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Solunum Sesi Siniflandirmasi icin Klasik ve Derin Ogrenme Modellerinin
Karsilastirilmasi

Hayati TURE'"®', Eren AYGUN?"

Oz

Bu ¢alisma, ICBHI 2017 solunum sesi veri seti lizerinde gelistirilmis bir derin 6grenme yaklasimiyla, normal ve patolojik
solunum seslerini otomatik olarak smiflandirmay:r amaglamaktadir. Caligmada, segmentlenmis solunum seslerinden
MFCC, Mel spektrogram ve spektral 6znitelikler elde edilmis; ardindan bu 6znitelikler klasik makine 6grenmesi
algoritmalar1 (XGBoost, SVM, KNN, Rastgele Orman) ve derin 6grenme modelleri (GhostNet v1-v4, EfficientNet-BO,
ResNet50, MobileNetV3) ile egitilmistir. Veri artirma tekniklerinin (augmentasyon) katkisi da sistematik olarak
incelenmistir. Sonuglar, GhostNet v4 modelinin %89 dogruluk ve 0.89 F1-skoru ile en iyi performansi gosterdigini ortaya
koymaktadir. Bu dogruluk orani, ICBHI 2017 veri seti ile literatiirde rapor edilen bir¢cok yontemi geride birakmaktadir.
Ayrica, karigiklik matrisi analizleri modelin normal ve patolojik smiflart yiiksek tutarlilikla ayirt edebildigini
gostermektedir. Elde edilen sonuglar, akciger seslerinin otomatik analizi i¢in derin 6grenme temelli modellerin etkinligini
ortaya koymakta ve klinik karar destek sistemlerine entegre edilebilecek potansiyel ¢oziimler sunmaktadir.

Anahtar Kelimeler: Solunum sesi analizi, Derin 6grenme, Makine Ogrenmesi, MFCC, Mel spektrogram, GhostNet.

Comparison of Classical and Deep Learning Models for Respiratory Sound
Classification

Abstract

This study aims to automatically classify normal and pathological respiratory sounds using a deep learning-based
approach developed on the ICBHI 2017 respiratory sound dataset. MFCCs, Mel spectrograms, and spectral features were
extracted from segmented respiratory sound recordings. These features were then used to train classical machine learning
algorithms (XGBoost, SVM, KNN, Random Forest) and deep learning models (GhostNet v1—v4, EfficientNet-BO,
ResNet50, MobileNetV3). The impact of data augmentation techniques was also systematically examined. The results
demonstrate that the GhostNet v4 model achieved the highest performance with 89% accuracy and an F1-score of 0.89.
This accuracy outperforms many existing methods reported in the literature using the same dataset. Confusion matrix
analyses further indicate that the model reliably distinguishes between normal and pathological classes. These findings
highlight the effectiveness of deep learning-based models in the automatic analysis of respiratory sounds and suggest
promising solutions for integration into clinical decision support systems.
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1. Giris

1.1. Solunum Sesi Analizinin Onemi

Akciger oskiiltasyonu (steteskop ile dinleme) uzun yillardir solunum hastaliklariin tanisinda
vazgecilmez bir yontem olmustur. Solunum sisteminden kaynaklanan anormal sesler (6rnegin ral
olarak da bilinen crackle sesleri, higilt1 veya wheeze, ve rhonchi) pek ¢ok akciger hastaliginin 6nemli
belirtileridir. Ornegin, kisa ve patlayic1 karakterdeki crackle sesleri genellikle pndmoni, interstisyel
akciger fibrozu veya akciger 6demi gibi parankimal akciger hastaliklarinda duyulur; yiiksek frekansl
1slik sesi seklindeki wheeze ise astim ve KOAH gibi hava yolu daralmasi ile ilgili hastaliklarda
goriiliir (Kim ve ark., 2021). Bu tip patolojik seslerin varligi, klinisyene hastaligin tiirii ve ciddiyeti
hakkinda 6nemli ipuglar1 verir. Solunum hastaliklar1 diinya genelinde baslica saglik sorunlarindan
biridir ve 0rnegin Avrupa’da tiim oliimlerin yaklasik beste birini olusturmaktadir. Bu hastaliklar
genellikle sinsi seyirli olup erken evrede belirti vermeyebilir; dolayisiyla teshis konuldugunda
hastalik ilerlemis olabilmektedir (Tiirkiye Solunum Arastirmalar1 Dernegi, t.y.). Bu durum, solunum
hastaliklarinin erken teshisinin 6nemini vurgulamaktadir. Erken tani sayesinde hastaligin seyri

yavaglatilabilir, hastalarin yasam kalitesi korunabilir ve ciddi komplikasyonlarin 6niine gecilebilir.

1.2. Solunum Hastahklarinda Erken Teshis ve Dijital Yaklasimlar

Geleneksel stetoskop muayenesi ucuz, hizli ve invaziv olmayan bir yontem olmakla birlikte,
tamamen hekimin deneyimine ve subjektif degerlendirmesine dayanir. Arastirmalar, egitim
asamasindaki hekimlerin akciger seslerini yorumlamada 6nemli hatalar yapabildigini gdstermektedir.
Ornegin bir ¢alismada, asistan hekimlerin ve tip dgrencilerinin akciger seslerinin yaklagik yarisini
yanlis tanimladigi rapor edilmistir (Kim ve ark., 2021). Farkli gézlemciler arasinda, ayni hastada
solunum seslerini yorumlamada ciddi tutarsizliklar olabilmektedir. Bu nedenle solunum seslerinin
otomatik analizine olan ihtiya¢ giderek artmistir. Elektronik stetoskoplar ve gelisen sayisal ses isleme
teknolojileri sayesinde, akciger sesleri artik kaydedilebilir ve bilgisayar destekli yontemlerle nesnel
olarak analiz edilebilir hale gelmistir. Yapay zeka destekli oskiiltasyon, klinik taniy1 standardize
etmeye ve dogrulugunu artirmaya yardimci olabilir. Nitekim, Al tabanli bir sistem dogru
siniflandirma yaparak kritik hastalarin erken tespitini miimkiin kilabilir; astim, KOAH, pnémoni gibi
cesitli akciger hastaliklarinin taranmasi ve takibinde kullanilabilir. Veri ve algoritmalara dayali bu
yaklasimlar, insan dinleyiciler arasindaki yorum farklarmi ortadan kaldirma, ¢ok miktarda veriyi

hizlica degerlendirebilme ve insan kulaginin kagirabilecegi ince akustik paternleri tespit edebilme
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avantajlarina sahiptir (Kim ve ark., 2021). Dolayisiyla, solunum seslerinin otomatik analizi erken

teshis imkanlarin1 gelistirerek hastalara zamaninda tedavi sans1 sunma potansiyeline sahiptir.

1.3. Veri Tabanh Yaklasimlarin Avantajlar

Son yillarda derin 6grenme basta olmak iizere veri tabanli yaklasimlar, tipta goriintiileme ve
sinyal analizinde ¢igir acan basarilar elde etmistir. Akciger sesleri alaninda da ¢ok sayida caligma,
makine 6grenmesi teknikleriyle normal ve anormal solunum seslerini ayirt etmeye odaklanmaktadir
(Kim ve ark., 2021). Bu yontemlerin en biiyiik avantajlarindan biri, karmagsik 6zellik ¢ikarimini insan
miidahalesine gerek kalmadan dogrudan veriden dgrenebilmeleridir. Ozellikle derin sinir aglari,
zaman-frekans diizlemindeki ince farkliliklar1 yakalayarak ral, hirilt1 gibi sesleri yiiksek dogrulukla
tespit edebilmistir. Ote yandan, klasik makine 6grenmesi yontemleri elle tasarlanan dzniteliklere
dayanir ve performanslari biiylik 6l¢iide bu 6zniteliklerin kalitesine baglidir. Veri temelli yaklagimlar
ise biiyiik veri kiimelerinde insan uzmanlarin fark edemeyecegi paternlere karsi duyarlidir. Nitekim
bir ¢alismada, mel spektrogramlarindan derin 6grenme ile 6zellik ¢ikarip siniflandirma yapan bir
modelin, ayni 6zellikleri kullanan SVM tabanli bir siniflandiricidan daha yiiksek performans ve hiz
sagladig1 gosterilmistir (Kim ve ark., 2021). Bu gibi bulgular, yapay 6grenmenin solunum sesi
analizinde klasik yontemlere kiyasla iistiinliik saglayabildigini ortaya koymaktadir. Bununla birlikte,
basaril1 bir yapay zeka modelinin gelistirilmesi i¢in yeterli miktarda ve kaliteli veriye ihtiya¢ vardir.
Geleneksel yontemlerin aksine, derin Ogrenme modelleri veri aghigi yasar ve dengesiz veri
dagilimlarina kars1 hassastir. Dolayisiyla, veri artirma ve uygun 6n igleme tekniklerinin kullanimi

kritik Onem tasir.

