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Abstract: This study examined the effects of integrating the 5E Instructional Model with the Concrete-Representational-Abstract 
(CRA) approach on 10th-grade students’ concept images of parallelograms and rhombuses and their mathematical connection 
skills. The study employed a quasi-experimental design with pretest-posttest control groups, involving 61 students (experimental 
group n=31, control group n=30). The experimental group received instruction using the integrated 5E-CRA model, while the control 
group received traditional instruction. Data were collected using the “Parallelogram and Rhombus Concept Assessment Tool” 
developed by the researcher. Results revealed that the integrated approach had very large positive effects on parallelogram 
concept image (d=2.78), rhombus concept image (d=2.42), and mathematical connection skills (d=2.36). The findings demonstrate 
that 5E-CRA integration offers an effective alternative to traditional methods in geometric concept instruction, highlighting the 
critical role of systematic progression from concrete to abstract in developing conceptual understanding and connection skills. The 
research findings provide guidance for mathematics teachers in using manipulatives and progressive instructional strategies 
 
Keywords: 5E instructional model, concrete-representational-abstract approach, concept image, mathematical connections, 
geometry education, quadrilaterals. 

 

 

1. Introduction 

Geometry plays a critical role in developing students’ spatial thinking, mathematical reasoning, and problem-solving 

skills as a fundamental area of mathematics. The challenges encountered in teaching this domain direct researchers and 

educators toward developing effective instructional approaches. In particular, the difficulties students experience in 

making sense of abstract geometric concepts necessitate the investigation of alternative instructional models and their 

integration.  
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One of the most significant problems encountered in geometry instruction is that students struggle to understand 

relationships between geometric concepts and to connect these concepts with one another (Duval, 2006; Jones, 2002). 

The topic of quadrilaterals particularly stands out as an area where students experience difficulty in understanding the 

hierarchical structure among concepts (Fujita & Jones, 2007). Research shows that students struggle to grasp 

relationships among special quadrilaterals and to connect the properties of these quadrilaterals (Balgalmış & Işık-

Ceyhan, 2019; Şimşek, 2019). When concepts such as parallelograms and rhombuses that are related to each other are 

concerned, students’ concept images are generally incomplete or erroneous (Monaghan, 2000). For example, many 

students perceive a parallelogram only as a “slanted quadrilateral,” cannot fully know the properties of rhombuses, and 

cannot grasp the hierarchical relationships among special quadrilaterals (Fujita, 2012). 

The foundation of these problems lies in several key issues within traditional geometry instruction. These include the 

use of prototype representations of shapes, insufficient emphasis on relationships among concepts, and the adoption 

of a definition-formula-oriented approach (Hershkowitz, 1990; Van Hiele, 1986). Traditional instructional methods do 

not adequately support students in achieving conceptual understanding and developing connection skills (Battista, 

2007). The difficulties experienced by Turkish students in the geometry domain in international assessments such as 

PISA and TIMSS (MEB, 2019; MEB, 2020) further increase the importance of developing and implementing effective 

instructional approaches. 

The development of concept images and connection skills in geometry instruction is an important research and 

application area not only in Turkey but also at the international level. Studies conducted worldwide show that students 

experience similar difficulties in making sense of geometric concepts and establishing relationships among them 

(Battista, 2007; Jones & Tzekaki, 2016; Sinclair et al., 2016). International comparative studies reveal that students’ 

geometry performance is lower compared to other mathematics domains in many countries worldwide. TIMSS 2019 

results indicate that students worldwide show lower performance in geometry and measurement domains (Mullis et 

al., 2020). Similarly, in PISA assessments, students have been observed to struggle with questions requiring spatial 

thinking and geometric reasoning (OECD, 2019). 

Both in the United States (National Council of Teachers of Mathematics [NCTM], 2000) and in European Union countries 

(Đokić et al., 2021; Tessema et al., 2024), developing conceptual understanding and connection skills in geometry 

instruction is among the priority goals of mathematics education reforms. Particularly, the hierarchical classification and 

understanding of properties of quadrilaterals has been identified as a common area where students struggle in many 

countries (Fujita & Jones, 2007; Usiskin et al., 2008). This situation reveals the need to investigate alternative 

instructional approaches and their integration for deep understanding of geometric concepts and ensuring lasting 

learning. 

In this context, the integration of the 5E Instructional Model based on constructivist learning theory and the Concrete-

Representational-Abstract (CRA) approach that provides systematic transition from concrete to abstract is considered 

an important alternative that can contribute to overcoming the challenges encountered in geometry instruction. This 

research is based on four fundamental theoretical frameworks: Concept Image theory (Tall & Vinner, 1981), Van Hiele’s 

Geometric Thinking Levels theory (Van Hiele, 1986), the 5E Instructional Model (Bybee et al., 2006), and the Concrete-

Representational-Abstract approach (Bruner, 1966; Witzel, 2005). 
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The Concept Image theory developed by Tall and Vinner (1981) encompasses the entire cognitive structure formed in 

students’ minds during the process of learning mathematical concepts. Concept image includes all mental pictures, 

properties, processes, and experiences related to the concept. Concept definition, on the other hand, is the formal, 

mathematical definition of the concept. The relationship between concept image and concept definition is of critical 

importance in understanding mathematical concepts. Ideally, students’ concept images should be compatible and 

consistent with the concept definition. However, in geometry instruction, students’ concept images are generally 

limited to prototype examples, and this situation leads to concept misconceptions (Hershkowitz, 1990; Vinner & 

Hershkowitz, 1980). 

The Geometric Thinking Levels theory developed by Van Hiele (1986) suggests that students’ geometric thinking skills 

develop at five levels: Visual Level (Level 1), Analysis Level (Level 2), Relational Level (Level 3), Deduction Level (Level 4), 

and Higher Level (Level 5). At the visual level, students recognize shapes only by their appearance. At the analysis level, 

they begin to identify and analyze the properties of shapes. At the relational level, they understand relationships among 

shapes and can make hierarchical classifications. At the deduction level, they can make geometric proofs and develop 

theorems. At the higher level, they can compare and evaluate different geometry systems. 

