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Amaç: Bu çalışmada, epileptik ve epileptik olmayan elektroensefalografi (EEG) 
sinyallerinden elde edilen özniteliklerin boyutlarının temel bileşenler analizi ve 
bağımsız bileşenler analizi yöntemleri ile indirgenmesinin sınıflandırma başarısı 
üzerine etkilerinin belirlenmesi ve doğrusal ayırma analizi ile destek vektör 
makinesi (DVM) yöntemlerinin sınıflandırma performanslarının karşılaştırılması 
amaçlanmıştır.
Gereç ve Yöntemler: Çalışmaya 10 kontrol ve uzman hekim tarafından epilepsi tanısı 
konmuş 10 hasta olmak üzere toplam 20 kişi dahil edildi. Epilepsi tanısı konmuş 

Öz

Objective: Electroencephalogram (EEG) signals have been broadly utilized for 
the diagnosis of epilepsy. Expert physicians must monitor long-term EEG signals 
that is sometimes difficult and time consuming process for epilepsy diagnosis. 
In this study, classification performances of support vector machine (SVM) and 
linear discriminant analysis (LDA), which are widely used in computer supported 
epilepsy diagnosis, were compared by using wavelet-based features of extracted 
from EEG signals which were derived in either normal or inter-ictal periods. In 
addition, principal component analysis (PCA) and independent component analysis 
(ICA) were used to determine the effects of dimension reduction on classification 
success. 
Materials and Methods: The EEG data were sampled from the EEG laboratory of 
the Department of Neurology and Clinical Neurophysiology in Adnan Menderes 
University. Study was approved by Local Ethics Committee with protocol number 
2016/873. Ten patients with epilepsy and 10 normal were the study group. EEG 
signals of patients with epilepsy were contains only seizure free- epochs. EEG 
signals were first decomposed into frequency sub-bands by using discrete wavelet 
transform (DWT) and then some statistical features were calculated from those to 
classify it's as normal or epileptic.
Results: In classification of the EEG signals, it's as normal or epileptic, we achieved 
88.9% accuracy rate using SVM with radial basis function (RBF) kernel without 
dimension reduction. 
Conclusion: Results showed that SVM was a powerful tool in classifying EEG signals 
if it's normal or epileptic.
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hastalardan alınan EEG kayıtları nöbet geçirmedikleri sırada alınan kayıtlardı. Epileptik ve epileptik olmayan sinyalleri sınıflandırmak 
için ayrık dalgacık dönüşümü ile sinyallerinin spektral analizi gerçekleştirildi ve sınıflandırmada kullanılacak olan öznitelikler elde 
edildi. Öncelikle özniteliklerin boyutu indirgenmeden, daha sonra temel bileşenler analizi ve bağımsız bileşenler analizi ile indirgenerek 
sınıflandırma yapıldı. Sınıflandırma doğrusal diskriminant analizi, lineer ve radyal tabanlı çekirdek fonksiyonlarının kullanıldığı DVM 
yöntemleri ile gerçekleştirildi.
Bulgular: EEG sinyallerinin epileptik ya da normal olarak sınıflandırılmasında radyal tabanlı çekirdek fonksiyonunun kullanıldığı DVM 
ile %88,9 doğruluk oranı elde edildi.
Sonuç: DVM yönteminin, epileptik ve normal sinyalleri ayırt etmede kullanılabilecek güçlü bir yöntem olduğu sonucuna varıldı.