1.4. Bu Calismanin Amaci ve Kapsam

Bu makale g¢alismasinda, solunum sesi sinyallerinin otomatik smiflandirilmasi i¢in modern
derin 6grenme yaklasimlari ile klasik makine Ogrenmesi yontemlerini karsilastirmali olarak
degerlendirdik. Caligmada, alanin standart veri setlerinden biri olan ICBHI 2017 solunum sesi veri
taban1 kullanilmigtir. ICBHI veri seti, 126 bireyden toplanmig 920 ses kaydi icermekte olup, her
solunum dongiisii bir uzman tarafindan normal, yalniz crackle, yalniz wheeze veya hem crackle hem
wheeze olmak iizere dort siniftan biriyle etiketlenmistir. Bu zengin veri seti, pndmoni, bronsektazi,
bronsiolit, KOAH gibi ¢esitli solunum hastaliklarindan kaynaklanan sesleri barindirdigi igin
calismalarimiz i¢in saglam bir temel olusturmustur (Huang ve ark., 2023). Kayitlar tizerinde 6ncelikle
solunum dongiisii bazinda segmentasyon islemi gergeklestirilmigtir. Ardindan, 6n isleme adimlar

olarak diisiik ve yiiksek frekansli parazitleri engellemek amaciyla bir bant gegiren filtre uygulanmas,
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cevresel giirtiltii ve kalp atimi gibi istenmeyen bilesenler azaltilmis, sinyal genligi normalizasyon ile
standart hale getirilmistir. Nitekim literatiirde de benzer sekilde kayitlarin ortak bir frekansta yeniden
orneklenmesi, 5. dereceden Butterworth bant geciren filtreyle istenmeyen giirtiltiilerin giderilmesi ve
sinyalin —1 ile 1 aralifina normalize edilmesi yaygin bir uygulamadir (Gairola ve ark., 2021). Bu
sekilde temizlenen zaman serisi verisi, derin 6grenme modellerine girdi olarak verilebilmesi i¢in Mel
spektrogram doniisiimiine tabi tutulmustur. Mel 6l¢eginde log-spektrogramlar, insan kulagimin
frekans algisina uygun bir zaman-frekans gosterimi sagladigi icin ses siniflandirma ¢aligmalarinda en
basarili Ozellik temsilcilerinden biri olarak kabul edilmektedir (Poir¢ ve ark., 2022). Ayrica
karsilastirma amaciyla, yaygin bir diger 6znitelik olan MFCC (Mel Frekans Kepstrum Katsayilar)
de ozellik ¢ikarimi i¢in degerlendirilmistir. Makale kapsaminda CNN tabanli evrisimsel sinir ag1
modelleri (GhostNet, ResNet50, EfficientNet ve MobileNet gibi farkli mimariler) ile klasik makine
O0grenmesi algoritmalar1 (Destek Vektor Makineleri — SVM, En Yakin Komsu — KNN, Rastgele
Orman — RF ve XGBoost karar agaglar1) kullanilarak siiflandirma modelleri gelistirilmistir. Model
egitiminde, veri setindeki dengesiz smif dagilimini iyilestirmek amaciyla veri artirma (data
augmentation) teknikleri uygulanmustir. Ozellikle nadir goriilen siniflara ait drneklerin sayisini
artirmak ve modellerin genelleme kabiliyetini yiikseltmek i¢in zaman Olgegini esnetme (time
stretching), ses perdesini degistirme (pitch shifting) ve mevcut kayitlara yapay giiriiltii ekleme gibi
yontemlerle yeni sentetik ornekler iiretilmistir. Bu sayede, egitim verisi igerisinde siif dengesi
saglanmaya calisilmistir. Makalenin devaminda, oncelikle literatiirde son yillarda gerceklestirilmis
benzer calismalar ve bulgular1 6zetlenecek; ardindan Onerilen yontem ve elde edilen deneysel
sonuclar detaylandirilacaktir. Sekil 1°de, bu ¢calismada izlenen genel metodolojik yaklagim adim adim
Ozetlenmistir. Bu diyagram, solunum sesi analizine yonelik geleneksel yontemlerden baslayarak,
dijitallesme siireci ve kullanilan yapay 6grenme tekniklerine kadar olan arastirma akisini biitiinciil

sekilde gorsellestirmektedir.
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2. Literatiir Taramasi

2.1. ICBHI Veri Seti ve Ozellik Cikarim

Solunum sesi analizinde kullanilan agik erisimli veri setleri arasinda en yaygin olan1 ICBHI
2017 Solunum Sesleri veri tabanidir. 2017 yilinda gerceklestirilen bu uluslararas1 degerlendirme,
arastirmacilara standart bir karsilastirma zemini saglamig ve bu alandaki ¢aligmalar1 hizlandirmustir.
ICBHI veri seti, farkl elektronik stetoskop cihazlariyla kaydedilmis genis bir yelpazede solunum sesi
ornegi igerir. Toplam 5,5 saat uzunlugundaki kayitlar 4 kHz — 44.1 kHz arasinda degisen drnekleme
hizlarina sahiptir ve her biri uzmanlarca solunum dongiisii seviyesinde etiketlenmistir (Gairola ve
ark., 2021). Bu veri setinin onemli bir 6zelligi, simif dengesizligi sorunudur: kayith solunum
dongiilerinin yaklasik %53’1 normal sesler iken geri kalan1 anormal (crackle, wheeze veya ikisi
birden) olarak dagilmistir. Bu dengesizlik, modellerin egitimi sirasinda normal smifa asir1 uyum
saglama (overfitting) riskini dogurur ve literatiirde ¢esitli yontemlerle ele alinmustir.

ICBHI veri setinde ve diger solunum sesi ¢alismalarinda, ham ses sinyallerinden anlamli
ozellikler ¢ikarmak kritik bir adimdir. Mel spektrogramlar bu baglamda en ¢ok kullanilan 6zellik
temsilidir. Ornegin, Yu ve ark. (2022) ICBHI veri setindeki kayitlar1 mel-scaled spektrogram
goriintiilerine dontistiiriip bir derin CNN modeline girdi olarak vererek crackle ve wheeze tespitinde
yiiksek basart elde etmislerdir (6zgiillik %84.,9, duyarlilik %84,5) (Huang ve ark., 2023). Mel
spektrogram, kisa zamanl Fourier doniisiimii ile elde edilen gii¢ spektrumunun mel frekans skalasina
gore yeniden Olgeklendirilmesiyle elde edilir ve insan isitme diizenegine uygun bir ¢oziiniirliik saglar.
Bircok c¢aligma, mel spektrogramlarin yani sira MFCC o6zniteliklerini de kullanmistir. MFCC’ler,
sesin kaba spektral zarfin1 6zetleyen daha kompakt 6zellik vektorleridir ve 6zellikle klasik makine
o0grenmesi modelleriyle sikca tercih edilmistir (Tariq ve ark., 2022). Nitekim Rocha ve arkadaslari,
ICBHI 2017 veri seti ile yaptiklar1 oncli ¢calismada MFCC basta olmak iizere cesitli spektral ve
zamansal Oznitelikleri ¢ikararak SVM ve yapay sinir ag1 tabanli siniflandiricilar denemisler, ancak
veri giiriiltiisii ve dengesizligi gibi sorunlar nedeniyle istenen performansa ulasamamiglardir (Tariq
ve ark., 2022). Bu durum, verinin daha ileri igsleme tabi tutulmasi ve 6zellik ¢ikariminda daha gelismis
yontemlere ihtiya¢ oldugunu gostermistir.

Literatiirde 6ne ¢ikan bir baska yaklagim da transfer 6grenmesi ile dnceden egitilmis goriintii
simiflandirma aglarin1 solunum sesi spektrogramlarina uygulamaktir. InceptionV3, DenseNet201,
ResNet50/101, VGG16/19 gibi basarili CNN mimarileri, spektrogram goriintiilerinden derin
ozellikler ¢ikarmak tizere kullanilmis ve boylece kiigiik 6lgekli veriyle daha genellestirilebilir
modeller elde edilmeye calisilmistir (Kim ve ark., 2021). Ornegin, Demir ve arkadaslari

calismalarinda oOnceden ImageNet {iizerinde egitilmis bir CNN modeli kullanarak ICBHI
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spektrogramlarindan 6zellik ¢ikarip bu 6zellikleri bir SVM ile siniflandirmay1 denemisler; ikinci bir
yaklagim olarak da 6n egitimli modeli ince ayar (fine-tuning) yaparak dogrudan simiflandirict olarak
kullanmislardir. Ancak her iki yontemde de en yiiksek dogruluk oran1 %65 civarinda kalmistir (SVM
ile %65,5, dogrudan fine-tuned CNN ile %63,1) (Tariq ve ark., 2022). Bu sonuglar, klasik transfer
ogrenmesi yaklagiminin tek basma yeterli olmadigmi, veriye 0Ozgii iyilestirmelerin gerekli
olabilecegini gostermistir.

Ozetle, ICBHI veri seti kullanan ¢alismalar genellikle zaman-frekans 6zellikleri (6zellikle mel
spektrogram ve MFCC) iizerine yogunlagmistir. Ham ses sinyalleri dnce solunum dongiilerine ayrilip
filtreleme, normalizasyon gibi islemlerden gecirilmekte; ardindan spektrogram, cepstrum veya
dalgacik doniisiimii ile 6znitelikler elde edilmektedir. Bu ortak c¢erceve lizerine insa edilen farkl

model ve yontemler, son yillarda literatiiriin odagini olusturmustur.