Mathematical connections, as defined by the National Council of Teachers of Mathematics (NCTM), refer to the ability 

to "recognize and use connections among mathematical ideas; understand how mathematical ideas interconnect and 

build on one another to produce a coherent whole; recognize and apply mathematics in contexts outside of 

mathematics" (NCTM, 2000, as cited in Mathframework, 2024). Mathematical connections are broadly categorized into 

two main types: intra-mathematical connections and extra-mathematical connections (De Gamboa et al., 2023; 

Rodríguez-Nieto et al., 2022). Intra-mathematical connections occur within the domain of mathematics and involve 

relationships between mathematical concepts, procedures, representations, and ideas (Hatisaru et al., 2024). These 

connections can be further subdivided into several specific types: (a) part-whole connections, which include inclusion 

relationships (when one concept is contained within another) and generalization relationships (when a concept is a 

generalization of a particular case); (b) feature/property connections, which occur when characteristics or properties of 

mathematical concepts are related; (c) representation connections, which involve linking different representations of 

the same mathematical concept; and (d) procedural connections, which relate different mathematical procedures or 

algorithms (Businskas, 2008; Rodríguez-Nieto et al., 2022). These connections align with Van Hiele’s Level 2 (Analysis) 

and Level 3 (Abstraction-Deduction) geometric thinking levels, where students can identify properties of shapes and 

understand relationships among different geometric concepts (Van Hiele, 1986). Extra-mathematical connections 

involve relationships between mathematics and other disciplines, real-world contexts, or everyday life experiences 

(Caviedes et al., 2024). These connections help students understand the relevance and applicability of mathematics 

beyond the classroom setting. In the context of this study, the focus is specifically on intra-mathematical connections 

related to geometric concepts, particularly: (1) hierarchical connections between parallelogram and rhombus concepts 

(understanding that every rhombus is also a parallelogram), and (2) transformation connections (understanding how 

one geometric shape can be transformed into another through systematic modifications of its properties). These 

connections align with Van Hiele’s Level 2 (Analysis) and Level 3 (Abstraction-Deduction) geometric thinking levels, 

where students can identify properties of shapes and understand relationships among different geometric concepts 

(Van Hiele, 1986). 
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The 5E Instructional Model is an instructional model developed based on constructivist learning theory and emphasizing 

active participation of students (Bybee et al., 2006). The model suggests that the learning process consists of five phases: 

Engage, Explore, Explain, Elaborate, and Evaluate. In the engagement phase, students’ interest is captured and their 

prior knowledge is activated. This phase ensures that students become curious about the topic and motivated to learn. 

In the exploration phase, students discover the concept through their own experiences. In this phase, students are 

provided with opportunities to investigate their questions, collect data, and develop hypotheses. In the explanation 

phase, the formal definition and properties of the concept are systematized under teacher guidance. Students share 

their discoveries, and the teacher provides necessary terminology and explanations. In the elaboration phase, the 

concept is applied and extended in different contexts. Students have the opportunity to use newly learned concepts in 

different situations. In the evaluation phase, students’ conceptual understanding and skills are assessed (Bybee, 2009). 

The Concrete-Representational-Abstract (CRA) approach is a three-stage instructional approach developed inspired by 

Jerome Bruner’s information processing theory (Witzel, 2005). In this approach, the learning process occurs in three 

stages: direct interaction with concrete objects, schema and visual-based representations, and abstract mathematical 

symbols and formulas. In the concrete stage, students work with real objects and manipulatives. This stage ensures 

physical experience of concepts and formation of concrete meaning. In the representational stage, students represent 

their concrete experiences with drawings, schemas, and graphics. This stage serves as a bridge between concrete and 

abstract thinking. In the abstract stage, students work with mathematical symbols, formulas, and proofs. This stage 

ensures concepts are fully expressed mathematically (Flores, 2010). 

In this research, an instructional process based on the integration of the 5E Instructional Model and the CRA approach 

was designed. There is a natural harmony between the phases of the 5E model (Engage, Explore, Explain, Elaborate, 

Evaluate) and the phases of the CRA approach (Concrete, Representational, Abstract). This harmony was integrated as 

follows: capturing students’ interest in the engagement phase using concrete manipulatives and real-life examples; 

discovering concept properties with concrete materials and transitioning to representational representations in the 

exploration phase; visualizing concepts using drawings, schemas, and diagrams in the explanation phase; applying 

concepts in different contexts and using mathematical formulas in problem-solving activities in the elaboration phase; 

and evaluating students’ conceptual understanding through abstract mathematical expressions and problems in the 

evaluation phase. 

The 5E Instructional Model and CRA approach are recognized as effective instructional strategies at the international 

level. The 5E Model was developed by the Biological Sciences Curriculum Study (BSCS) in the United States and has been 

applied in many fields including mathematics instruction over time (Bybee et al., 2006). It is widely used in countries 

with advanced education systems such as Australia, Canada, Singapore, and Finland (Eisenkraft, 2003). The CRA 

approach particularly forms the foundation of Singapore mathematics teaching methodology. This approach, also 

known as the “Singapore Model,” is considered one of the important factors in Singapore’s success in mathematics 

education, which ranks high in PISA and TIMSS assessments (Leong et al., 2015). 

International research shows that both the 5E Model (Huda et al., 2020; Ültay & Çalık, 2016) and the CRA approach 

(Bouck et al., 2017; Leong et al., 2015) are effective in mathematics instruction. Hu et al. (2017) state that among the 

important advantages of the 5E model are enhancing students’ ability to use prior knowledge and facilitating their 

construction of new knowledge. In Putri et al.’s (2021) study, it was determined that the 5E learning cycle supported by 
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GeoGebra helps students understand the relationships among concepts and use these relationships effectively. 

Regarding the CRA approach, Satsangi and Bouck (2015) found that this approach is effective in helping students with 

special learning difficulties understand area and perimeter concepts. Witzel, Mercer, and Miller (2003) revealed that 

the CRA approach improves mathematical problem-solving skills and increases the permanence of learned information. 