Introduction

Electroencephalogram (EEG) is a recording of 
brain electrical oscillations from the scalp by using 
surface electrodes (1). Clinically, EEG is particularly 
helpful for epilepsy. In addition to clinical history and 
imaging studies, EEG findings help us to determine 
the diagnosis and the types of epilepsy (1,2). It is 
also helpful for the treatment of the disease (3). 
Epilepsy goes with seizures that occur in a sudden and 
unexpected nature. Mostly, seizures don’'t observe 
during the event by the medical staff. When they are 
not observed or having described an atypical features, 
EEG helps us to reveal whether it is a seizure or not. 
In general, analysis of EEG signals done by expert 
physicians by visual analysis. Visual recognition of 
epileptic waveforms is sometimes difficult and time 
consuming for physicians who especially have not 
got enough expertise (4). There is also inter-reader 
differencesare also inter-reader differences during 
the visual analysis and it suggests that the visual 
analysis could be insufficient. With that reason, new 
computer evaluation techniques are developed and 
performed in healthy and diseased individuals (5-13). 
Most of these studies consist of two steps: feature 
extraction from the EEG signals and then classification 
of these features. In many study, extracted signals are 
derived at the time of seizure and at normal periods. 
So, classification performance of these studies were 
performance of these studies was quite high (9,11-
21). In fact, visual assessment might be sufficient 
at that time. In that point, the question arise that 
whether there is an advanced statistical techniques 
clearly differentiate the normal and the patients with 
epilepsy while there is no seizure. In this study, our 
aim was to classify normal and epileptic patients 
by using their EEG data sets that derived from the 
archives of patients who known as epileptic (without 
a seizure activity at that time) and normal.

Materials and Methods

The EEG data were sampled from the EEG 
laboratory of the Department of Neurology and Clinical 
Neurophysiology in Adnan Menderes University. 
Study was approved by Adnan Menderes University 
Local Ethics Committee with (protocol approval 
number: 2016/873). The EEG data were recorded by 
Micromed EEG device (16 channels). Ten patients with 
epilepsy (5 male - 5 female, mean age 34±4 years) and 
10 normal (5 male - 5 female, mean age 35±5 years) 
were the study group. EEG signals of patients with 
epilepsy were contains only seizure free- epochs. 
Nine mm, round, golden-cup electrodes were placed 
according to 10-20 international electrode placement 
system (Figure 1). Sampling frequency was 256 Hz. 
Reference montage (A1 and A2) measurements 
were derived from each channels and the duration 
of epoch was 30 seconds. In both group, each EEG 
datum was added one another and a single EEG data 
that was 300 seconds long were obtained. Thus each 

Figure 1. Electrode placement for 16 channels



338

Meandros Med Dent J 2018;19:336-44

channel consisted of total 76800 samples and then for 
each of those channels, 30 rectangular windows were 
formed which consists of 256 discrete data. Finally; 
total of 600 EEG segments, 300 epileptic and 300 
normal, were obtained. EEG data was retrospectively 
collected.

2.1 Extracting Features with Discrete Wavelet 
Transform

Most of the biological signals like EEG are non-
stationary signals. In other words, the amplitude, 
phase, and frequency of EEG signals are constantly 
changing signals. Various methods are used to analyse 
changes in the EEG signal (5). Wavelet transform 
(WT) is one of the most common methods which is 
used for time-frequency analysis of EEG signals. WT 
provides optimum time-frequency resolution over 
all frequency ranges (22). Therefore it has been 
widely used to provide a quantitative measure of 
the frequency distribution of the EEG and detect the 
presence of particular patterns (6). 

WT analysis can be classified as two types: 
Continuous wavelet transform (CWT) and discrete WT 
(DWT). CWT is obtained by taking a projection of the 
signal to the functions created by scaling and shifting 
of a mother wavelet function. The mother wavelet 
function is a prototype function used to generate 
wavelets (23). According to the principle, the CWT is 
defined as:

where x(t), ψ, s and τ denote the signal to be 
processed, the wavelet function, scaling and shifting 
parameters, respectively. The different window 
functions used for the transformation are derived by 
shifting and scaling the mother wavelet. The shifting 
parameter τ changes the position of the window 
function on the signal. Hence the window moves on 
the signal. The scale parameter s expands or contracts 
the window function. Large values of s are suitable 
for general views and small values are suitable for 
detailed views. 1/√s is the normalization multiplier 
that ensures that the energy is the same for all values 
of s (13,22).

Calculation of the wavelet coefficients for every 
possible scale causes unnecessary information to be 

received from the signal. Moreover it takes a long 
time (24). If the scaling and shifting parameters are 
chosen as powers of 2, the analysis becomes more 
effective and faster (25). This method is called DWT 
and can be defined as:

where the parameters s and τ are replaced by 2j 

and 2j k.
In the DWT, the signal is decomposed into 

approximation and detail coefficients at the first level 
by using low and high pass filters (Figure 2). Then the 
approximation coefficients are further decomposed 
into next level of approximation and detail coefficients 
(26,27).