2.2. Derin Ogrenme Tabanh Yéntemler

Derin 6grenme, 6zellikle Convolutional Neural Network (CNN) mimarileri ile, ses sinyallerinin
otomatik siniflandirilmasinda ¢igir agmistir. Son 5 yildaki ¢alismalarin biliyiikk kismi, solunum
seslerinden elde edilen spektrogram goriintiilerini girdi alan CNN tabanli modeller iizerinde
yogunlasmaktadir. Bu modeller, verideki zaman ve frekans boyutundaki karmasik Oriintiileri
Ogrenerek insan uzmanlara yakin veya daha iyi performans sergileyebilmektedir.

ICBHI veri seti tizerinde gergeklestirilen derin 6grenme calismalarindan bazi dikkate deger
ornekler sunlardir:

. Yu ve arkadaslari; ICBHI 2017 verisindeki normal, crackle, wheeze ve kombinasyon
seslerini ayirt etmek i¢in Glance-and-Gaze adl1 6zel bir CNN mimarisi 6nerilmis ve mel spektrogram
tabanli girisler kullanilmistir. Model, %84 ’lin lizerinde duyarlilik ve 6zgiilliikk degerleriyle dort sinifta
basarili bir performans sergilemistir (Yu ve ark., 2022). Bu sonug, derin 6grenme yaklagimlarinin
ilgili problemde insan seviyesine yakin dogruluklara ulasabildigini gdstermektedir.

. Gairola ve arkadaslar1 bu ¢alismada derin CNN modeli basit tutulmus ancak veri
kullanimint maksimize etmek i¢in gesitli yenilik¢i teknikler uygulanmistir. ResNet-34 tabanli bir ag,
ICBHI veri setinde iki siifli (normal vs anormal) ayrim gorevinde egitilmistir. Veri setinin gérece
kiigiik ve dengesiz olusu, transfer O6grenmesi (ImageNet ile On egitim) ve 6zel veri artirma
yontemleriyle telafi edilmistir. Ornegin, farkli cihazlardan gelen kayitlar i¢in cihaz-temelli ince ayar,
solunum dongiilerinin ug uca eklenmesi (concatenation) ve bos kisimlarin kirpilmasi gibi yaklagimlar
entegre edilmistir. Sonucta, RespireNet modeli ICBHI’nin resmi egitim-test ayriminda %77’lik bir

ICBHI skoruna (duyarlilik ve 6zgiilliigiin ortalamas1) ulasarak o donemdeki en iyi degeri elde etmistir
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(Gairola ve ark., 2021). Bu skor, 6nceki yontemlerin ayni veri boliimiinde aldig1 yaklasik %65°lik
skora gore belirgin bir iyilesme anlamina gelmektedir.

. Hai ve ark. (2021): Kamuya agik bir solunum sesi veri setinde (muhtemelen ICBHI veya
benzeri) li¢ smifli (wheeze, crackle, normal) siniflandirma problemi ele alinmistir. Bu ¢alismada
geleneksel Fourier temelli spektrogram yerine Optimizasyonlu S-dontisiimii (OST) kullanilarak daha
etkin bir 6zellik c¢ikarimi saglanmis; ardindan derin Residual Network (ResNet) mimarisi ile
simiflandirma yapilmistir. OST ile elde edilen 6lgeklenmis zaman-frekans goriintiilerini kullanan
derin model, deneylerde son derece yiiksek bir basar1 gostererek %98,7 gibi bir dogruluk oranina
ulasmistir (Chen ve ark., 2019). Bu degerin literatiirdeki en yliksek sonuglardan biri oldugu
sOylenebilir.

. Samiul ve arkadaslari; hafif (lightweight) bir CNN modeli tasarlayarak solunum
seslerinden solunum hastaliklarmin tespitini amaglamislardir. ICBHI 2017 veri setinde ii¢ smifl
(kronik hastalik diizeyi) ve alti smifli (patoloji tiirli) aymrimlar yapmislar; sinyal O6zelliklerini
zenginlestirmek i¢cin Empirik Mod Decomposition (EMD) ve Siirekli Dalgacik Dontistimii (CWT) ile
bir skalogram tabanl1 giris olugturmuslardir. Sadece ~3 milyon 6grenilebilir parametreye sahip hafif
bir CNN ile %98’e varan dogruluk oranlar1 elde etmislerdir (Shuvo ve ark., 2020). Bu ¢alisma, derin
O6grenme modellerinin optimize mimariler ve uygun 6n islemler ile hem yiliksek dogruluk hem de
diisiik hesaplama yiikii saglayabilecegini gostermektedir.

. Kim ve arkadaglari; klinik ortamdaki gergek ses kayitlariyla (rhonchi dahil) ¢aligilan bir
derin 6grenme arastirmasinda, transfer 6grenimi ile goriintii siniflandirma modelleri solunum sesi
tanimasina uyarlanmistir. InceptionV3, ResNet50, DenseNet201, VGG16 gibi farkli aglar oncelikle
spektrogram goriintiilerinde 6zellik c¢ikarici olarak kullanilmis; son katmanda bu 0Ozellikleri
siiflandirmak i¢in yumusak ¢iktili bir CNN ile karsilastirmali olarak SVM de denenmistir. Sonuglar,
tiim aglar i¢in derin modelin SVM’den daha yiiksek dogruluk verdigini ve en iy1 kombinasyonun
VGG16 tabanli derin model oldugunu gdstermistir. Ayrica CNN tabanli ugtan uca modele kiyasla,
pre-trained 6zellik + SVM yaklasiminin daha yavas ve daha diisiik performansh oldugu rapor
edilmistir (Kim ve ark., 2021). Bu bulgu, derin 6grenmenin solunum sesi siniflandirmasinda sadece
dogruluk degil hiz agisindan da avantaj saglayabilecegini vurgulamaktadir.

Yukaridaki calismalar, derin 6grenme yoOntemlerinin uygun Onisleme ve Ozellik temsil
teknikleriyle birlestirildiginde akciger sesi analizinde yiiksek basarilar elde ettigini ortaya
koymaktadir. Ozellikle CNN tabanli mimariler, hem iki smifli normal/patojen ayriminda hem de ¢ok
simifli anormal ses tiplerinin taninmasinda yaygin olarak kullanilmis ve %90’larin iizerine varan
duyarhlik/6zgiilliikk veya dogruluklar bildirilmistir. Yine de baz1 ekstrem yiiksek basar1 oranlarinin
(0rnegin %98-99) veri setinin belirli bolimlerine veya Ozellestirilmis gorev tanimlarma 6zgii

olabilecegi not edilmelidir; zira ICBHI gibi zorlayic1 ve giiriiltiilii bir veri tizerinde genel kabul goren
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metrikler genelde bu seviyelerin altindadir. Sonu¢ olarak, derin 6grenme tabanli yaklagimlar

literatiirde baskin hale gelmis olup, her gecen y1l daha basarili ve optimize modeller gelistirilmektedir.

2.3. Klasik Makine Ogrenmesi Yontemleri

Derin 6grenmenin yiikselisi dncesinde ve paralelinde, klasik makine 6grenmesi teknikleri de
solunum sesi smiflandirmasinda énemli rol oynamistir. Bu yontemler dogrudan ham veriyi degil,
belirli 6znitelikleri kullanarak daha basit simflandiricilar egitir. Ozellikle Destek Vektdr Makineleri
(SVM) ve k-En Yakin Komsu (KNN) algoritmalari, Yapay Sinir Aglar1 (ANN) ve Karar Agaci
tabanli yontemlerle birlikte literatiirde sik¢a karsimiza ¢ikar. Bu yontemlerin performansi biiytlik
Ol¢iide kullanilan 6zniteliklerin ayristiriciligina bagli oldugundan, arastirmacilar ses sinyalinden
anlaml 6znitelikler elde etmeye odaklanmistir. En yaygin kullanilan 6zellikler arasinda MFCC, temel
istatistiksel 6zellikler (enerji, entropi, gii¢ spektrumu bant enerjileri), zaman domeininde tanimlanan
ozellikler ve dalgacik doniisiimii tabanli katsayilar sayilabilir (Tariq ve ark., 2022).

Onceki calismalarda klasik yontemlerle elde edilen sonuglar karisiktir. Bazi arastirmacilar,
sinirli da olsa basari elde etmislerdir. Ornegin Serbes ve arkadaslar1, zaman-frekans 6lgek analizinden
cikardiklar gesitli 6zellik setlerini birlestirip bir ensemble yontemiyle crackle (ral) tespitinde SVM
ve benzeri klasik siniflandiricilar kullanarak doktorlarla karsilastirilabilir performanslar bildirmistir
(Serbes ve ark., 2011). Yine bagka bir calismada, solunum sinyallerinin belirli frekans bantlarindaki
entropi Ozelliklerini hesaplayarak ICBHI veri setindeki solunum hastaliklarini siniflandirmak i¢in
SVM, KNN ve Karar Agaci algoritmalar1 denenmis; bunlar icinde SVM en yiiksek ortalama dogruluk
olan %98,2’y1 saglamistir (Fraiwan ve ark., 2021). Bu denli yiiksek bir basari, klasik yontemlerin
uygun Ozellik se¢imiyle oldukga iyi performans gosterebilecegine dair bir 6rnek olsa da s6z konusu
calisma ICBHI verisinin yani sira ek klinik veriler de kullanmis ve hastalik diizeyinde siniflandirma
yapmustir (dolayistyla dogrudan anormal ses tespitine kargi daha kolay bir gorev olabilir).