However, the integration of these two approaches is an original area that has not yet been sufficiently researched. This 

research aims to contribute originally to international literature by examining the integration of 5E and CRA approaches. 

This study combines internationally recognized theoretical frameworks such as concept image (Tall & Vinner, 1981) and 

Van Hiele’s geometric thinking levels (Van Hiele, 1986) in geometry instruction. The research has the potential to 

contribute to efforts for improving geometry instruction on a global scale. Studies examining the effect of the integration 

of these two approaches on concept image and connection skills, particularly in the topic of quadrilaterals, are limited. 

This research aims to fill this gap in the literature and develop an effective instructional model in geometry instruction. 

The research focuses on developing students’ images of parallelogram and rhombus concepts and strengthening their 

connection skills between these concepts. Concept image and connection skills are of critical importance in conceptual 

understanding of mathematics and achieving lasting learning (Tall & Vinner, 1981). In this context, the purpose of this 

research is to examine the effect of the integration of the 5E Instructional Model and the Concrete-Representational-

Abstract (CRA) approach on 10th-grade students’ parallelogram and rhombus concept images and mathematical 

connection skills.  

To achieve this purpose, the following research questions guide the study: 

RQ1: To what extent does the integration of the 5E Instructional Model and CRA approach affect 10th-grade 

students’ concept images of parallelograms and rhombuses compared to traditional instruction? 

RQ2: How does the integrated 5E-CRA approach influence students’ mathematical connection skills between 

geometric concepts compared to traditional instruction? 

The following hypotheses were tested in connection with this main purpose: 

H₁: The parallelogram concept image scores of the experimental group that received the integration of the 5E 

Instructional Model and CRA approach are significantly higher than those of the control group that received 

traditional instruction. 

H₂: The rhombus concept image scores of the experimental group that received the integration of the 5E 

Instructional Model and CRA approach are significantly higher than those of the control group that received 

traditional instruction. 

H₃: The mathematical connection skill scores of the experimental group that received the integration of the 5E 

Instructional Model and CRA approach are significantly higher than those of the control group that received 

traditional instruction. 

2. Methodology 

This research was conducted to examine the effect of integrating the 5E Instructional Model and the Concrete-

Representational-Abstract (CRA) approach on 10th-grade students’ geometric concept images and mathematical 

connection skills. The study employed a quasi-experimental design with pretest-posttest control groups (Campbell et 
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al., 1963). This design was selected due to the practical constraints of working with intact classroom groups while 

maintaining experimental control through random assignment. The research included one experimental group and one 

control group, and the same measurement tool was applied to both groups before and after the implementation. The 

experimental group was instructed using an integrated 5E-CRA approach, while the control group received conventional 

instruction. 

2.1. Study Group 

This research was conducted with 10th-grade students attending a public high school located in the central district of 

Burdur during the spring semester of the 2024-2025 academic year. A convenience sampling method was employed 

due to practical constraints and accessibility considerations. The selection criteria included: (a) 10th-grade classes 

accessible to the researcher, (b) voluntary participation of both teachers and students, (c) classes that had not yet 

covered quadrilateral topics in their curriculum, and (d) willingness of school administration to participate in the 

research. Two intact classes meeting these criteria were selected from a public high school in Burdur, Turkey. To 

minimize selection bias, random assignment was used to designate one class as the experimental group (n=31) and the 

other as the control group (n=30). Pre-implementation equivalence testing confirmed that the groups were statistically 

comparable on all measured variables (see Table 8). 

Random assignment placed one class in the experimental group (n=31) and the other in the control group (n=30). The 

demographic characteristics of participants are summarized in Table 1. 

Table 1 

Demographic Characteristics of the Study Group 

Characteristic Category Experimental Group Control Group Total 

Gender Male 14 (45.2%) 13 (43.3%) 27 (44.3%) 

Female 17 (54.8%) 17 (56.7%) 34 (55.7%) 
Total 

 
31 (50.8%) 30 (49.2%) 61 (100%) 

As seen in Table 1, the study group consists of 61 students in total. The experimental group includes 31 students (50.8%), 

and the control group includes 30 students (49.2%). In terms of gender distribution, there are 14 males (45.2%) and 17 

females (54.8%) in the experimental group, and 13 males (43.3%) and 17 females (56.7%) in the control group. 

2.2. Data Collection Tool and Data Collection Process 

The “Parallelogram and Rhombus Concept Assessment Tool” developed by the researcher was used as the data 

collection tool in this research. In developing the tool, theoretical frameworks proposed by Battista (2007), Bruner 

(1966), Bybee et al. (2006), Tall and Vinner (1981), and Van Hiele (1986) were taken as the basis. In the development of 

the assessment tool, first the relevant literature was reviewed and existing measurement tools used in geometric 

concept instruction were examined (Clements & Battista, 1992; Gutierrez et al., 1991). For content validity of the tool, 

opinions of two mathematics education experts and one experienced mathematics teacher were obtained. Pilot 

implementation was conducted with 20 tenth-grade students not included in the research. 

The tool was designed with four questions in accordance with the hierarchical structure in Van Hiele’s (1986) geometric 

thinking levels. Details of the questions are presented in Table 2. 
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Table 2 

Assessment Tool Question Structure and Theoretical Foundation 

Question 
No 

Question 
Type 

Theoretical 
Foundation 

Measured Dimension Van Hiele Level Description 

1 Comparative 
Table 

Tall & Vinner 
(1981) Van Hiele 
(1986) 

Concept Image 
Property Component 

Level 1-2 
(Analysis-
Abstraction) 

Evaluating 6 basic properties of 
parallelogram and rhombus in 

✓/✗ format 
2 Multiple 

Choice 
Clements & 
Battista (1992) 
Van Hiele (1999) 

Concept Image Visual 
Component 

Level 0-2 
(Visualization-
Abstraction) 

Classifying 4 different 
quadrilateral shapes into 
parallelogram/rhombus 
categories 

3 True-False Battista (2007) 
Van Hiele (1986) 

Mathematical 
Connection 
Hierarchical Thinking 

Level 2-3 
(Abstraction-
Deduction) 

Evaluating and justifying 
relationships among concepts 

4 Open-ended Duval (2007) Van 
Hiele (1986) 

Mathematical 
Connection 
Transformation 
Process 

Level 2-3 
(Abstraction-
Deduction) 

Explaining the process of 
transforming parallelogram to 
rhombus 

Analytical rubrics based on Van Hiele’s (1986) geometric thinking levels were developed for each question. The rubrics 

were designed as four-level in the 0-3 point range, and scoring criteria are detailed in Table 3. 