It is very important to determine the appropriate 
wavelet function and the level of decomposition. 
The level of decomposition is chosen based on the 
dominant frequency components of the signal (13). 

In this study DWT was employed to decompose 
the EEG signals into different frequency bands for 
different wavelet functions. Due to its high success 
the Daubechies wavelet order in 4 (Db4) was used to 
construct the feature vectors (13,15). Since the EEG 
signals do not have any useful frequency components 
above 30 Hz, the number of levels was chosen to 
be 6. After decomposition, D1-D6 details and A6 
approximation coefficients were obtained (Figure 3).

Öztürk et al. Comparison of Classification Methods in Electroencephalogram 

Figure 2. Decomposition of a signal into approximation and 
detail coefficients
DWT: Discrete wavelet transform
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The extracted wavelet coefficients give a compact 
illustration that shows the energy distribution of the 
EEG signal in time and frequency. To characterize 
the EEG signals, statistics over the set of the wavelet 
coefficients were calculated (5, 6, 13, 27, 28). The 
following statistics were calculated from the wavelet 
coefficients:

1. Mean of the absolute values of the coefficients 
in each sub-band   

2. The minimum value of the coefficients in each 
sub-band (min(xi )).

3. The maximum value of the coefficients in each 
sub-band (max(xi)).

4. Standard deviation of the coefficients in each 
sub-band 

5. Entropy of the coefficients in each sub-band 
(S=∑pxlogpx).

6. Energy of the coefficients in each sub-band 
(E=∑|xi|

2). 

Since the frequency components above 30 Hz 
is lack of use in epilepsy analysis, the features were 
extracted from D4 (16-32 Hz), D5 (8-16 Hz), D6 (4-8 
Hz) detail coefficients and A6 (0-4 Hz) approximation 
coefficients. Thus 24 statistical features were obtained 
from each channel. In total 384 features were obtained 
from 16 channels and normalized in [0,1].

Dimensionality Reduction of Features 
Principal Component Analysis
Principal component analysis (PCA) is a 

transformation technique that reduces the dimension 
of p-dimensional data set containing correlated 
variables to a lower dimensional space containing 
uncorrelated variables while preserving the existing 
variability in the data set as much as possible. The 
variables obtained by the transformation are called 
the principal components of the original variables. 
The first principal component captures the maximum 
variance in the data set and the others capture the 
remaining variance according to decreasing order 
(29,30).

The number of principal components that can be 
obtained for p number of variables is at most p, and 
the principal components are formed as linear 
combinations of variables (29). A linear combination 
of any x random vector can be expressed as:

where a11, a21,…,ap1 are the weighting coefficients of 
the weight vector a1 and y1 represents the first 
principal component. The variance of  y1 depends on 
the norm and direction of a1. As the norm of a1 
increases, the variance of  y1 will also increases. 
Therefore it is aimed to obtain the maximum variance 
by introducing a constraint such that the norm of a1 is 
1. Under this constraint, the variance of the first 
principal component expressed as (29):

where Cx=E[xx'] denotes covariance matrix. The 
result that maximizes Var(a1) is obtained by calculation 
of eigenvectors v1,…,vn corresponding to eigenvalues 
λ1,…,λn  (λ1≥.......≥λn) of Cx matrix. The first principal 
component is expressed as (29): 

Öztürk et al. Comparison of Classification Methods in Electroencephalogram

Figure 3. Approximate and detailed coefficients of epileptic 
electroencephalogram signal after decomposition
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The second principal component with the 
constraint that is uncorrelated to the first principal 
component (E[y1y2 ]=0) is expressed as (29):

 

By this way, the mth principal component such that 
1≤ m ≤ p and E[yk ym ]=0 (k≠m) is expressed as (29):

PCA has been frequently used in studies on 
epilepsy diagnosis with EEG signals (13, 31, 32).