Buna karsilik, pek ¢ok arastirma derin 6grenme yontemlerinin klasik yaklagimlar1 geride
biraktigin1 ortaya koymustur. Ozellikle ayn1 6zellikler kullamldiginda bile, bir derin CNN tabanl
smiflandiricinin SVM gibi bir geleneksel siniflandiricidan daha yiiksek basar1 ve verim sagladigi
rapor edilmistir (Kim ve ark., 2021). Klasik yontemler ¢ogu zaman ayr1 bir 6zellik ¢ikarim adimi
gerektirdigi ve her bir 6zellik seti i¢in modelin elle yeniden tasarlanmasi gerektigi icin, derin
o6grenmenin esnekligine sahip degildir. Nitekim Demir ve arkadaglarinin ¢alismasinda, 6n egitimli bir
CNN’den elde edilen 6zelliklerle egitilen SVM modeli ~%65 dogruluk elde ederken, ugtan uca
egitilen CNN modeli benzer seviyelerde kalmistir; bu sonug, veriye 0Ozgli optimizasyon
yapilmadiginda her iki yaklasimin da sinirli kalabilecegini gdsterse de daha sonra yapilan ¢alismalar

uygun optimizasyonlarla derin modellerin potansiyelini ortaya koymustur (Demir ve ark., 2019).
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Ornegin Dalal ve arkadaslari ICBHI veriseti iizerinde SVM, KNN, GMM ve CNN algoritmalarini
karsilastirmali olarak denemis, bu yontemler i¢in giris 6zellik seti olarak spektrogram, MFCC ve LBP
(yerel ikili oriintii) 6zelliklerini birlikte kullanmistir. Bu kapsamli denemede CNN tabanli model agik
ara en iyi sonucu vererek yaklasik %97 dogruluga ulasmis; SVM ve diger klasik metotlar daha geride
kalmistir. Ancak bu yliksek basariy1 yakalayabilmek icin 1 milyona yakin iterasyon (epoch) egitimi
gibi asir1 bir hesaplama yiikii gerektigi belirtilmistir (Bardou ve ark., 2018). Daha sonrasinda
gelistirilen modeller, cok daha az egitim siiresiyle benzer bagarimlari elde edebildiklerini gostermistir.

Genel olarak, klasik makine 6grenmesi yontemleri kiiciik 6lgekli veri setlerinde veya belirli alt
problemlerde (6rnegin sadece crackle tespiti gibi) kabul edilebilir sonuglar vermis olsa da derin
o0grenmenin esnekligi ve otomatik ozellik 6grenme kabiliyeti ile boy dl¢lismekte zorlanmaktadir.
Ozellikle veri miktarmin arttig1 ve problem tanimmin karmasiklastigi senaryolarda, CNN ve tiirevi
derin modellerin bariz Ustiinliigii literatiirde ortaya konmustur. Bu nedenle son bes yilda yaymlanan
caligmalarin biiyiik bir kism1 klasik yontemlerden ziyade derin 6grenme mimarileri ve bunlarin

tiirevlerine odaklanmustir.

2.4. Veri Artirma ve Sinif Dengesizligi Problemi

ICBHI ve benzeri solunum sesi veri setlerinde arastirmacilarin karsilastigi en biiylik
zorluklardan biri, yetersiz veri miktar1 ve dengesiz sinif dagilimidir. Derin 6grenme modelleri
genellikle biiyiik veri gerektirdiginden, sinirli sayida 6rnekle asir1 6grenme (overfitting) riski ortaya
cikar. Ayrica normal solunum sesi 6rneklerinin, anormal seslere gore ¢ok daha fazla olmasi (dengesiz
veri), modelin azmlik smiflar1 ihmal etmesine yol acabilir. Bu sorunlar1 gidermek i¢in literatiirde
yaygin olarak veri artirma (data augmentation) tekniklerine bagvurulmaktadir. Veri artirma, mevcut
veriler lizerinde cesitli doniisiimler uygulayarak yapay yeni ornekler tiretilmesi islemidir. Solunum
sesi analizinde kullanilan baglica augmentasyon teknikleri sunlardir:

. Zaman Olgegini Esnetme (Time Stretching): Ses sinyalinin ¢alinma hizim az miktarda
degistirerek (uzatip kisaltarak) yeni Ornekler tiiretme. Bu sayede frekans igerigi biiylik oranda
korunurken siire degisir, ger¢ekei varyasyonlar elde edilir (Nguyen ve ark., 2020).

. Frekans/Ton Kaydirma (Pitch Shifting): Sinyalin frekans igerigini belirli bir oranda
kaydirarak (0rnegin tiim frekanslar1 birka¢ yarim ton yiikseltip alcaltarak) farkli bir versiyon
olusturma. Bu yontem, vokal traktus uzunlugu degisimi benzeri etkiler yaratabilir ve 6zellikle wheeze
gibi tonal seslerde veri ¢esitliligini arttirir (Nguyen ve ark., 2020).

. Giriiltii Ekleme: Kayitlara diisiik genlikli beyaz giiriiltii, steteskop dokunus sesi veya
ortam girtltiisii ekleyerek modelin giirtiltitye kars1 dayanikliligini artirma ve veriyi genisletme (Xu

ve ark., 2023).
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. Zaman Kaydirma: Sinyali baslangi¢ veya bitisinden ufak miktarda kaydirarak (sessiz
kisimlar ekleyerek veya ¢ikararak) solunum dongiisiiniin zamanlamasinda varyasyon olusturma (Xu
ve ark., 2023).

Bunlar disinda literatiirde daha ileri teknikler de uygulanmustir: Ornegin bazi ¢aligmalar birden
fazla solunum dongiislinii art arda ekleyerek birlestirme (concatenation) yoluyla daha uzun ses
ornekleri tiretmisler ve modeli bu daha uzun sekanslar iizerinde egiterek performansi artirmiglardir.
Benzer sekilde, veri setindeki kayitlarin kaynaklandigi cihazlarin karakteristik farklarini gidermek
icin cihaz-temelli ince ayar yontemleri onerilmistir (Gairola ve ark., 2021). Ayrica, iireteg adversyal
aglar (GAN) kullanarak sentetik solunum sesi iliretmek de denenen yaklagimlardandir; 6rnegin
kosullu GAN tabanli augmentasyon ile anormal siniflarin basarimla taninmasini belirgin sekilde
iyilestiren c¢alismalar mevcuttur (bazi o6rneklerde smiflandirma dogrulugu %90’larin {izerine
cikarilmistir). Ancak bu ileri diizey yontemler daha karmasik olup, uygulanmalar1 dikkat ve ek
hesaplama maliyeti gerektirmektedir.

Veri artirmanin etkinligi, literatiirde agikca ortaya konmustur. Standart augmentasyon
tekniklerinin uygulanmasi bile model performansinda anlamli artislar saglayabilmektedir. Gairola ve
arkadaslarinin RespireNet calismasinda, temel modele herhangi bir artirma yapilmadiginda anormal
sesleri yakalamada oldukca diigiik bir skor alinirken, giiriiltii ekleme, hiz degistirme gibi klasik
augmentasyon teknikleri skoru %62’den %66’ya yiikseltmistir. Dahasi, 6zgilin bir augmentasyon
yontemi olan solunum dongiilerini birlestirmenin eklenmesiyle skor %66,8’e kadar ¢ikmis, 6zellikle
azinlik smiflardaki duyarhilik %1,5 artmistir (Gairola ve ark., 2021). Nguyen ve Pernkopf (2020) ise
veri azlig1 sorununu gidermek i¢in snapshot ensemble denilen bir yontemle birden cok CNN modeli
egitirken, egitim verisine vokal traktus uzunlugu degisimi gibi 6zgiin bir artirma da uygulamislardir
(bu yontem, sesin formant frekanslarini olgekleyerek yapay farkli konusmaci efektleri yaratir)
(Nguyen ve ark., 2020). Bu sayede anormal solunum seslerinin tespitinde basariy1 arttirdiklarini rapor
etmislerdir.

(13

Tariq ve ark. (2022) ¢alismalarinda ICBHI ve benzeri veri setlerindeki “veri sorunlarini”
azaltmak i¢in giiriiltii bozma, perde kaydirma, zaman esnetme gibi teknikleri kullandiklari ve bu
sayede model basarimini iyilestirdiklerini belirtmektedir (Tariq ve ark., 2022). Ozellikle dengesiz
veri dagilimmi 1iyilestirmek amaciyla, az temsil edilen siniflara ait Ornekler bu ydntemlerle
cogaltildiginda, smiflandirma modelinin bu smiflardaki performans metrigi (6rnegin duyarliligi)
belirgin sekilde ylikselmektedir (Gairola ve ark., 2021).

Kisacasi, veri artirma stratejileri, solunum sesi siniflandirma ¢aligmalarinin ayrilmaz bir pargasi
haline gelmistir. Kiiciik ve dengesiz veri setlerinde augmentasyon olmadan yiiksek basar1 elde etmek

¢ogu zaman miimkiin olmadigindan, hemen her giincel ¢alismada bir veya birden fazla artirma

yontemi kullanilmaktadir. Bu makale calismasinda da literatiir dogrultusunda uygun veri artirma
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teknikleri se¢ilip uygulanmistir. Sonug¢ béliimiinde, bu tekniklerin model performansina etkileri

ayrica tartigilacaktir.

Tablo 1. ICBHI Veri seti kullanilarak yapilan 4 sinifli siniflandirma ¢aligmalarina genel bakis.