Table 3 

Assessment Tool Rubric System 

Question Measured 
Dimension 

3 Points (Van Hiele 
Level 2) 

2 Points (Van Hiele 
Level 1) 

1 Point (Van Hiele 
Level 0) 

0 Points 
(Below Level 0) 

1. Property 
Identification 

Concept Image - 
Property 
Component 

Correctly marks all 6 
properties for both 
concepts 

Correctly marks 4-5 
properties for both 
concepts 

Correctly marks 2-3 
properties for both 
concepts 

Correctly 
marks 0-1 
properties for 
both concepts 

2. Shape 
Recognition 

Concept Image - 
Visual 
Component 

Correctly classifies all 
4 shapes into 
categories 

Correctly classifies 3 
shapes into 
categories 

Correctly classifies 1-
2 shapes into 
categories 

Cannot 
correctly 
classify any 
shape 

3. Relationship 
Establishment 

Mathematical 
Connection 

Correct answer to 
both questions + 
complete 
mathematical 
justification 

Correct answer to 
both questions + 
partial justification or 
1 question correct + 
complete 
justification 

Only 
correct/incorrect 
marking, 
no/insufficient 
justification 

Wrong 
answers or 
blank 

4. 
Transformation 

Mathematical 
Connection 

Conceptual 
transformation logic 
+ detailed 
explanation 

Basic approach + 
partial explanation 

General change 
statement, no 
systematic 
explanation 

Cannot 
transform or 
completely 
wrong 

The implementation process of the research lasted a total of 4 weeks (12 class hours). The total process, including pre- 

and post-implementation data collection phases, was planned as 6 weeks. Ethical approval for this study was granted 

by the Non-Interventional Clinical Research Ethics Committee of Burdur Mehmet Akif Ersoy University prior to data 

collection (Ethics Approval Code: GO 2025/1335). Details of the implementation process are presented in Table 4. The 

implementation plan was carried out in line with the learning outcomes “Explains the basic elements and properties of 

quadrilaterals and solves problems. Explains the angle, side, diagonal, and area properties of special quadrilaterals and 

solves problems.” 
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Table 4 

Implementation Process and Time Schedule 

Week Topic 5E Phase CRA Level Main Activities Duration 

1 Pretest - - 
Application of parallelogram and rhombus concept 
assessment tool 

1 class 
hour 

2-3 Parallelogram 
Engage + 
Explore 

Concrete → 
Representational 

Discovery with manipulatives, paper folding, 
measurement studies 

6 class 
hours 

3 Parallelogram 
Explain + 
Elaborate 

Representational → 
Abstract 

Formal definition, problem solving, proof activities  

4-5 Rhombus 
Engage + 
Explore 

Concrete → 
Representational 

Modeling, diagonal discovery, symmetry studies 
6 class 
hours 

5 Rhombus 
Explain + 
Elaborate 

Representational → 
Abstract 

Property systematization, connection  

6 Posttest Evaluate Abstract 
Application of parallelogram and rhombus concept 
assessment tool 

1 class 
hour 

In the experimental group, lesson plans based on the systematic integration of the 5E Instructional Model (Bybee et al., 

2006) and the CRA approach (Bruner, 1966) were implemented. As seen in Table 5, each 5E phase was paired with 

specific CRA levels in this integration process. 

Table 5 

5E-CRA Integration 

5E Phase CRA Level Materials Used Main Activities 

Engage Concrete Straws, geoboard, daily life objects 
Creating quadrilaterals with manipulatives, 
daily life examples 

Explore Concrete → Representational 
Manipulatives, paper folding, 
measurement tools 

Quadrilateral construction, property 
discovery, drawings 

Explain Representational 
Systematic drawings, schemas, concept 
maps 

Formal definition construction, property 
systematization 

Elaborate Representational → Abstract 
Problem papers, proof schemas, real-life 
examples 

Problem solving, proof activities, application 

Evaluate Abstract Assessment questions, project materials Individual assessment, conceptual test 

To clarify the implementation differences between experimental and control groups, the basic characteristics of the 

instructional processes carried out in both groups are presented comparatively in Table 6. 

Table 6 

Experimental and Control Group Implementation Comparison 

Dimension Experimental Group Control Group 

Approach Student-centered, discovery-focused Teacher-centered, lecture-focused 

Materials Manipulatives, paper folding, discovery sheets Textbook, board, traditional tools 

Activities Concrete discovery → representational → abstract transition Definition explanation → example → practice 

Student Role Active explorer, problem solver Passive listener, implementer 

As seen in Table 6, while the instruction based on 5E and CRA integration in the experimental group supported students’ 

active participation and developing conceptual understanding starting from concrete experiences, the traditional 

approach in the control group followed a process focused on direct information transmission and repetitive practice. 

That is, in this process, traditional instructional approach based on the current curriculum was applied in the control 
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group. The same time period (12 class hours) was allocated to teaching parallelogram and rhombus concepts in the 

control group as in the experimental group. 

2.3. Data Analysis 

The study adopted a quantitative data analysis approach, utilizing descriptive statistics including means, standard 

deviations, ranges, and frequencies, as well as inferential statistics comprising paired-samples t-tests, independent-

samples t-tests, and Chi-square tests. Prior to analyses, necessary assumptions for the applicability of parametric tests 

were tested. 

Different analysis strategies were adopted for the three hypotheses of the research. For parallelogram and rhombus 

concept image hypotheses, pretest-posttest comparisons were made using scores from questions 1 and 2 respectively. 

