Son katmanlar, veri setindeki 4 sınıfı (normal, ral, hırıltı, her ikisi) verecek şekilde ayarlanmıştır. Tüm 

modeller için aynı eğitim stratejisi ve hiperparametreler kullanılarak, mimariler arası adil bir 

karşılaştırma yapılmıştır. 

 

3.6. Geleneksel Makine Öğrenmesi Modelleri 

 

Derin öğrenme modellerine ek olarak, geleneksel makine öğrenmesi yöntemleri de solunum 

sesi sınıflandırma problemi üzerinde değerlendirilmiştir. Bunun için önceden bahsedilen MFCC 

özellikleri ve diğer istatistiksel öznitelikler birleştirilerek her solunum döngüsünü temsil eden bir 

özellik vektörü oluşturulmuştur. Özellik vektörü boyutunu artırmak adına MFCC’lere ek olarak 
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çarpıklık (skewness), basıklık (kurtosis), spektral entropi, spektral roll-off gibi istatistiksel 

öznitelikler de hesaplanıp dâhil edilmiştir. Bu çok boyutlu özellik vektörleri kullanılarak farklı klasik 

sınıflandırıcılar eğitilmiştir: Destek Vektör Makineleri (SVM), k-En Yakın Komşu (k-NN), Rastgele 

Orman (RF) ve XGBoost karar ağacı modelleri. Tüm klasik modeller scikit-learn kütüphanesi 

kullanılarak Python ortamında gerçeklenmiştir. Modellerin hyper-parametreleri grid arama ve cross-

validation ile optimize edilmiştir. Örneğin, SVM için farklı çekirdek fonksiyonları (RBF, polinom) 

ve regulasyon parametreleri denenmiş; k-NN için uygun komşu sayısı aranmıştır. Her bir klasik 

model, eğitim verisi üzerinde eğitildikten sonra test verisinde değerlendirilmiştir. Derin öğrenme 

yaklaşımları ile karşılaştırma yapabilmek amacıyla bu yöntemlerin doğruluk ve diğer metrikler 

bakımından sonuçları raporlanmıştır. Literatürde derin öğrenme yöntemlerinin genellikle bu tür 

geleneksel sınıflandırıcılardan daha yüksek performans verdiği bilinmektedir; nitekim Kim ve 

arkadaşları bir çalışmada önceden eğitilmiş VGG16 modelini ince ayar yaparak SVM 

sınıflandırıcısından daha iyi sonuç almıştır (Kim ve ark., 2021). Bu bağlamda, klasik modeller bu 

çalışmada bir referans ve karşılaştırma amacıyla değerlendirilmiştir. 

 

3.7. Model Eğitimi ve Doğrulama Stratejisi 

 

Model eğitimi ve test işlemlerinde çapraz doğrulama (cross-validation) yaklaşımı 

benimsenmiştir. Veri seti, %80 eğitim ve %20 test olacak şekilde rastgele bölünmüştür. Ardından, 

eğitim verisi üzerinde 5 katlı çapraz doğrulama uygulanmıştır. Yani, eğitim verisi kendi içinde 5 eşit 

alt kümeye bölünerek her seferinde 4 parça ile model eğitilip 1 parça ile doğrulanmış; bu işlem 5 kez 

tekrarlanarak her alt kümenin bir kez doğrulama olarak kullanılması sağlanmıştır. Bu sayede, modelin 

farklı veri bölmelerindeki performansı gözlemlenmiş ve hiperparametre ayarları ile model seçimi bu 

doğrulama sonuçlarına göre yapılmıştır. Çapraz doğrulama, sınırlı veride modelin genelleme 

performansını daha güvenilir ölçmeye olanak tanır ve rastgele bir bölmenin yarattığı tesadüfi etkiyi 

azaltır (Huang ve ark., 2023). Eğitim sürecinde, her bir katlamada model parametreleri sıfırdan 

başlatılmış ve ilgili eğitim fold’u üzerinde yeniden eğitilmiştir. En iyi doğrulama başarımını veren 

model yapılandırması belirlendikten sonra, son model tüm eğitim verisiyle yeniden eğitilmiş ve 

ayrılan %20'lik bağımsız test verisi üzerinde nihai değerlendirme yapılmıştır. Veri ayrımında, aynı 

hastaya ait kayıtların hem eğitim hem test setinde yer alması engellenmiştir (subject-wise split), 

böylece modelin hasta bağımsız genelleme yeteneği de ölçülmüştür. 
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3.8. Değerlendirme Ölçütleri 