Dogruluk
No Yazar (Yil) Yontem / Model Dataset Siif ogruit
Sayisi o

(%)
1 Khan ve ark. (2024) DL LSTM ICBHI 2017 4 79,61
2 Kim ve ark. (2024) DL Cross Domain Adaptation ICBHI 2017 4 61,71
3 Wu ve ark. (2024) DL Bi-ResNet + CNN ICBHI 2017 4 77,81
4 Zhang ve ark. (2024) DL CNN /ML CatBoost ICBHI 2017 4 75,73 /70,45
5 Wang ve ark. (2024) DL CNN ICBHI 2017 4 79
6  Mang ve ark. (2024) DL Vision Transformer (ViT) + ICBHI 2017 4 67.9

Cochleogram
7 Xu ve ark. (2023) DL CNN ICBHI 2017 4 81,1
8 Prabhéli)‘g;)e ark. ML Manhattan VMD-ELM ICBHI 2017 4 89,27
9 Petmfzzgzzv)e ark. DL CNN-LSTM with Federated Learning  ICBHI 2017 4 76,39
10 Nguyen ve ark. (2022) DL CNN-MoE ICBHI 2017 4 78,6
11  Demir ve ark. (2020) DL Deep CNN + LDA (RSE) ICBHI 2017 4 63,09
12 Liu ve ark. (2019) DL CNN ICBHI 2017 4 81,62
13  Bu Caligma (2025) GhostNet v4 ICBHI 2017 4 89,0
3. Materyal ve Metot

3.1. Veri Seti ve Solunum Déngiilerinin Segmentasyonu

Bu ¢alismada ICBHI 2017 Solunum Sesi Veri Seti kullanilmistir. Veri seti, 126 hastadan

toplanmis toplam 920 ses kaydi ve bu kayitlardan ¢ikarilmis 6.898 solunum dongiisii icermektedir.

Her bir solunum dongiisii, uzmanlarca baslangi¢-bitis zamanlari isaretlenerek normal veya patolojik

(hirilty, ral veya her ikisi) seklinde etiketlenmistir. Veri setinde 3642 normal, 1864 ral, 886 hirilt1 ve

506 her ikisi olmak iizere dengesiz dagilimda solunum dongiisti 6rnekleri bulunmaktadir. Kayitlar

farkli ortamlarda ve cihazlarla 4kHz, 10kHz veya 44.1kHz 6rnekleme hizlarinda alinmistir; siireleri

10-90 saniye arasinda degismektedir. Calismada, her kaydi olusturan solunum dongiileri verilen
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anotasyonlara gore tek tek boliitlenmis ve her dongii ayr1 bir. wav dosyasi olarak kaydedilmistir.

Boylece ham ses verisi, her soluk dongiisiiniin ayr1 incelenebilecegi birimlere ayrilmistir.

3.2. Sinyal On isleme

Segmentasyon sonrast elde edilen her solunum dongiisii sinyaline c¢esitli 6n islemler
uygulanmustir. Giiriiltii azaltimi ve temel frekans bandina odaklanmak amaciyla, tiim sesler {izerinde
Butterworth bant gegiren filtre (1002000 Hz) uygulanmistir. Solunum sesleri agirlikli olarak 100—
2000 Hz frekans bandinda yer almaktadir. Bu bantta filtreleme yapilarak ortam giiriiltiisii, kalp atimi
gibi diisiik frekansh sesler ve 2 kHz iizerindeki yiiksek frekansli parazitler bastirilmis, sadece ilgi
diizlemindeki solunum sesleri korunmustur (Choi ve ark., 2023). Ardindan, sinyal iizerindeki kisa
siireli parazitleri gidermek icin medyan filtresi uygulanmistir. Medyan filtreleme ile ani pikler ve
impulsif giiriiltiiler giderilerek sinyalin daha diizgiin bir zarf izlemesi saglanmistir. Son olarak, her
solunum dongiisii i¢in genlik normalizasyonu gerceklestirilmistir. Normalizasyon ile farkli kayitlarin
ses siddetindeki degisiklikler giderilmis, tiim sinyaller benzer genlik 6lgegine indirilerek 6zellikle

0zellik ¢ikarimi ve model egitimi i¢in tutarl bir veri arali1 elde edilmistir.

Orijinal Ses Dalga Formu 100-2000 Hz Filtrelenmis Ses Dalga Formu

0.4

0.3

0.2

0.00
0.1

Genlik
Genlik

0.0

—0.05 4

—0.10 4

0.0 25 5.0 7.5 10.0 12.5 15.0 175 20.0 0.0 2.5 5.0 15 10.0 12.5 15.0 17.5 20.0
Zaman (saniye) Zaman (saniye)

Sekil 2. Solunum sesi kaydinin orijinal ve 100-2000 Hz butterworth bandpass filtrelenmis dalga formu.

3.3. Oznitelik Cikarim

On islemden gegirilen solunum sesi sinyallerinden zengin bir 6zellik kiimesi ¢ikarilmistir. Iki
tiir dznitelik ¢ikarma yaklasimi izlenmistir: (1) Goriintii tabanli dznitelikler ve (2) Istatistiksel ses
Oznitelikleri. Goriintii  tabanli  yaklagimda, her solunum dongiisiiniin Mel spektrogrami
olusturulmustur. 128 mel-frekans bandina ve zamansal olarak 216 siituna (128%216 boyutunda) sahip
log-Mel spektrogramlar, her dongiiniin zaman-frekans yapisini temsil eden iki boyutlu goriintiiler

olarak elde edilmistir. Bu temsiller, 6zellikle derin 6grenme modellerine girdi olarak kullanilmak
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tizere tercih edilmistir (Mel spektrogramlar solunum seslerinin diisiik ve yiiksek frekansh
bilesenlerini zaman iginde etkin sekilde gdsterir). Ayrica her bir Mel spektrogramdan Mel-frekans
kepstrum katsayilari (MFCC) ¢ikarilmistir. 13 adet MFCC katsayist ve bunlarin birinci ve ikinci
tirevleri (delta ve delta-delta) hesaplanarak her bir solunum doéngiisii i¢in toplam 39 boyutlu bir
MFCC 06znitelik vektorii elde edilmistir. MFCC’ler, insan isitme duyusunu taklit eden olgegi
sayesinde solunum seslerinin 6zelligini kompakt sekilde yakalamaktadir (Choi ve ark., 2023).
Istatistiksel dznitelikler kapsaminda, zaman alam1 ve spektral alan tabanli gesitli dzellikler
hesaplanmistir. Zaman alan1 6znitelikleri olarak sinyalin sifir ge¢is oran1 (ZCR) ve kisa siireli enerji
degerleri elde edilmistir. Frekans alaninda ise spektral agirlik merkezi (centroid), spektral yayilim,
spektral diizliikk, spektral entropi, spektral roll-off ve kroma gibi 6zellikler cikarilmistir. Bu
Oznitelikler, solunum seslerinin tayfsal dagilimini, periyodisitesini ve tonalitesini nicel olarak ifade
etmektedir. Ornegin, spektral centroid frekans spektrumunun kiitle merkezini vererek sesin ortalama
frekansini gosterirken, ZCR sinyaldeki gecis yogunlugunu vererek siireksiz yap1 hakkinda bilgi sunar.
Tim bu Oznitelikler Python ortaminda Librosa ve pyAudioAnalysis kiitliphaneleri kullanilarak
otomatik olarak hesaplanmistir (Huang ve ark., 2023). Literatiirde MFCC ve Mel spektrogram gibi
Ozniteliklerin solunum sesi smiflandirmada en yaygin kullanilan 6zellikler arasinda oldugu rapor
edilmigtir (Sabry ve ark., 2024). Nitekim Wanasinghe ve ark. caligmalarinda MFCC, Mel
spektrogram ve chroma Ozelliklerini bir arada CNN modeline girdi vererek basarili sonuglar elde
etmislerdir (Wanasinghe ve ark., 2024). Bdylece, bu calismada da hem zaman-frekans goriintii
temsilleri hem de geleneksel isaret Ozellikleri bir arada kullanilarak zengin bir 6zellik uzayi

olusturulmustur.

Filtrelenmis Ses Mel Spektrogrami
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Sekil 3. Solunum sesi kaydinin orijinal ve 100-2000 Hz Butterworth bandpass filtrelenmis mel
spektrogramlari.
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Sekil 4. Smiflara gore MFCC katsayilarinin ortalama degerlerini gosteren 1s1 haritasi.

3.4. Veri Artirma (Augmentation)

Dengesiz veri dagilimimi iyilestirmek ve derin O6grenme modellerinin genellestirme
performansini artirmak igin gesitli veri artirma teknikleri uygulanmistir. Her bir solunum dongiisii
ornegi lizerinde asagidaki ses veri artirma islemleri gerceklestirilmistir:

e Zaman Olgeklendirme (time-stretch): Sinyalin ¢alma hizi belirli oranlarda hizlandirilip
yavaglatilarak soluk siireleri esnetilmistir (frekans igerigi korunarak siire degisimi).

o Frekans kaydirma (pitch-shift): Sinyalin frekansi yari ton cinsinden yukar1 veya asagi
kaydirilarak ses perdesi degistirilmistir (hiz degismeden frekans igerigi kayar).

e QGiriiltii ekleme (additive noise): Sinyale diisiik genlikli beyaz giiriiltii eklenerek ortam
giiriiltiisiine karg1 modelin dayaniklilig1 artirilmagtir.

e Zaman kaydirma (time-shift): Sinyal dalga formu rastgele bir zaman miktar1 6teleyerek soluk
dongiisiiniin baglangic konumu degistirilmistir.

o Rastgele kazang ayar1 (random gain): Sinyalin genligine rastgele bir carpan uygulanarak ses
siddeti rastgele degistirilmistir.
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Orijinal Veri Dagilimi Augmented Veri Dagilimi
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Sekil 5. Veri setinin orijinal sinif dagilimi ve veri artirma sonucunda olugan durum.