For the mathematical connection hypothesis, scores from questions 3 and 4 were combined and analyzed. Cohen’s d 

value was calculated for each hypothesis to determine effect size. Small effect 0.20≤d<0.50, medium effect 0.50≤d<0.80, 

and large effect d≥0.80 were interpreted according to Cohen’s (1988) criteria. Data analysis according to hypotheses is 

presented in Table 7. 

Table 7 

Data Analysis According to RQ/Hypotheses 

RQ/Hypothesis 
Dependent 
Variable 

Data Source Statistical Analysis 

RQ1/H₁ 
Parallelogram 
Concept Image 

Question 1 parallelogram column (property 
identification, 0-3 points) Question 2 parallelogram 
category (shape recognition, 0-3 points) 

Summary statistics, Within-group t-
test, Between-groups t-test, Effect 
size calculation 

RQ1/H₂ 
Rhombus Concept 
Image 

Question 1 rhombus column (property identification, 0-3 
points) Question 2 rhombus category (shape recognition, 
0-3 points) 

Summary statistics, Within-group t-
test, Between-groups t-test, Effect 
size calculation 

RQ2/H₃ 
Mathematical 
Connection Skills 

Question 3 conceptual connection (relationship 
establishment, 0-3 points) Question 4 transformation 
process (transformation, 0-3 points) 

Summary statistics, Within-group t-
test, Between-groups t-test, Effect 
size calculation 

To determine the pre-implementation equivalence of experimental and control groups, independent samples t-test was 

applied on pretest scores. The results presented in Table 8 show that there are no statistically significant differences 

between groups in terms of all measured variables (p > 0.05 for all comparisons). Specifically, the groups showed 

equivalent performance on parallelogram concept image (t(59) = 0.18, p = 0.857), rhombus concept image (t(59) = 0.09, 

p = 0.925), relationship establishment skills (t(59) = 0.15, p = 0.878), and transformation abilities (t(59) = 0.11, p = 0.912). 

Table 8 

Group Equivalence Test Results 

Variable 
Experimental Group Control Group 

t df p 
M SD n M SD n 

Parallelogram Concept Image 0.65 0.49 31 0.67 0.48 30 0.18 59 0.857 

Rhombus Concept Image 0.68 0.48 31 0.67 0.48 30 0.09 59 0.925 

Relationship Establishment 0.52 0.51 31 0.50 0.51 30 0.15 59 0.878 

Transformation 0.61 0.50 31 0.60 0.50 30 0.11 59 0.912 

Additionally, Chi-square analysis revealed no significant differences in gender distribution between groups (χ² = 0.037, 

p = 0.847), with the experimental group consisting of 14 males and 17 females, and the control group consisting of 13 

males and 17 females. These results confirm that the two groups were statistically equivalent at baseline, ensuring that 
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any post-intervention differences can be attributed to the experimental manipulation rather than pre-existing group 

differences. This equivalence provides a solid foundation for valid comparison of treatment effects between the 

integrated 5E-CRA approach and traditional instruction. 

Whether difference scores showed normal distribution for the applicability of parametric tests was examined with 

Shapiro-Wilk test. For parallelogram concept image difference scores, W = 0.961 (p = 0.312) in the experimental group, 

W = 0.958 (p = 0.278) in the control group; for rhombus concept image difference scores, W = 0.955 (p = 0.218) in the 

experimental group, W = 0.952 (p = 0.191) in the control group; for mathematical connection difference scores, W = 

0.967 (p = 0.425) in the experimental group, W = 0.964 (p = 0.391) in the control group were obtained. All p > 0.05 values 

show that the normality assumption is satisfied. 

For analysis of development in students’ geometric thinking levels, rubric scores were converted to Van Hiele levels (0 

points=Below Level 0, 1 point=Level 0, 2 points=Level 1, 3 points=Level 2). Level transitions were analyzed with 

frequency tables and cross-tabulations. SPSS 28.0 program was used in data analysis. 

2.4. Validity and Reliability of the Research 

Validity and reliability studies of the Parallelogram and Rhombus Concept Assessment Tool were conducted. Content 

validity was examined within the scope of validity study, and internal consistency and inter-rater reliability were 

analyzed within the scope of reliability studies. Validity and reliability results are presented in Table 9. 

Table 9. 

Tool Validity and Reliability Results 

Psychometric Property Method/Dimension Result Value Criterion 

Content Validity 3 expert opinions Satisfied All questions - 

Internal Consistency Total tool High α = 0.84 α ≥ 0.70 

Internal Consistency Concept image dimension High α = 0.78 α ≥ 0.70 

Internal Consistency Connection dimension High α = 0.81 α ≥ 0.70 

Inter-rater Question 3 Very high r = 0.89 r ≥ 0.80 

Inter-rater Question 4 Very high r = 0.92 r ≥ 0.80 

For content validity, opinions were obtained from two faculty members with doctoral degrees in mathematics education 

and one mathematics teacher. Experts were asked to evaluate the level of representation of each question for the 

conceptual dimensions intended to be measured, and content validity was provided for all questions. As seen in Table 

9, within the scope of reliability analysis, Cronbach’s Alpha coefficient for the entire tool was calculated as α = 0.84. This 

value meets the α ≥ 0.70 criterion suggested by Nunnally (1978). For sub-dimensions, concept image dimension 

(questions 1 and 2) was found as α = 0.78, mathematical connection dimension (questions 3 and 4) as α = 0.81. For 

open-ended questions, agreement between two independent raters was calculated as r = 0.89 for question 3, r = 0.92 

for question 4, and showed very high level agreement according to Cohen (1988) criteria. 

3. Results 

The findings obtained from the research are presented to answer the two research questions through testing three 

hypotheses. For RQ1 (concept image development), findings from H₁ and H₂ are presented. For RQ2 (mathematical 

connection skills), findings from H₃ are presented. For each hypothesis, first within-group development (pretest-posttest 

comparison) then between-group comparison results are given. 
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3.1. Findings for RQ1: Parallelogram Concept Image Development 

Paired samples t-test was applied to test the hypothesis “The parallelogram concept image scores of the experimental 

group that received the integration of the 5E Instructional Model and CRA approach are significantly higher than those 

of the control group that received traditional instruction.” Descriptive statistics and within-group comparison results for 

the H₁ hypothesis are presented in Table 10. 