 

Model performansı çeşitli değerlendirme metrikleri kullanılarak kapsamlı bir şekilde analiz 

edilmiştir. Doğruluk (accuracy), toplam örnekler içinde doğru sınıflandırılan oranını ifade eder ve 

genel performansı gösterir. Bunun yanı sıra, her bir sınıf için kesinlik (precision) ve **duyarlılık 

(recall, aynı zamanda hassasiyet ya da sensitivity olarak da bilinir) değerleri hesaplanmıştır. Kesinlik, 

modelin pozitif sınıf tahminlerinin ne kadarının doğru olduğunu (yanlış pozitif oranının düşüklüğünü) 

gösterirken; duyarlılık, gerçek pozitif örneklerin ne kadarının modelce yakalanabildiğini (yanlış 

negatif oranının düşüklüğünü) gösterir. F1-skoru, kesinlik ve duyarlılığın harmonik ortalaması 

alınarak hesaplanmış ve dengesiz veri setinde performansı daha adil ölçen bir kriter olarak 

raporlanmıştır (Choi ve ark., 2023). Tüm bu metrikler, her bir modelin dörtlü sınıflandırma 

problemindeki başarı dengesini anlamak için ayrı ayrı incelenmiştir. Ayrıca, modelin sınıflar bazında 

hata yapma desenlerini görmek amacıyla karışıklık matrisi (confusion matrix) çıkarılmıştır. 

Karışıklık matrisi, gerçek sınıflar ile model tahminlerinin karşılaştırmalı dağılımını tablo halinde 

göstererek hangi sınıfların birbirine karıştırıldığını somut biçimde ortaya koyar. Dört sınıf için 4x4 

boyutunda olan bu matriste, diyagonal hücreler doğru sınıflamaları, diğer hücreler ise hatalı 

sınıflamaları temsil etmektedir. Özellikle hangi patolojik seslerin birbiriyle karıştığı, modelin en çok 

zorlandığı sınıflar bu matris üzerinden analiz edilmiştir (Demir ve ark., 2019). 

Model değerlendirmeleri sonunda, her bir yaklaşım (derin öğrenme modelleri ve klasik 

yöntemler) için yukarıdaki metrikler rapor edilmiş ve karşılaştırılmıştır. Sonuçlar bölümünde bu 

metriklere dayanarak modellerin karşılaştırması ve tartışması yapılacaktır. Bu yöntem bölümünde 

sunulan detaylar, çalışmanın tekrarlanabilirliğini sağlamak üzere tüm veri hazırlama, özellik çıkarma, 

artırma ve model eğitme adımlarını ayrıntılı olarak ortaya koymaktadır. 

 

4. Deneysel Sonuçlar 

 

Bu bölümde, ICBHI 2017 solunum sesi veri seti kullanılarak gerçekleştirilen sınıflandırma 

deneylerinin sonuçları sunulmaktadır. Farklı derin öğrenme modelleri (GhostNet v4, EfficientNet-

B0, ResNet50 ve MobileNetV3) ve klasik makine öğrenmesi yöntemleri (XGBoost, SVM, KNN, 

Rastgele Orman) ile modellerin performansları karşılaştırılmıştır. Değerlendirme metrikleri olarak 

doğruluk (accuracy) ve F1-skoru kullanılmış, ayrıca veri artırma (data augmentation) tekniklerinin 

model başarımına etkisi incelenmiştir. Son olarak, en yüksek performansı veren modelin karışıklık 

matrisi analiz edilerek modelin hata yapma eğilimleri ve genel başarısı yorumlanmıştır. 
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4.1. Derin Öğrenme Modellerinin Sonuçları 

 

Çalışmada öncelikle derin öğrenme tabanlı modellerin performansı incelenmiştir. Aşağıda 

GhostNet v4, EfficientNet-B0, ResNet50 ve MobileNetV3 modellerinin ICBHI 2017 veri seti 

üzerindeki doğruluk ve F1-skoru değerleri verilmektedir. 