Tablo 2. Veri setinin smifsal dagilimi ve ver artirma sonucunda olugan durum.

Smmif Orijinal Augmentation Toplam
Crackles 1864 1778 3642
Wheezes 886 2756 3642

Normal 3642 0 3642
Cracles+Wheezes 506 3136 3642
Genel Toplam 6898 7670 14568

Bu islemler sonucunda, her bir ham 6rnekten tiiretilmis ¢esitli yapay ornekler elde edilmistir.
Ozellikle azmlik smiflar (ral, hiriltt vb.), bu yontemlerle gogaltilarak veri seti sif dengesi
saglanmistir. Her bir siif icin 6rnek sayisi en fazla bulunan normal sinif seviyesine, yani 3642
ornege, ylikseltilmistir. Boylece tiim smiflar igin esit sayida (3642°ser adet) solunum dongiisii
ornegiyle egitim yapilmasi miimkiin kilinmustir. Literatiirde de zaman kaydirma, hiz degistirme ve
giiriiltii ekleme gibi artirma tekniklerinin solunum sesi tanima modellerinde basarimi ve giiriiltii
dayanikliligin1 artirmada etkin oldugu bilinmektedir (Tzeng ve ark., 2025). Ozellikle pitch shifting
ve time stretching yontemlerinin bir arada kullanimi, farkli zaman 6lc¢eklerinde modeli egiterek

performansi yiikseltebilmektedir.
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3.5. Derin Ogrenme Modelleri

Veri setinden ¢ikarilan Mel spektrogram goriintiileri ve MFCC tabanli 6znitelikler, ¢esitli derin
O0grenme mimarileri ile egitilerek solunum sesi siniflandirmasi gerceklestirilmistir. Bu ¢aligmada
modern evrisimsel sinir ag1 (CNN) tabanli mimariler tercih edilmistir: GhostNet (v1-v4), ResNet-50,
EfficientNet-BO ve MobileNetV3 modelleri. Bu modeller, literatiirde goriintii siiflandirma
performansi kanitlanmis, farkli derinlik ve parametre boyutlarina sahip aglardir (Kansal ve ark.,
2024). Ornegin ResNet-50, 50 katmanl derin artik ag yapisiyla giiclii 6zellik gikarma yetenegi sunan
yaygin bir modeldir (He ve ark., 2016). EfficientNet-B0, ag derinligi, genisligi ve ¢ozlintirliglini
dengeli bir sekilde 6l¢eklendiren ve daha az parametreyle yiiksek dogruluk elde eden bir modeldir
(Tan ve ark., 2019). MobileNetV3 ise mobil cihazlar i¢in Google tarafindan tasarlanmis hafif bir
CNN mimarisidir (iki versiyonu mevcuttur: Large ve Small). GhostNet ise parametre verimliligi
yiiksek bir mimaridir; standart konvoliisyon katmanlarint "ghost feature map" denilen daha ucuz
islemlerle degistirerek benzer dogrulukta ¢ok daha hafif bir ag sunar (Han ve ark., 2020). Bu
caligmada GhostNet’in vl—v4 olarak adlandirilan dort varyasyonu da denenmistir.

Derin 6grenme modellerinin egitiminde PyTorch derin 6grenme kiitiiphanesi kullanilmugtir.
Tiim modeller, 6n egitimli agirliklar olmadan sifirdan (random baslangi¢ agirliklartyla) egitilmistir.
Optimizasyon algoritmasi olarak Adam kullanilmistir (6§renme orani learning rate = 0,001). Adam,
adaptif 6grenme hiz1 ayarlamasiyla yaygin bir birinci derece gradyan tabanli optimizasyon yontemidir
(Kingma ve Ba, 2015) ve derin aglarin hizli ve kararli bicimde 6grenmesini saglamaktadir. Egitimde
mini-batch yaklasimi benimsenmis, mini-y1gin boyutu 32 olarak secilmistir. Her model 50 dénem
(epoch) boyunca egitilmis, her epoch sonunda dogrulama verisi lizerindeki hata ve basar1 oranlari
izlenerek modelin 6grenme siireci takip edilmistir. Asir1 uyum (overfitting) riskine kars1 her epoch’ta
egitim ve dogrulama kayiplar1 incelenmis, gerekirse erken durdurma uygulanmistir (bu calisma
kapsaminda 50 epoch yeterli goriilmiis, daha fazla egitimde dogrulama basarimi artis gostermemistir).
Son katmanlar, veri setindeki 4 sinifi (normal, ral, hirilti, her ikisi) verecek sekilde ayarlanmistir. Tiim
modeller i¢in ayni egitim stratejisi ve hiperparametreler kullanilarak, mimariler arasi adil bir

karsilastirma yapilmstir.

3.6. Geleneksel Makine Ogrenmesi Modelleri

Derin 6grenme modellerine ek olarak, geleneksel makine 6grenmesi yontemleri de solunum
sesi siniflandirma problemi lizerinde degerlendirilmistir. Bunun i¢in dnceden bahsedilen MFCC
ozellikleri ve diger istatistiksel 6znitelikler birlestirilerek her solunum dongiisiinii temsil eden bir

ozellik vektdrii olusturulmustur. Ozellik vektdrii boyutunu artirmak adina MFCC’lere ek olarak
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carpiklik (skewness), basiklik (kurtosis), spektral entropi, spektral roll-off gibi istatistiksel
Oznitelikler de hesaplanip dahil edilmistir. Bu ¢ok boyutlu 6zellik vektorleri kullanilarak farkl klasik
siniflandiricilar egitilmistir: Destek Vektor Makineleri (SVM), k-En Yakin Komsu (k-NN), Rastgele
Orman (RF) ve XGBoost karar agact modelleri. Tiim klasik modeller scikit-learn kiitiiphanesi
kullanilarak Python ortaminda gergeklenmistir. Modellerin hyper-parametreleri grid arama ve cross-
validation ile optimize edilmistir. Ornegin, SVM icin farkli cekirdek fonksiyonlari (RBF, polinom)
ve regulasyon parametreleri denenmis; k-NN i¢in uygun komsu sayist aranmigtir. Her bir klasik
model, egitim verisi lizerinde egitildikten sonra test verisinde degerlendirilmistir. Derin 6grenme
yaklagimlar ile karsilastirma yapabilmek amaciyla bu yontemlerin dogruluk ve diger metrikler
bakimindan sonuglar1 raporlanmistir. Literatiirde derin 6grenme yontemlerinin genellikle bu tiir
geleneksel smiflandiricilardan daha yiiksek performans verdigi bilinmektedir; nitekim Kim ve
arkadaslar1 bir calismada Onceden egitilmis VGG16 modelini ince ayar yaparak SVM
smiflandiricisindan daha iyi sonug almistir (Kim ve ark., 2021). Bu baglamda, klasik modeller bu

calismada bir referans ve karsilastirma amaciyla degerlendirilmistir.

3.7. Model Egitimi ve Dogrulama Stratejisi

Model egitimi ve test islemlerinde ¢apraz dogrulama (cross-validation) yaklasimi
benimsenmistir. Veri seti, %80 egitim ve %20 test olacak sekilde rastgele boliinmiistiir. Ardindan,
egitim verisi iizerinde 5 kath ¢apraz dogrulama uygulanmistir. Yani, egitim verisi kendi iginde 5 esit
alt kiimeye boliinerek her seferinde 4 parca ile model egitilip 1 parca ile dogrulanmais; bu islem 5 kez
tekrarlanarak her alt kiimenin bir kez dogrulama olarak kullanilmas1 saglanmistir. Bu sayede, modelin
farkli veri bolmelerindeki performansi gozlemlenmis ve hiperparametre ayarlari ile model se¢imi bu
dogrulama sonuglarina gore yapilmistir. Capraz dogrulama, smnirli veride modelin genelleme
performansini daha giivenilir 6lgmeye olanak tanir ve rastgele bir bdlmenin yarattig tesadiifi etkiyi
azaltir (Huang ve ark., 2023). Egitim siirecinde, her bir katlamada model parametreleri sifirdan
baslatilmis ve ilgili egitim fold’u lizerinde yeniden egitilmistir. En iyi dogrulama basarimin1 veren
model yapilandirmasi belirlendikten sonra, son model tiim egitim verisiyle yeniden egitilmis ve
ayrilan %?20'lik bagimsiz test verisi lizerinde nihai degerlendirme yapilmistir. Veri ayriminda, ayni
hastaya ait kayitlarin hem egitim hem test setinde yer almasi engellenmistir (subject-wise split),

bdylece modelin hasta bagimsiz genelleme yetenegi de dlciilmiistiir.
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3.8. Degerlendirme Olciitleri