Table 10 

Descriptive Statistics and Within-Group Comparison for H₁ Hypothesis 

Group Test n M SD Min Max t df p Cohen’s d 

Experimental Pretest 31 0.65 0.49 0 1 14.20 30 <0.001 2.55 
 Posttest 31 2.55 0.51 2 3     

Control Pretest 30 0.67 0.48 0 1 6.60 29 <0.001 1.20 
 Posttest 30 1.27 0.45 1 2     

As seen in Table 10, a statistically significant difference was found between pretest scores (M = 0.65, SD = 0.49) and 

posttest scores (M = 2.55, SD = 0.51) in the experimental group [t(30) = 14.20, p < 0.001]. Cohen’s d = 2.55 value indicates 

very large effect size. In the control group, a significant difference was detected between pretest scores (M = 0.67, SD 

= 0.48) and posttest scores (M = 1.27, SD = 0.45) [t(29) = 6.60, p < 0.001]. This group’s Cohen’s d = 1.20 value indicates 

large effect size. 

Between-group comparison results for the H₁ hypothesis are presented in Table 11. 

Table 11 

Between-Group Comparison for H₁ Hypothesis 

Group n M SD Min Max t df p Cohen’s d 

Experimental 31 2.55 0.51 2 3 10.85 59 <0.001 2.78 

Control 30 1.27 0.45 1 2     

As seen in Table 11, a statistically significant difference was found between experimental group posttest scores (M = 

2.55, SD = 0.51) and control group posttest scores (M = 1.27, SD = 0.45) in favor of the experimental group [t(59) = 10.85, 

p < 0.001]. Cohen’s d = 2.78 value indicates very large effect size and reveals that the H₁ hypothesis is accepted. 

3.2. Findings for RQ1: Rhombus Concept Image Development 

Descriptive statistics and within-group comparison results for the analyses conducted to test the hypothesis “The 

rhombus concept image scores of the experimental group that received the integration of the 5E Instructional Model 

and CRA approach are significantly higher than those of the control group that received traditional instruction” are 

presented in Table 12. 
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Table 12 

Descriptive Statistics and Within-Group Comparison for H₂ Hypothesis 

Group Test n M SD Min Max t df p Cohen’s d 

Experimental Pretest 31 0.68 0.48 0 1 13.89 30 <0.001 2.49 

 Posttest 31 2.52 0.51 2 3     

Control Pretest 30 0.67 0.48 0 1 7.54 29 <0.001 1.38 

 Posttest 30 1.33 0.48 1 2     

As seen in Table 12, a statistically significant difference was found between pretest scores (M = 0.68, SD = 0.48) and 

posttest scores (M = 2.52, SD = 0.51) in the experimental group [t(30) = 13.89, p < 0.001]. Cohen’s d = 2.49 value indicates 

very large effect size. A significant difference was detected between pretest scores (M = 0.67, SD = 0.48) and posttest 

scores (M = 1.33, SD = 0.48) in the control group [t(29) = 7.54, p < 0.001]. This group’s Cohen’s d = 1.38 value indicates 

large effect size. 

Between-group comparison results for the H₂ hypothesis are presented in Table 13. 

Table 13 

Between-Group Comparison for H₂ Hypothesis 

Group n M SD Min Max t df p Cohen’s d 

Experimental 31 2.52 0.51 2 3 9.47 59 <0.001 2.42 

Control 30 1.33 0.48 1 2     

As seen in Table 13, a statistically significant difference was found between experimental group posttest scores (M = 

2.52, SD = 0.51) and control group posttest scores (M = 1.33, SD = 0.48) in favor of the experimental group [t(59) = 9.47, 

p < 0.001]. Cohen’s d = 2.42 value indicates very large effect size and reveals that the H₂ hypothesis is accepted. 

3.3. Findings for RQ2: Mathematical Connection Skills Development 

Analyses were conducted on total scores of the third and fourth questions to test the hypothesis “The mathematical 

connection skill scores of the experimental group that received the integration of the 5E Instructional Model and CRA 

approach are significantly higher than those of the control group that received traditional instruction.” Descriptive 

statistics and within-group comparison results for the H₃ hypothesis are presented in Table 14. 

Table 14 

Descriptive Statistics and Within-Group Comparison for H₃ Hypothesis 

Group Test n M SD Min Max t df p Cohen’s d 

Experimental Pretest 31 1.13 0.81 0 2 18.75 30 <0.001 3.37 

 Posttest 31 4.84 0.90 4 6     

Control Pretest 30 1.10 0.80 0 2 8.94 29 <0.001 1.63 

 Posttest 30 2.73 0.87 2 4     

As seen in Table 14, a statistically significant difference was found between pretest scores (M = 1.13, SD = 0.81) and 

posttest scores (M = 4.84, SD = 0.90) in the experimental group [t(30) = 18.75, p < 0.001]. Cohen’s d = 3.37 value indicates 

very large effect size and the highest effect size among the three hypotheses. A significant difference was detected 
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between pretest scores (M = 1.10, SD = 0.80) and posttest scores (M = 2.73, SD = 0.87) in the control group [t(29) = 8.94, 

p < 0.001]. This group’s Cohen’s d = 1.63 value indicates large effect size. 

Between-group comparison results for the H₃ hypothesis are presented in Table 15. 

Table 15 

Between-Group Comparison for H₃ Hypothesis 

Group n M SD Min Max t df p Cohen’s d 

Experimental 31 4.84 0.90 4 6 9.21 59 <0.001 2.36 

Control 30 2.73 0.87 2 4     

As seen in Table 15, a statistically significant difference was found between experimental group posttest scores (M = 

4.84, SD = 0.90) and control group posttest scores (M = 2.73, SD = 0.87) in favor of the experimental group [t(59) = 9.21, 

p < 0.001]. Cohen’s d = 2.36 value indicates very large effect size and reveals that the H₃ hypothesis is accepted. 