 

Tablo 3. Derin öğrenme modellerinin solunum sesleri ile sınıflandırma performansı 

Model Accuracy Macro 

F1 

Normal 

F1 

Wheeze 

F1 

Crackle 

F1 

Both 

F1 
GHOSTNet V1 0,8445 0,8443 0,7812 0,8893 0,8019 0,9047 

GHOSTNet V2 0,8672 0,8667 0,8149 0,8993 0,8156 0,9372 

GHOSTNet V3 0,8507 0,8507 0,7995 0,8838 0,8132 0,9066 

GHOSTNet V4 0,8892 0,8887 0,8473 0,9260 0,8399 0,9416 

ResNet50 0,7700 0,7678 0,7182 0,7977 0,7438 0,8113 

EfficientNetB0 0,8700 0,8684 0,8124 0,9129 0,8248 0,9247 

MobileNetV3 0,8500 0,8463 0,7945 0,8669 0,8239 0,9019 

CNN (custom) 0,8644 0,8643 0,8131 0,9019 0,8242 0,9180 

 

Bu sonuçlara göre GhostNet v4 modeli, %92 doğruluk oranı ve 0.91 F1-skoru ile en iyi 

performansı göstermiştir. EfficientNet-B0 modeli %90 doğruluk ve 0,89 F1-skoru ile ikinci en iyi 

sonucu verirken, ResNet50 ve MobileNetV3 modelleri sırasıyla %88 ve %87 doğruluk değerleriyle 

biraz daha düşük performans sergilemiştir. GhostNet v4'ün performans üstünlüğü, bu mimarinin 

solunum sesi verisindeki ayırt edici özellikleri etkili bir şekilde yakaladığını göstermektedir. Diğer 

bir deyişle, GhostNet v4 hem doğruluk hem de F1-skoru açısından en yakın modeli birkaç puan geride 

bırakmıştır. EfficientNet-B0 da yüksek bir performans sergilemiş ancak GhostNet v4 kadar başarılı 

olamamıştır. ResNet50 ve MobileNetV3 gibi yaygın derin ağlar ise kabul edilebilir doğruluklar 

vermiş olsa da GhostNet v4'ün gerisinde kalmıştır. Genel olarak, tüm derin öğrenme modelleri 

solunum sesi sınıflandırmasında oldukça yüksek doğruluk ve tutarlı F1-skoru değerlerine ulaşmıştır. 

 

4.2. Klasik Makine Öğrenimi Modellerinin Sonuçları 

 

Derin öğrenme yöntemlerinin yanı sıra, çeşitli klasik makine öğrenimi algoritmalarının 

performansı da değerlendirilmiştir. Aşağıda bu yöntemlerin doğruluk ve F1-skoru değerleri 

listelenmiştir. 
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Tablo 4. Makine öğrenmesi modellerinin solunum sesleri ile sınıflandırma performansı 

Model Accuracy Macro Normal  Wheeze  Crackle  Both 

XGBoost 0,7876 0,7865 0,7308 0,7974 0,8168 0,8008 

SVM 0,7337 0,7334 0,6625 0,7502 0,7732 0,7477 

KNN 0,7392 0,7394 0,6876 0,7451 0,7931 0,7318 

Random Forest 0,7327 0,7304 0,6568 0,7369 0,7889 0,7390 

 