Independent Component Analysis
Independent component analysis (ICA) is a 

statistical method that tries to distinguish between 
multiple randomly mixed signals without knowing the 
mixing mechanism. ICA assumes that each measured 
signal is a linear combination of independent signals. 
It decomposes multidimensional data vector linearly 
to statistically independent components (5). The 
mixing model can be written as: 

x=As

where x denotes the random vector whose 
elements are the mixtures x1,…,xn, and s denotes the 
vector of the original source signals with elements 
s1,…,sn, and  A denotes the mixing matrix with 
elements aij (33). In equation (8) neither A nor s are 
known. If a matrix W can be found as the inverse of 
of A, the original source signals can be estimated. The 
estimated signals can be expressed as:

y=Wx

where y denotes the vector whose elements are 
the estimations of the original source signals (33).  
A number of algorithms have been developed for 
estimating W. One of these algorithms is the fast fixed-
point algorithm (FastICA) developed by Hyvärinen 
(34). FastICA provides fast convergence, easy to apply 
and reliable results.  In this study FastICA algorithm 
was used to estimate the W.

Classification of Features
Linear Discriminant Analysis
The goal of linear discriminant analysis (LDA) is 

to derive a discriminant function to maximize the 
difference between the groups. In LDA, the number 

of discriminant functions is determined according to 
the number of the groups. If there are two groups, 
then one discriminant function is used. A discriminant 
function consists of a linear combination of predictors. 
The weights of the predictors are calculated such 
that the ratio of the variance between classes to the 
variance within class is maximized. The discriminant 
function for two groups and p predictors expressed as:

D=w0+w1 X1+w2 X2+.......+wp Xp

where w0, wi and Xi (i = 1,…,p) denote the constant, 
the weights of the predictors and the predictors, 
respectively.

Support Vector Machine
In machine learning, support vector machines 

(SVMs) are supervised learning models with 
associated learning algorithms that analyse data used 
for classification and regression analysis (35). 

SVM aims to find the best separating hyper plane 
(optimal hyper plane), with the maximum distance 
between observations in the two classes. The basic 
support vector classifier for linear separable data is 
shown in Figure 4. Where w is the normal of optimal 
hyper plane, b is bias and x is the features vector. The 
optimal hyper plane (wTx+b=0) divides the plane into 
two sets depending on the sign of wTx+b (36).

SVM maps the data that cannot be separated 
linearly into a higher dimensional space in which they 
can be separated linearly by using an appropriate 
kernel function (Figure 5) (9, 35, 37).

Figure 4. The linear support vector classifier
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In this study, the linear kernel: K(xi,xj)=xi.xj and the 
radial basis function (RBF) kernel: K(xi,xj )=exp(-γ || xi-
xj|| 

2) were used as the kernel functions.
The hyper parameters C and γ of the SVM classifier 

were determined through a 10-fold cross-validation 
grid search performed and the parameters giving the 
highest accuracy were used in SVM classifiers.

Results

A comparison of both the effects of PCA and ICA on 
the classification performance and the classification 

performances of LDA and SVM with linear and RBF 
kernels was done on the EEG data that derived from 
the normal and patients with epilepsy. Classifications 
were performed for three different feature matrices: 
(a) features without dimension reduction (384 
features), (b) features being reduced by PCA (34 
features) and the and (3) features being reduced by 
ICA (30 features). The eigenvalues-greater-than-one 
rule proposed by Kaiser (1960) was used to determine 
for the number of components. These three feature 
matrices were classified by using LDA, SVM with 
linear kernel and RBF kernel. Sensitivity, specificity 
and accuracy rates were used for the performance 
measures of the classifiers. Additionally, for all 
feature matrices used in the classifications, training 
and test data sets were randomly divided into two 
parts: 70% training (n=420) and 30% test (n=180) 
data corresponding to the same points. The process 
performed in the application is given in Figure 6.

In training sets; among the classifiers, SVM with 
RBF kernel reached to the highest accuracy rate 
(96.2%) at the features without dimension reduction, 
SVM with linear kernel reached to the highest at the 
(94.7%) at similar to the previous; LDA reached to the 
highest rate (79.8%) at the features reduced by PCA 
(Table 1). 