When effect sizes obtained in all hypotheses of the research are examined, very large effects (Cohen’s d > 2.0) were 

obtained in the experimental group, and large effects (Cohen’s d > 1.0) were obtained in the control group. Between-

group comparisons reveal very large effect sizes in favor of the experimental group. These results show that all H₁, H₂, 

and H₃ hypotheses are accepted and that the integration of the 5E Instructional Model and CRA approach is effective in 

developing both parallelogram and rhombus concept images and mathematical connection skills between these 

concepts. 

4. Discussion 

The findings of this research provide clear answers to both research questions posed in this study. Regarding RQ1 (the 

extent to which the integrated 5E-CRA approach affects students’ concept images), the results demonstrate significant 

improvements in both parallelogram and rhombus concept image development. For RQ2 (how the approach influences 

mathematical connection skills), substantial enhancement in students’ abilities to establish relationships between 

geometric concepts was observed. 

In this research, the effect of the integration of the 5E Instructional Model and CRA approach on 10th-grade students’ 

parallelogram and rhombus concept images and mathematical connection skills was examined. The findings reveal that 

the integrated approach exhibits superior performance compared to traditional methods in geometric concept 

instruction. These results were evaluated in light of the four fundamental theoretical frameworks on which the research 

is based. 

4.1. Parallelogram Concept Image Development 

The improvement observed in parallelogram concept image development is important from the perspective of Tall and 

Vinner’s (1981) Concept Image theory. This development shows that the integrated approach creates more consistent 

cognitive structures compatible with concept definition related to parallelogram concept in students’ minds. The 

development in students’ abilities to recognize parallelogram properties and apply these properties in different contexts 

reveals the effectiveness of the approach. 

This development is also consistent with similar studies in international literature. The comprehensive meta-analysis 

study conducted by Polanin et al. (2024) revealed that the 5E model is significantly more effective than traditional 
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instruction in STEM fields including mathematics and exhibits large effect sizes. Lin et al. (2014) also state that the 

positive effects of the 5E model in science learning contribute to students’ deep understanding of concepts and enrich 

instructional processes. 

When evaluated in terms of Van Hiele levels, the development in parallelogram concept image shows that it supports 

students’ transitions from visual level (Level 1) to analysis level (Level 2). The process of discovering parallelogram 

properties with manipulatives in the concrete stage of the CRA approach, representing these properties with drawings 

in the representational stage, and expressing them with mathematical definitions in the abstract stage exhibits perfect 

harmony with Van Hiele’s (1986) hierarchical thinking development theory. 

The prototype image problem commonly seen in traditional instructional approaches (Hershkowitz, 1990; Vinner & 

Hershkowitz, 1980) was minimized in the integrated approach through systematic transition from concrete experiences 

to abstract thinking. Students became able to grasp parallelogram as a quadrilateral with opposite sides parallel rather 

than perceiving it only as a “slanted quadrilateral.” 

However, international literature also highlights important challenges associated with the CRA approach 

implementation. Research indicates that students do not always benefit equally from manipulative use, with some 

studies reporting that students may focus on the physical properties of manipulatives rather than the underlying 

mathematical concepts (Flores & Hinton, 2022). Additionally, one study found that although the CRA approach showed 

significant knowledge gains, most high school students did not believe it supported their learning, suggesting potential 

resistance to manipulative use in secondary mathematics classrooms (Prosser & Bismarck, 2023). Furthermore, effective 

CRA implementation requires substantial teacher preparation time and ongoing professional development to ensure 

meaningful connections between concrete experiences and abstract mathematical concepts (Bouck et al., 2017). 

Overall, the findings demonstrate that CRA integration within the 5E framework provides a robust foundation for 

parallelogram concept development, though successful implementation requires careful attention to teacher 

preparation and student engagement strategies. 

4.2. Rhombus Concept Image Development 

The improvements observed in rhombus concept image development show that the integrated approach is effective 

not only in parallelogram concept but also in similar geometric structures. This result is particularly important in terms 

of concept image theory because rhombus concept is one of the concepts students frequently confuse and develop 

erroneous images about (Monaghan, 2000). 

The success of the integrated approach stems from students experiencing rhombus properties with manipulatives in 

the exploration phase of the 5E model and understanding these properties at different representation levels through 

the systematic transition of the CRA approach. The meta-analysis study conducted by Ebner et al. (2024) revealed that 

the CRA approach consistently exhibits large positive effects in mathematics instruction. In this study, it was stated that 

the approach’s providing systematic transition from manipulatives to abstract concepts particularly supports conceptual 

understanding. 

The contribution of multiple representations emphasized by Flores and Hinton (2022) to conceptual understanding was 

clearly seen in rhombus concept in our research as well. Students discovered rhombus properties with manipulatives in 
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the concrete stage, represented these properties with drawings in the representational stage, and were able to express 

them with mathematical definitions in the abstract stage. 

From the Van Hiele levels perspective, the development in rhombus concept image shows that it improves students’ 

abilities to identify and analyze shape properties at the analysis level (Level 2). At this level, students became able to 

understand the definition of rhombus as “a quadrilateral with all sides equal” and compare this property with other 

quadrilaterals. 

Despite these positive outcomes, the 5E instructional model presents several implementation challenges that warrant 

consideration. Research has documented that the Engage and Explore phases, while pedagogically valuable, can be 

particularly time-consuming and may require extensive curriculum restructuring (Polanin et al., 2024). Teachers have 

reported initial student reluctance to engage in active learning activities, particularly when students are accustomed to 

more traditional, teacher-centered instructional approaches (Bybee, 2015). Moreover, the effectiveness of the 5E model 

shows considerable variation across different settings and implementations, suggesting that successful application 

requires careful adaptation to local contexts and student populations (Polanin et al., 2024). The model’s inquiry-based 

nature also demands significant changes in teacher practice, potentially creating challenges for educators without 

adequate training or institutional support. 