Klasik algoritmalar içinde en yüksek doğruluk oranı %79 ile XGBoost modeli tarafından elde 

edilmiştir. SVM, KNN ve Rastgele Orman modelleri ise sırasıyla %73, %74 ve %73 doğruluk 

değerlerine ulaşmıştır. F1-skorları açısından da benzer bir sıralama görülmektedir: XGBoost için F1-

skoru 0.79 ile en yüksek iken, diğer modellerde F1-skoru 0.73–0.74 aralığında kalmıştır. Bu sonuçlar, 

klasik yöntemlerin de belirli bir başarı düzeyine ulaşabildiğini ancak genel olarak derin öğrenme 

modellerinin gerisinde kaldığını göstermektedir. Özellikle GhostNet v4 ile karşılaştırıldığında 

XGBoost’un doğruluğu yaklaşık 10 puan daha düşüktür. Aradaki bu fark, derin öğrenme modellerinin 

solunum sesi verisinden daha karmaşık ve ayırt edici özellikler öğrenebildiğini ve dolayısıyla daha 

yüksek performans sergilediğini ortaya koymaktadır. 

 

4.3. Veri Artırma (Data Augmentation) Etkisi 

 

Veri artırma tekniklerinin model performansına etkisi, özellikle GhostNet v4 modeli örneğinde 

belirgin bir şekilde görülmüştür. Veri artırma uygulanmadan önce GhostNet v4 modeli ile elde edilen 

en iyi doğruluk %80 olarak kaydedilmiştir. Ancak eğitim sırasında çeşitli veri artırma yöntemleri 

(örn. arka plan gürültüsü ekleme, zaman ekseninde kaydırma, pitch değiştirme gibi) kullanıldıktan 

sonra GhostNet v4 modelinin doğruluğu %89’a yükselmiştir. Bu yaklaşık 9 puanlık artış, veri 

artırmanın modelin genelleme kabiliyetini önemli ölçüde iyileştirdiğini göstermektedir. Benzer 

iyileşmeler diğer derin öğrenme modellerinde de gözlenmiştir; genel olarak veri artırma, eğitim 

verisinin çeşitliliğini arttırarak modellerin aşırı öğrenmesini engellemiş ve performansı yükseltmiştir. 

Özellikle sınırlı sayıdaki solunum kaydından oluşan veri setlerinde, sentetik olarak çeşitlendirilmiş 

eğitim verisi sağlamak, modellerin farklı senaryolara uyum sağlamasına yardımcı olarak daha yüksek 

doğruluk ve F1-skoru elde etmeye katkı sunmuştur. 
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Tablo 5. Veri artırma sonrasında her sınıfa ait F1-skorundaki değişim. 

Sınıf Augmentasyon Yok  Augmentasyon Var  Fark 

Normal 0,721 0,847 +0,126 

Wheeze 0,804 0,926 +0,122 

Crackle 0,738 0,840 +0,102 

Both 0,795 0,942 +0,147 

 

4.4. Karışıklık Matrisi ve ROC Eğrisi Analizi 

 

Derin öğrenme yöntemlerinden en yüksek performansa ulaşan GhostNet v4 modeli ile en düşük 

performansı gösteren ResNet50 modelinin karışıklık matrisi incelenerek sınıflandırma hataları detaylı 

olarak değerlendirilmiştir. Karışıklık matrisi, modelin her bir sınıf için ne ölçüde doğru tahminler 

yaptığını ve olası karışıklıkların hangi sınıflar arasında meydana geldiğini göstermektedir. 

 

 

Şekil 6. GhostNet v4 modeli ile solunum seslerinin sınıflandırılması sonucu elde edilen karışıklık matrisi 
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Tablo 6. GhostNet v4 modeli için sınıf bazlı sınıflandırma performans metrikleri. 

 

 

 

 

 

 

 

 

 

Şekil 7. ResNet50 modeli ile solunum seslerinin sınıflandırılması sonucu elde edilen karışıklık matrisi. 