In test sets, the highest accuracy (88.9%) was 
obtained by SVM with RBF kernel without dimension 
reduction. The highest accuracy (82.2%) for SVM with 
linear kernel was obtained with the features being 
reduced by PCA. The highest accuracy (78.9%) for LDA 
was obtained for the features being reduced by both 
PCA and ICA (Table 2). 

Discussion

A number of studies have been done to classify 
EEG signals for the diagnosis of epilepsy. A direct 
comparison of the previous studies that using 
EEG signals is hard due to the variety of EEG 
datasets, wavelet types, decomposition levels and 
also the variety of the statistical features used in 
the classification process (15). Previously, many 
researchers used the same EEG data which included 
five sets (named as A-E) described by Andrzejak, et 
al. (38). Set A and B were obtained from normal, set 
C-E were obtained from patients with epilepsy. Set C 
and D were included seizure-free interval while set E 
were include seizure-related interval. Wavelet-based 

Figure 5. Non-linear support vector classifier

Figure 6. Diagram of the application process
EEG: Electroencephalogram, DWT: Discrete wavelet transform, SVM: 
Support vector machine, LDA: Linear discriminant analysis, PCA: 
Principal component analysis, ICA: Independent component analysis 
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features that obtained from these sets (Set E and 
the others) were used to assess the performances 
of classifiers and to detection of a seizure activity. 
Nearly or exactly 100% accuracy rates were obtained 
with different classification methods. Among them, 
Xie and Krishnan (39) used k-nearest neighborhood 
method, Kumar et al. (11) used artificial neural 
network, Das et al. (9) used SVM method and all of 
these studies accuracy rates were 100%. In these 
sets, there were significant differences between the 
signals that were derived at the time of seizure and 
at normal periods, and no need to use of complicated 
statistical methods instead of using a simple threshold 
value or even visual assessment. It was also difficult 
to say that any classification method was superior to 
other methods. Different from these studies, we did 
not use an epileptic seizure activity in our EEG data 
set in patients with epilepsy. As a result, classification 
attempts of our data were more difficult than the 

previous data set and showed the real discrimination 
ability of these methods. 

Orhan et al. (40) classified the wavelet-based 
features that obtained from data set A and D described 
by Andrzejak, et al. (38) and obtained 96% accuracy 
rate with a multilayer perception neural network 
model. Subasi and Ercelebi (41) used similar data sets 
that we used in this study. They classified the wavelet-
based features and obtained respectively 93.0% and 
89.0% accuracy rates for artificial neural network and 
logistic regression. In this study, we also classified 
some wavelet-based features and got respectively 
88.9%, 82.2% and 78.9% accuracy rates for SVM with 
RBF kernel, SVM with linear kernel, and LDA. One of 
the most important reasons for different accuracy 
rates among the studies was the using of different 
data sets. The ratio of epileptic abnormalities in EEG 
data sets was variable and it made difficult to compare 
of the classification studies. 

Table 2. The classification performances of prediction models in test sets

Test data sets Classifiers Sensitivity (%) Specificity (%) Accuracy (%)

Features without dimension 
reduction

LDA 57.8 63.3 60.6

SVM-Linear kernel 77.7 81.1 79.4

SVM-RBF kernel 92.2 85.6 88.9

Features reduced by PCA

LDA 67.8 90.0 78.9

SVM-Linear kernel 78.9 85.6 82.2

SVM-RBF kernel 83.3 82.2 82.8

Features reduced by ICA

LDA 71.1 86.6 78.9

SVM-Linear kernel 78.8 84.4 81.7

SVM-RBF kernel 80.0 88.9 84.4
SVM: Support vector machine, LDA: Linear discriminant analysis, PCA: Principal component analysis, ICA: Independent component analysis

Table 1. The classification performances of prediction models in training sets

Training data sets Classifiers Sensitivity (%) Specificity (%) Accuracy (%)