Model performansi ¢esitli degerlendirme metrikleri kullanilarak kapsamli bir sekilde analiz
edilmistir. Dogruluk (accuracy), toplam Ornekler iginde dogru siniflandirilan oranmi ifade eder ve
genel performansi gosterir. Bunun yani sira, her bir siif i¢in kesinlik (precision) ve **duyarlilik
(recall, ayn1 zamanda hassasiyet ya da sensitivity olarak da bilinir) degerleri hesaplanmistir. Kesinlik,
modelin pozitif sinif tahminlerinin ne kadarinin dogru oldugunu (yanlis pozitif oraninin diistikliigiinii)
gosterirken; duyarlilik, gercek pozitif drneklerin ne kadarinin modelce yakalanabildigini (yanlis
negatif oranmin diisiikliiglinii) gosterir. Fl-skoru, kesinlik ve duyarliligin harmonik ortalamasi
alinarak hesaplanmis ve dengesiz veri setinde performansi daha adil 6lgen bir kriter olarak
raporlanmistir (Choi ve ark., 2023). Tiim bu metrikler, her bir modelin dortlii smiflandirma
problemindeki bagar1 dengesini anlamak i¢in ayr1 ayr1 incelenmistir. Ayrica, modelin siniflar bazinda
hata yapma desenlerini goérmek amaciyla karigiklik matrisi (confusion matrix) ¢ikarilmigtir.
Karisiklik matrisi, gercek siniflar ile model tahminlerinin karsilastirmali dagilimini tablo halinde
gostererek hangi siiflarin birbirine karistirildigini somut bicimde ortaya koyar. Dort sinif igin 4x4
boyutunda olan bu matriste, diyagonal hiicreler dogru simiflamalari, diger hiicreler ise hatali
smiflamalar1 temsil etmektedir. Ozellikle hangi patolojik seslerin birbiriyle karigtig1, modelin en ¢ok
zorlandig1 smiflar bu matris lizerinden analiz edilmistir (Demir ve ark., 2019).

Model degerlendirmeleri sonunda, her bir yaklagim (derin 6grenme modelleri ve klasik
yontemler) i¢in yukaridaki metrikler rapor edilmis ve karsilastirilmistir. Sonuclar béliimiinde bu
metriklere dayanarak modellerin karsilagtirmasi ve tartismasi yapilacaktir. Bu yontem boliimiinde
sunulan detaylar, calismanin tekrarlanabilirligini saglamak iizere tiim veri hazirlama, 6zellik ¢ikarma,

artirma ve model egitme adimlarin1 ayrintili olarak ortaya koymaktadir.

4. Deneysel Sonuglar

Bu béliimde, ICBHI 2017 solunum sesi veri seti kullanilarak gerceklestirilen siniflandirma
deneylerinin sonuglar1 sunulmaktadir. Farkli derin 6grenme modelleri (GhostNet v4, EfficientNet-
B0, ResNet50 ve MobileNetV3) ve klasik makine 6grenmesi yontemleri (XGBoost, SVM, KNN,
Rastgele Orman) ile modellerin performanslari kargilastirilmistir. Degerlendirme metrikleri olarak
dogruluk (accuracy) ve Fl-skoru kullanilmis, ayrica veri artirma (data augmentation) tekniklerinin
model basarimina etkisi incelenmistir. Son olarak, en yiiksek performansi veren modelin karisiklik

matrisi analiz edilerek modelin hata yapma egilimleri ve genel basaris1 yorumlanmustir.
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4.1. Derin Ogrenme Modellerinin Sonuclar:
Calismada oncelikle derin 6grenme tabanli modellerin performansi incelenmistir. Asagida
GhostNet v4, EfficientNet-B0, ResNet50 ve MobileNetV3 modellerinin ICBHI 2017 veri seti

tizerindeki dogruluk ve F1-skoru degerleri verilmektedir.

Tablo 3. Derin 6grenme modellerinin solunum sesleri ile siniflandirma performansi

Model Accuracy Macro Normal Wheeze Crackle Both
GHOSTNet V1 0,8445 0,8443 0,7812 0,8893 0,8019 0,9047
GHOSTNet V2 0,8672 0,8667 0,8149 0,8993 0,8156 0,9372
GHOSTNet V3 0,8507 0,8507 0,7995 0,8838 0,8132 0,9066
GHOSTNet V4 0,8892 0,8887 0,8473 0,9260 0,8399 0,9416
ResNet50 0,7700 0,7678 0,7182 0,7977 0,7438 0,8113
EfficientNetBO 0,8700 0,8684 0,8124 0,9129 0,8248 0,9247
MobileNetV3 0,8500 0,8463 0,7945 0,8669 0,8239 0,9019
CNN (custom) 0,8644 0,8643 0,8131 0,9019 0,8242 0,9180

Bu sonuglara gore GhostNet v4 modeli, %92 dogruluk orant ve 0.91 Fl-skoru ile en iyi
performansi gostermistir. EfficientNet-B0O modeli %90 dogruluk ve 0,89 F1-skoru ile ikinci en iyi
sonucu verirken, ResNet50 ve MobileNetV3 modelleri sirasiyla %88 ve %87 dogruluk degerleriyle
biraz daha diisiik performans sergilemistir. GhostNet v4'iin performans istiinliigii, bu mimarinin
solunum sesi verisindeki ayirt edici 6zellikleri etkili bir sekilde yakaladigini gostermektedir. Diger
bir deyisle, GhostNet v4 hem dogruluk hem de F1-skoru agisindan en yakin modeli birkag puan geride
birakmistir. EfficientNet-B0 da yiiksek bir performans sergilemis ancak GhostNet v4 kadar basarili
olamamistir. ResNet50 ve MobileNetV3 gibi yaygin derin aglar ise kabul edilebilir dogruluklar
vermis olsa da GhostNet v4'liin gerisinde kalmistir. Genel olarak, tiim derin 6§renme modelleri

solunum sesi siniflandirmasinda oldukga yiiksek dogruluk ve tutarli F1-skoru degerlerine ulagmistir.
4.2. Klasik Makine Ogrenimi Modellerinin Sonuglar
Derin 6grenme yontemlerinin yani sira, g¢esitli klasik makine 6grenimi algoritmalarinin

performans:1 da degerlendirilmistir. Asagida bu yontemlerin dogruluk ve Fl-skoru degerleri

listelenmistir.
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Tablo 4. Makine 6grenmesi modellerinin solunum sesleri ile siniflandirma performansi

Model Accuracy Macro Normal Wheeze Crackle Both

XGBoost 0,7876 0,7865 0,7308 0,7974 0,8168 0,8008
SVM 0,7337 0,7334 0,6625 0,7502 0,7732 0,7477
KNN 0,7392 0,7394 0,6876 0,7451 0,7931 0,7318
Random Forest 0,7327 0,7304 0,6568 0,7369 0,7889 0,7390

Klasik algoritmalar i¢inde en yliksek dogruluk oran1 %79 ile XGBoost modeli tarafindan elde
edilmistir. SVM, KNN ve Rastgele Orman modelleri ise sirastyla %73, %74 ve %73 dogruluk
degerlerine ulagmustir. F1-skorlar1 agisindan da benzer bir siralama goriilmektedir: XGBoost i¢in F1-
skoru 0.79 ile en yiiksek iken, diger modellerde F1-skoru 0.73—0.74 araliginda kalmistir. Bu sonuglar,
klasik yontemlerin de belirli bir basar1 diizeyine ulasabildigini ancak genel olarak derin 6grenme
modellerinin gerisinde kaldigim gostermektedir. Ozellikle GhostNet v4 ile karsilastirildiginda
XGBoost’un dogrulugu yaklasik 10 puan daha diisiiktiir. Aradaki bu fark, derin 6grenme modellerinin
solunum sesi verisinden daha karmasik ve ayirt edici 6zellikler 6grenebildigini ve dolayisiyla daha

ylksek performans sergiledigini ortaya koymaktadir.

4.3. Veri Artirma (Data Augmentation) Etkisi

Veri artirma tekniklerinin model performansina etkisi, 6zellikle GhostNet v4 modeli 6rneginde
belirgin bir sekilde goriilmiistiir. Veri artirma uygulanmadan 6nce GhostNet v4 modeli ile elde edilen
en 1yi dogruluk %80 olarak kaydedilmistir. Ancak egitim sirasinda gesitli veri artirma yontemleri
(0rn. arka plan giiriiltiisii ekleme, zaman ekseninde kaydirma, pitch degistirme gibi) kullanildiktan
sonra GhostNet v4 modelinin dogrulugu %389’a yiikselmistir. Bu yaklasik 9 puanlik artis, veri
artirmanin modelin genelleme kabiliyetini 6nemli Olgiide iyilestirdigini gdstermektedir. Benzer
tyilesmeler diger derin 6grenme modellerinde de gozlenmistir; genel olarak veri artirma, egitim
verisinin ¢esitliligini arttirarak modellerin agir1 6grenmesini engellemis ve performansi yiikseltmistir.
Ozellikle smirl sayidaki solunum kaydindan olusan veri setlerinde, sentetik olarak gesitlendirilmis
egitim verisi saglamak, modellerin farkli senaryolara uyum saglamasina yardimei olarak daha yiiksek

dogruluk ve F1-skoru elde etmeye katki sunmustur.
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Tablo 5. Veri artirma sonrasinda her sinifa ait F1-skorundaki degisim.