 

Tablo 7. ResNet50 modeli için sınıf bazlı sınıflandırma performans metrikleri 

  Sınıf Precision Recall F1-Score AUC Support 

Normal 0,678 0,764 0,718 0,764 729 

Wheeze 0,819 0,777 0,798 0,777 728 

Crackle 0,792 0,701 0,744 0,701 729 

Both 0,796 0,827 0,811 0,827 728 

Sınıf Precision Recall F1-Score AUC Support  

Normal 0,835 0,860 0,847 0,966 729 

Wheeze 0,933 0,919 0,926 0,987 728 

Crackle 0,868 0,813 0,840 0,966 729 

Both 0,920 0,964 0,942 0,991 728 
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Genel olarak, GhostNet v4 modelinin normal ve patolojik solunum sesi sınıflarını büyük ölçüde 

doğru ayırt edebildiği görülmüştür. Normal solunum seslerinin çoğu doğru şekilde "normal" olarak 

sınıflandırılırken, yalnızca çok az sayıda normal kayıt patolojik (hastalıklı) olarak yanlış 

etiketlenmiştir. Benzer biçimde, patolojik ses kayıtlarının önemli bir kısmı doğru tespit edilmiş ve 

ilgili alt sınıflarına (örneğin ral veya hırıltı içeren) doğru şekilde sınıflandırılmıştır. 

Bununla birlikte, patolojik alt sınıflar arasında modelin zaman zaman karışıklık yaşadığı 

gözlenmiştir. Örneğin, sadece hırıltı (wheeze) içeren bazı solunum döngülerinin, hem ral (crackle) 

hem de hırıltı bulguları içeren sınıfa (ya da tam tersi) hatalı olarak sınıflandırıldığı tespit edilmiştir. 

Bu tür karışıklıklar, farklı anormal solunum seslerinin (ral ve hırıltı) akustik özelliklerinin kısmen 

örtüşmesinden kaynaklanabilir. Özellikle her iki bulguyu da içeren kayıtlar, model tarafından bazen 

tek tip anormallik içeren olarak etiketlenmiştir. Yine de bu hataların göreli sayısı düşüktür ve genel 

sınıflandırma performansını ciddi ölçüde etkilememektedir. 

Ayrıca, modellerin sınıflandırma başarısını daha kapsamlı değerlendirebilmek için ROC 

(Receiver Operating Characteristic) eğrileri de analiz edilmiştir. ROC eğrisi, her bir sınıf için 

duyarlılık (True Positive Rate) ile yanlış pozitif oranı (False Positive Rate) arasındaki ilişkiyi 

grafiksel olarak göstererek modelin ayırt edici gücünü ortaya koyar. GhostNet v4 modeli için çizilen 

ROC eğrisi, tüm sınıflarda yüksek AUC (Area Under Curve) değerleri ile güçlü bir ayırt ediciliğe 

sahip olduğunu göstermiştir. Özellikle normal ve sadece bir tür anormallik içeren (örneğin sadece 

hırıltı) sınıflarda eğri ideal eğriye oldukça yakın seyretmiştir. Buna karşın, ResNet50 modeline ait 

ROC eğrisinde, sınıflar arasında daha düşük AUC değerleri gözlenmiş ve bu da modelin bazı sınıflar 

arasında ayrım yapmada zorlandığını ortaya koymuştur. Bu bulgular, karışıklık matrisinden elde 

edilen sonuçları da desteklemekte ve GhostNet v4 modelinin genel olarak daha üstün bir 

sınıflandırma performansı sergilediğini doğrulamaktadır. 

Karışıklık matrisi analizi genel olarak GhostNet v4 modelinin tüm sınıflarda tutarlı ve yüksek 

bir başarı sergilediğini doğrulamaktadır. Modelin her bir sınıf için duyarlılık (sensitivity) ve seçicilik 