Features without dimension 
reduction

LDA 69.0 83.3 76.2

SVM-Linear kernel 91.4 98.1 94.7

SVM-RBF kernel 93.3 99.1 96.2

Features reduced by PCA

LDA 73.8 85.7 79.8

SVM-Linear kernel 80.0 88.6 84.3

SVM-RBF kernel 83.8 90.9 87.4

Features reduced by ICA

LDA 70.5 86.2 78.3

SVM-Linear kernel 80.0 85.2 82.6

SVM-RBF kernel 74.8 93.8 84.3

SVM: Support vector machine, LDA: Linear discriminant analysis, PCA: Principal component analysis, ICA: Independent component analysis
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There is still a debate that linear or non-linear 
method has more successful than each others for 
classifying of EEG signals. Garrett et al. (42) classified 
five different mental states using EEG signals and 
achieved respectively 66.0%, 69.4% and 72.0% 
accuracy rates for LDA, artificial neural network and 
SVM with RBF kernel. They favoured that non-linear 
methods were more successful than linear methods 
for the classification of EEG signals. Lehmann, et al. 
(43) did the same classification of the EEG data that 
derived from the Alzheimer patients and normal, and 
they got 91.0% and 95.0% accuracy rates with LDA 
and SVM with RBF kernel. Supriya et al. (19) classified 
the EEG data sets A and E [described by Andrzejak 
et al. (38)] and achieved 86.87%, 99.25% and 100% 
accuracy rates with LDA, SVM with linear kernel and 
SVM with polynomial kernel. In this study, we achieved 
respectively 78.9%, 82.2% and 88.9% accuracy rates 
with LDA, SVM with linear kernel and SVM with RBF 
kernel. In this context, we have achieved similar 
results with previous studies. 

Subasi and Gursoy (13) used PCA, ICA and LDA to 
reduce the dimension of the features that obtained 
from EEG signals and compared the performances 
on classification success. They used SVM with RBF 
kernel to classify the reduced features and achieved 
respectively 98.7%, 99.5% and 100% accuracy rates 
for PCA, ICA and LDA. We used SVM with RBF kernel 
to classify the reduced features and for ICA we found 
the highest accuracy rate 84.4% and for PCA the 
highest accuracy rate 82.8%. Hence we found similar 
result with Subasi and Gursoy (13). In addition, with 
dimensionally reduction, both the performance of 
LDA and SVM with linear kernel were increased. The 
highest classification performances in all data sets 
were got by using SVM with RBF kernel. It achieved 
the highest accuracy rate (88.9%) for the features 
without dimension reduction. It was noted that 
the dimension reduction methods were adversely 
affected the performance of its. 

Conclusion

In this study, the classification performances of 
SVM and LDA, which are widely used for computer 
supported diagnose of epilepsy, were compared 
by using wavelet-based features extracted from 
EEG signals. In addition, PCA and ICA were used to 
determine the effects of dimension reduction on the 

classification success. Results showed that, SVM with 
RBF kernel achieved the highest accuracy rate (88.9%) 
for the features without dimension reduction. The 
dimension reduction methods PCA and ICA improved 
classification performances of LDA and SVM with 
linear kernel, but decreased the classification 
performance of SVM with RBF kernel. Consequently, 
with dimensionally reduction, LDA and SVM with 
linear kernel perform better classifications.

Ethics 
Ethics Committee Approval: Adnan Menderes 

University Ethics Committee. (approval no: 2016/873).
Informed Consent: It was not taken.
Peer-review: Externally peer-reviewed.
Authorship Contributions
Surgical and Medical Practices: N.K., Concept: 

M.T., H.Ö., Design: M.T., İ.K.Ö., H.Ö., Data Collection or 
Processing: N.K., M.T., H.Ö., Analysis or Interpretation: 
M.T., H.Ö., İ.K.Ö., Literature Search: M.T., H.Ö. Writing: 
H.Ö.

Conflict of Interest: No conflict of interest was 
declared by the authors.

Financial Disclosure: The authors declared that 
this study received no financial support.

References

1.	 Nunez PL, Srinivasan R. Electric fields of the brain: the 
neurophysics of EEG: Oxford University Press, USA; 2006.

2.	 Ropper AH. Adams and Victor's principles of neurology: McGraw-
Hill Medical Pub. Division New York; 2005.

3.	 Sanei S, Chambers J. EEG Signal processing, 2007. John Wiley & 
Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex 
PO19 8SQ, England; 2007.