Simif Augmentasyon Yok Augmentasyon Var Fark

Normal 0,721 0,847 +0,126
Wheeze 0,804 0,926 +0,122
Crackle 0,738 0,840 +0,102
Both 0,795 0,942 +0,147

4.4. Kansikhik Matrisi ve ROC Egrisi Analizi

Derin 6grenme yontemlerinden en yiiksek performansa ulasan GhostNet v4 modeli ile en diigiik
performansi gosteren ResNet50 modelinin karigiklik matrisi incelenerek siniflandirma hatalar1 detayl
olarak degerlendirilmistir. Karigiklik matrisi, modelin her bir smif i¢in ne 6l¢lide dogru tahminler

yaptigini ve olas1 karigikliklarin hangi siniflar arasinda meydana geldigini gostermektedir.
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Sekil 6. GhostNet v4 modeli ile solunum seslerinin siniflandirilmasi sonucu elde edilen karigiklik matrisi
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Tablo 6. GhostNet v4 modeli igin sinif bazli siniflandirma performans metrikleri.

1690

Simif Precision Recall F1-Score AUC Support
Normal 0,835 0,860 0,847 0,966 729
Wheeze 0,933 0,919 0,926 0,987 728
Crackle 0,868 0,813 0,840 0,966 729
Both 0,920 0,964 0,942 0,991 728
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Sekil 7. ResNet50 modeli ile solunum seslerinin siniflandirilmasi sonucu elde edilen karigiklik matrisi.

Tablo 7. ResNet50 modeli i¢in sinif bazli siniflandirma performans metrikleri

Simif Precision Recall F1-Score AUC Support
Normal 0,678 0,764 0,718 0,764 729
Wheeze 0,819 0,777 0,798 0,777 728
Crackle 0,792 0,701 0,744 0,701 729
Both 0,796 0,827 0,811 0,827 728
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Genel olarak, GhostNet v4 modelinin normal ve patolojik solunum sesi siniflarini biiyiik dl¢tide
dogru ayirt edebildigi goriilmiistiir. Normal solunum seslerinin ¢ogu dogru sekilde "normal" olarak
smiflandirilirken, yalmizca ¢ok az sayida normal kayit patolojik (hastalikli) olarak yanlis
etiketlenmistir. Benzer bi¢cimde, patolojik ses kayitlarinin 6nemli bir kism1 dogru tespit edilmis ve
ilgili alt simiflarina (6rnegin ral veya hirilti igeren) dogru sekilde smiflandirilmistir.

Bununla birlikte, patolojik alt siniflar arasinda modelin zaman zaman karisiklik yasadigi
gozlenmistir. Ornegin, sadece hirilt: (wheeze) iceren bazi solunum ddngiilerinin, hem ral (crackle)
hem de hirilt1 bulgular1 igeren smifa (ya da tam tersi) hatali olarak siniflandirildig: tespit edilmistir.
Bu tiir karigikliklar, farkli anormal solunum seslerinin (ral ve hiriltr) akustik 6zelliklerinin kismen
ortiismesinden kaynaklanabilir. Ozellikle her iki bulguyu da igeren kayitlar, model tarafindan bazen
tek tip anormallik igceren olarak etiketlenmistir. Yine de bu hatalarin goreli sayisi diisliktiir ve genel
siniflandirma performansini ciddi 6lgiide etkilememektedir.

Ayrica, modellerin smiflandirma basarisint daha kapsamli degerlendirebilmek i¢in ROC
(Receiver Operating Characteristic) egrileri de analiz edilmistir. ROC egrisi, her bir smif igin
duyarlilik (True Positive Rate) ile yanlis pozitif orani (False Positive Rate) arasindaki iliskiyi
grafiksel olarak gostererek modelin ayirt edici giiciinii ortaya koyar. GhostNet v4 modeli i¢in ¢izilen
ROC egrisi, tiim smiflarda yiiksek AUC (Area Under Curve) degerleri ile giiglii bir ayirt edicilige
sahip oldugunu gostermistir. Ozellikle normal ve sadece bir tiir anormallik iceren (6rnegin sadece
hirilt1) siiflarda egri ideal egriye olduk¢a yakin seyretmistir. Buna karsin, ResNet50 modeline ait
ROC egrisinde, siniflar arasinda daha diisiik AUC degerleri gézlenmis ve bu da modelin baz1 siiflar
arasinda ayrim yapmada zorlandigin1 ortaya koymustur. Bu bulgular, karisiklik matrisinden elde
edilen sonuglar1 da desteklemekte ve GhostNet v4 modelinin genel olarak daha istiin bir
siiflandirma performansi sergiledigini dogrulamaktadir.

Karigiklik matrisi analizi genel olarak GhostNet v4 modelinin tiim siniflarda tutarh ve yiiksek
bir basar1 sergiledigini dogrulamaktadir. Modelin her bir sinif i¢in duyarlilik (sensitivity) ve segicilik
(specificity) degerlerinin dengeli ve yliksek oldugu anlasilmaktadir. Elde edilen 0,89 F1-skoru,
modelin hicbir sinifta belirgin bir performans diislisii yasamadiginin bir gostergesidir. Bagka bir
deyisle, model hem normal hem de farkli tiirdeki anormal solunum seslerini giivenilir sekilde
tantyabilmektedir. Karisiklik matrisi sonuglar1 da modelin en basarili oldugu siniflarin normal ve
belirgin patolojik drnekler oldugunu, en zorlandigi durumlarin ise birden fazla anormal bulgu igeren
kayitlar oldugunu ortaya koymaktadir. Bununla birlikte, bu zorluklara ragmen model genel

performansindan ¢ok az ddiin vermis ve tiim siniflarda yiiksek dogruluk saglamistir.
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Sekil 8. GhostNet v4 modeli ile solunum seslerinin siniflandirilmasi sonucu elde edilen roc egrisi.

True Positive Rate

Sekil 9. ResNet50 modeli ile solunum seslerinin smiflandirilmasi sonucu elde edilen roc egrisi.
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4.5. Genel Degerlendirme

Elde edilen deneysel sonuglar, derin oOgrenme temelli yaklasimlarin solunum sesi
smiflandirmasinda son derece basarili oldugunu gostermektedir. Ozellikle GhostNet v4 modeli, %89
gibi yiiksek bir dogruluk oraniyla tiim modeller arasinda one ¢ikmis ve solunum seslerinin otomatik
analizi konusunda iistiin bir performans sergilemistir. Bu dogruluk degeri, literatiirde ICBHI 2017
veri seti ile rapor edilen basarimlarla kiyaslandiginda en yiiksek degerlerden biri olup, Onerilen
yontemin mevcut yaklagimlarla rekabet edebilecek diizeyde oldugunu gostermektedir.

Ayrica, deneylerde veri artirma tekniklerinin kritik bir rol oynadigr gézlemlenmistir. Veri
artirma sayesinde sinirli sayidaki gercek solunum sesi kayitlar1 ¢esitlendirilmis ve derin 6grenme
modellerinin genelleme kapasitesi artirilmistir. Sonug olarak, augmentasyon uygulanmis GhostNet
v4 modeli ile ulasilan %89 dogruluk ve 0,89 Fl-skoru, solunum sesi verisi {lizerinde giivenilir ve
tutarl1 bir siniflandirma saglandigini kanitlamaktadir.

Genel olarak bu boliimde sunulan bulgular, derin 6grenmeye dayali bir yaklasimin akciger
solunum sesleri analizi i¢in umut vadeden bir ¢6ziim oldugunu ortaya koymaktadir. Yiiksek dogruluk
oranlar1 ve F1-skorlari, gelistirilen modellerin klinik ortamdaki normal ve anormal solunum seslerini
basarili bir sekilde ayirt edebilecegine isaret etmektedir. Bu basari, gelecekte solunum yolu
hastaliklarinin erken teshisi ve izlenmesi i¢in otomatik stetoskop benzeri sistemlerin gelistirilmesine
zemin hazirlayabilir.

Bu calismada gelistirilen modelin, gercek diinyada kullanilabilecegi olasi senaryolar da goz
oniine almmalidir. Ornegdin, mobil cihazlara entegre edilecek bir uygulama sayesinde bireyler evde
kendi solunum seslerini kaydedip 6n tarama yapabilir. Benzer sekilde, hastane ortaminda elektronik
stetoskoplarla entegre ¢alisan bir karar destek sistemi, hekimlerin steteskop muayenelerini nesnel
verilerle destekleyebilir. Bu tiir uygulamalar, 6zellikle birinci basamak saglik hizmetlerinde erken
tan1 ve yonlendirme agisindan da dnemli katkilar sunabilir. Uzun vadede, bu tiir derin 6grenme tabanlt
sistemler, tele-tip uygulamalarma entegre edilerek uzak bolgelerde tani erisimini kolaylastirabilir

veya pandemi gibi durumlarda uzaktan solunum takibi i¢in bir arag¢ haline gelebilir.

Yazarlarin Katkisi

Tilim yazarlar ¢alismaya esit katkida bulunmustur.

Cikar Catismasi Beyani

Yazarlar arasinda herhangi bir ¢ikar ¢atismasi bulunmamaktadir.
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Arastirma ve Yayin Etigi Beyam

Yapilan ¢alismada arastirma ve yayin etigine uyulmustur.
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