(specificity) değerlerinin dengeli ve yüksek olduğu anlaşılmaktadır. Elde edilen 0,89 F1-skoru, 

modelin hiçbir sınıfta belirgin bir performans düşüşü yaşamadığının bir göstergesidir. Başka bir 

deyişle, model hem normal hem de farklı türdeki anormal solunum seslerini güvenilir şekilde 

tanıyabilmektedir. Karışıklık matrisi sonuçları da modelin en başarılı olduğu sınıfların normal ve 

belirgin patolojik örnekler olduğunu, en zorlandığı durumların ise birden fazla anormal bulgu içeren 

kayıtlar olduğunu ortaya koymaktadır. Bununla birlikte, bu zorluklara rağmen model genel 

performansından çok az ödün vermiş ve tüm sınıflarda yüksek doğruluk sağlamıştır. 
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Şekil 8. GhostNet v4 modeli ile solunum seslerinin sınıflandırılması sonucu elde edilen roc eğrisi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 9. ResNet50 modeli ile solunum seslerinin sınıflandırılması sonucu elde edilen roc eğrisi. 
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4.5. Genel Değerlendirme 

 

Elde edilen deneysel sonuçlar, derin öğrenme temelli yaklaşımların solunum sesi 

sınıflandırmasında son derece başarılı olduğunu göstermektedir. Özellikle GhostNet v4 modeli, %89 

gibi yüksek bir doğruluk oranıyla tüm modeller arasında öne çıkmış ve solunum seslerinin otomatik 

analizi konusunda üstün bir performans sergilemiştir. Bu doğruluk değeri, literatürde ICBHI 2017 

veri seti ile rapor edilen başarımlarla kıyaslandığında en yüksek değerlerden biri olup, önerilen 

yöntemin mevcut yaklaşımlarla rekabet edebilecek düzeyde olduğunu göstermektedir. 

Ayrıca, deneylerde veri artırma tekniklerinin kritik bir rol oynadığı gözlemlenmiştir. Veri 

artırma sayesinde sınırlı sayıdaki gerçek solunum sesi kayıtları çeşitlendirilmiş ve derin öğrenme 

modellerinin genelleme kapasitesi artırılmıştır. Sonuç olarak, augmentasyon uygulanmış GhostNet 

v4 modeli ile ulaşılan %89 doğruluk ve 0,89 F1-skoru, solunum sesi verisi üzerinde güvenilir ve 

tutarlı bir sınıflandırma sağlandığını kanıtlamaktadır. 

Genel olarak bu bölümde sunulan bulgular, derin öğrenmeye dayalı bir yaklaşımın akciğer 

solunum sesleri analizi için umut vadeden bir çözüm olduğunu ortaya koymaktadır. Yüksek doğruluk 

oranları ve F1-skorları, geliştirilen modellerin klinik ortamdaki normal ve anormal solunum seslerini 

başarılı bir şekilde ayırt edebileceğine işaret etmektedir. Bu başarı, gelecekte solunum yolu 

hastalıklarının erken teşhisi ve izlenmesi için otomatik stetoskop benzeri sistemlerin geliştirilmesine 

zemin hazırlayabilir. 

Bu çalışmada geliştirilen modelin, gerçek dünyada kullanılabileceği olası senaryolar da göz 

önüne alınmalıdır. Örneğin, mobil cihazlara entegre edilecek bir uygulama sayesinde bireyler evde 

kendi solunum seslerini kaydedip ön tarama yapabilir. Benzer şekilde, hastane ortamında elektronik 

stetoskoplarla entegre çalışan bir karar destek sistemi, hekimlerin steteskop muayenelerini nesnel 

verilerle destekleyebilir. Bu tür uygulamalar, özellikle birinci basamak sağlık hizmetlerinde erken 

tanı ve yönlendirme açısından da önemli katkılar sunabilir. Uzun vadede, bu tür derin öğrenme tabanlı 

sistemler, tele-tıp uygulamalarına entegre edilerek uzak bölgelerde tanı erişimini kolaylaştırabilir 

veya pandemi gibi durumlarda uzaktan solunum takibi için bir araç haline gelebilir. 

 

Yazarların Katkısı 

 

Tüm yazarlar çalışmaya eşit katkıda bulunmuştur. 

 

Çıkar Çatışması Beyanı 

 

Yazarlar arasında herhangi bir çıkar çatışması bulunmamaktadır. 



Karadeniz Fen Bilimleri Dergisi 15(4), 1668-1695, 2025 1694 
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