4.	 Nuh M, Jazidie A, Muslim M, editors. Automatic detection of 
epileptic spikes based on wavelet neural network. Circuits and 
Systems, 2002 APCCAS'02 2002 Asia-Pacific Conference on; 
2002: IEEE.

5.	 Acharya UR, Sree SV, Swapna G, Martis RJ, Suri JS. Automated 
EEG analysis of epilepsy: a review. Knowledge-Based Systems 
2013; 45: 147-65.

6.	 Amorim P, Moraes T, Fazanaro D, Silva J, Pedrini H. 
Electroencephalogram signal classification based on shearlet 
and contourlet transforms. Expert Syst Appl 2017; 67: 140-7.

7.	 Bao FS, Lie DY-C, Zhang Y, editors. A new approach to automated 
epileptic diagnosis using EEG and probabilistic neural network. 
Tools with Artificial Intelligence, 2008 ICTAI'08 20th IEEE 
International Conference on; 2008: IEEE.

8.	 Bronzino JD. Biomedical engineering handbook: CRC press; 
1999.

9.	 Das AB, Bhuiyan MIH, Alam SS. Classification of EEG signals using 
normal inverse Gaussian parameters in the dual-tree complex 



344

Meandros Med Dent J 2018;19:336-44

Öztürk et al. Comparison of Classification Methods in Electroencephalogram 

wavelet transform domain for seizure detection. Signal Image 
and Video Processing 2016; 10: 259-66.

10.	 Fu K, Qu J, Chai Y, Zou T. Hilbert marginal spectrum analysis 
for automatic seizure detection in EEG signals. Biomed Signal 
Process Control  2015; 18: 179-85.

11.	 Kumar Y, Dewal M, Anand R. Epileptic seizures detection in EEG 
using DWT-based ApEn and artificial neural network. Signal 
Image and Video Processing 2014; 8: 1323-34.

12.	 Sharma R, Pachori RB. Classification of epileptic seizures in EEG 
signals based on phase space representation of intrinsic mode 
functions. Expert Systems with Applications. 2015; 42: 1106-17.

13.	 Subasi A, Gursoy MI. EEG signal classification using PCA, ICA, LDA 
and support vector machines. Expert Syst Appl   2010; 37: 8659-
66.

14.	 Alam SM, Bhuiyan MI. Detection of seizure and epilepsy using 
higher order statistics in the EMD domain. IEEE J Biomed Health 
Inform 2013; 17: 312-8.

15.	 Amin HU, Malik AS, Ahmad RF, Badruddin N, Kamel N, Hussain 
M, et al. Feature extraction and classification for EEG signals 
using wavelet transform and machine learning techniques. 
Australas Phys Eng Sci Med 2015; 38: 139-49. 

16.	 Iscan Z, Dokur Z, Demiralp T. Classification of 
electroencephalogram signals with combined time and 
frequency features. Expert Systems with Applications 2011; 38: 
10499-505.

17.	 Lima CA, Coelho AL, Eisencraft M. Tackling EEG signal 
classification with least squares support vector machines: a 
sensitivity analysis study. Comput Biol Med 2010; 40: 705-14.

18.	 Srinivasan V, Eswaran C, Sriraam N. Artificial neural network 
based epileptic detection using time-domain and frequency-
domain features. J Med Syst 2005; 29: 647-60.

19.	 Supriya S, Siuly S, Zhang Y. Automatic epilepsy detection from 
EEG introducing a new edge weight method in the complex 
network. Electronics Letters 2016; 52: 1430-2.

20.	 Tzallas AT, Tsipouras MG, Fotiadis DI. Epileptic seizure detection 
in EEGs using time–frequency analysis. IEEE Trans Inf Technol 
Biomed  2009; 13: 703-10.

21.	 Zhang T, Chen W. LMD based features for the automatic seizure 
detection of EEG signals using SVM. IEEE Trans Neural Syst 
Rehabil Eng 2017; 25: 1100-8. 

22.	 Steinbuch M, van de Molengraft M. Wavelet theory and 
applications: a literature study. Eindhoven: Eindhoven University 
Technology Department of Mechanical Engineering Control 
System Group. 2005.

23.	 Kovacevic MVJ. Wavelets and subband coding. 1995.
24.	 Rioul O, Vetterli M. Wavelets and signal processing. IEEE signal 

processing magazine 1991; 8: 14-38.
25.	 Misiti M, Misiti Y, Oppenheim G, Poggi J-M. Matlab Wavelet 

Toolbox User\'s Guide. Version 3. 2004.
26.	 Faust O, Acharya UR, Adeli H, Adeli A. Wavelet-based EEG 

processing for computer-aided seizure detection and epilepsy 
diagnosis. Seizure 2015; 26: 56-64.

27.	 Li M, Chen W, Zhang T. Classification of epilepsy EEG signals using 
DWT-based envelope analysis and neural network ensemble. 
Biomed Signal Process Control 2017; 31: 357-65.

28.	 Meier R, Dittrich H, Schulze-Bonhage A, Aertsen A. Detecting 
epileptic seizures in long-term human EEG: a new approach to 
automatic online and real-time detection and classification of 
polymorphic seizure patterns. J Clin Neurophysiol 2008; 25: 119-31.

29.	 	Dunteman GH. Principal component analysis (Quantitative 
applications in the social sciences). SAGE Publications, Thousand 
Oaks; 1989.

30.	 Jolliffe I. Principal component analysis: Wiley Online Library. 
2005.

31.	 Acharya UR, Sree SV, Alvin APC, Suri JS. Use of principal component 
analysis for automatic classification of epileptic EEG activities in 
wavelet framework. Expert Syst Appl 2012; 39: 9072-8.

32.	 Ghosh-Dastidar S, Adeli H, Dadmehr N. Principal component 
analysis-enhanced cosine radial basis function neural network 
for robust epilepsy and seizure detection. IEEE Trans Biomed Eng 
2008; 55: 512-8.

33.	 Hyvärinen A, Karhunen J, Oja E. Independent Component 
Analysis, 500 John Wiley & Sons. NJ, USA. 2001;501.

34.	 Hyvärinen A. Fast and robust fixed-point algorithms for 
independent component analysis. IEEE Trans Neural Netw 1999; 
10: 626-34. 

35.	 Cortes C, Vapnik V. Support-vector networks. Machine learning. 
1995; 20: 273-97.

36.	 Ben-Hur A, Weston J. A user’s guide to support vector machines. 
Methods Mol Biol 2010; 609: 223-39. 

37.	 Burges CJ. A tutorial on support vector machines for pattern 
recognition. Data Min Knowl Discov 1998; 2: 121-67.

38.	 Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger 
CE. Indications of nonlinear deterministic and finite-dimensional 
structures in time series of brain electrical activity: Dependence 
on recording region and brain state. Physical Review E 2001; 64: 
061907.

39.	 Xie S, Krishnan S. Wavelet-based sparse functional linear 
model with applications to EEGs seizure detection and epilepsy 
diagnosis. Med Biol Eng Comput 2013; 51: 49-60. 

40.	 Orhan U, Hekim M, Ozer M. EEG signals classification using the 
K-means clustering and a multilayer perceptron neural network 
model. Expert Syst Appl  2011; 38: 13475-81.

41.	 Subasi A, Ercelebi E. Classification of EEG signals using neural 
network and logistic regression. Comput Methods Programs 
Biomed 2005; 78: 87-99.

42.	 Garrett D, Peterson DA, Anderson CW, Thaut MH. Comparison of 
linear, nonlinear, and feature selection methods for EEG signal 
classification. EEE Trans Neural Syst Rehabil Eng 2003; 11: 141-4.

43.	 Lehmann C, Koenig T, Jelic V, Prichep L, John RE, Wahlund L-O, 
et al. Application and comparison of classification algorithms 
for recognition of Alzheimer's disease in electrical brain activity 
(EEG). J Neurosci Methods 2007; 161: 342-50. 