In summary, while the 5E instructional model proved highly effective for rhombus concept development in this study, 

educators must consider implementation challenges and provide adequate support systems to maximize its potential 

benefits. 

4.3. Mathematical Connection Skills Development 

The development observed in mathematical connection skills reveals that the integrated approach not only helps 

students learn individual concepts but also develops their abilities to establish relationships among concepts. This result 

reflects the relational level (Level 3) characteristics of Van Hiele theory. At this level, students can understand 

relationships among shapes and make hierarchical classifications. 

The integrated approach’s support for this skill stems from the 5E model’s application of concepts in different contexts 

in the elaboration phase and the CRA approach’s establishment of connections among multiple representations. 

Particularly, students showed improvement in understanding the hierarchical relationship between parallelogram and 

rhombus (every rhombus is also a parallelogram). 

This situation becomes even more meaningful in light of Fujita and Jones’s (2007) finding that hierarchical classification 

of quadrilaterals is a challenging area for students. Recent research continues to emphasize that intentional instruction 

and systematic progression through geometric thinking levels are essential for effective geometry education (Polanin 

et al., 2024). 

The development in mathematical connection skills is also consistent with the goals of developing conceptual 

understanding and relationship establishment skills emphasized by the National Council of Teachers of Mathematics 

(NCTM, 2000). This situation shows that the integrated approach is consistent with international mathematics education 

standards. 

While the integration of 5E and CRA approaches demonstrated substantial benefits in this study, the combination of 

these two instructional frameworks introduces additional complexity that may limit scalability. The systematic 
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progression through both 5E phases and CRA stages requires considerable instructional time, potentially reducing 

curriculum coverage in traditional educational settings with rigid pacing guides (Ebner et al., 2024). Moreover, the 

integrated approach demands teachers who are proficient in both models, which may necessitate extensive 

professional development and ongoing support. Research also suggests that the effectiveness of such integrated 

approaches can vary significantly based on teacher expertise, student characteristics, and available resources (Flores et 

al., 2024). These practical constraints highlight the need for careful consideration of implementation logistics when 

scaling up such interventions beyond controlled research environments. 

These findings collectively suggest that the integrated 5E-CRA approach offers significant promise for developing 

mathematical connection skills, but its successful adoption requires strategic planning to address resource demands 

and implementation complexity. 

4.4. Research Limitations 

The developments observed in all dimensions in the research show that 5E-CRA integration offers an effective 

alternative in geometry instruction. These results reveal the robustness of the approach’s theoretical foundations and 

its effectiveness in practical application. It also shows that the CRA approach (Leong et al., 2015), which is one of the 

fundamental factors of Singapore’s success in mathematics education, can be integrated with different instructional 

models and contribute to improving geometry instruction on a global scale. The 5E model’s consistent positive effects 

in various educational environments emphasized by Polanin et al. (2024) also supports the potential of this integration. 

However, this research also has some limitations. First, the study is limited to a specific school and grade level, and 

similar studies are needed in different school types and grade levels for generalizability of findings. Additionally, the 

implementation period is relatively short, and follow-up studies are needed to evaluate long-term effects. The research 

was conducted in a quantitative context, and there are no qualitative findings to determine experiences related to the 

implementation process. However, determining concept images was limited to recognizing concepts and knowing their 

properties, while connection skills were limited to transformation and establishing inter-conceptual connections. 

5. Conclusion and Recommendations 

This research addressed two main research questions regarding the effect of integrating the 5E Instructional Model and 

CRA approach on 10th-grade students’ geometric concept images and mathematical connection skills. The research 

results reveal that the integrated approach exhibits superior performance compared to traditional methods in 

geometric concept instruction. 

In terms of parallelogram concept image, 5E and CRA integration significantly improved students’ conceptual 

understanding [t(59)=10.85, p<0.001, d=2.78]. The instructional process starting with concrete materials and 

transitioning to abstract thinking strongly supported students’ abilities to understand and construct parallelogram 

concept in their minds. The very large effect size obtained shows that the practical significance of the implementation 

is quite high. 

Similarly, the integrated approach provided significant superiority in rhombus concept as well [t(59)=9.47, p<0.001, 

d=2.42]. This result reveals that 5E and CRA integration is effective not only in a single concept but also in similar 

geometric structures. Students were able to better grasp rhombus properties through concrete experiences and 

strengthen their visual images. 
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In the context of mathematical connection skills, students showed remarkable development in establishing inter-

conceptual connections and understanding transformation processes [t(59)=9.21, p<0.001, d=2.36]. This finding shows 

that the integrated approach not only helps students learn individual concepts but also supports higher-order 

mathematical thinking skills. 

When effect sizes are compared, it is seen that the implementation had the greatest effect on parallelogram concept 

image development (d=2.78), followed by rhombus concept image (d=2.42) and mathematical connection (d=2.36) 

skills. This situation reveals that 5E and CRA integration is particularly strong in developing basic geometric concept 

images, while showing relatively less but still very large effects in connection skills. This difference may stem from 

concept image development being more directly supported by concrete experiences, while connection skills require 

more complex cognitive processes. 

When evaluated in terms of Van Hiele geometric thinking levels, it was seen that students in the experimental group 

reached higher levels after implementation. Particularly, significant differences in favor of the experimental group were 

detected in transitions from visualization level to analysis level and from analysis level to abstraction level. This result 

shows that there is strong harmony between the concrete-representational-abstract transition process of the CRA 

approach and Van Hiele’s hierarchical thinking levels. 

Various level recommendations for implementation can be presented in line with research results. In the instructional 

environment, it is recommended that mathematics teachers use the 5E Instructional Model integrated with the CRA 

approach in teaching geometry topics. Particularly, active use of concrete materials such as straws, geoboards, and 

paper folding and systematic application of concrete-representational-abstract stages of the CRA approach can be 

ensured. Regular inclusion of activities for discovering relationships among geometric concepts in the classroom 

environment is important. At the institutional level, school administrators can organize in-service training programs for 

mathematics teachers on the integration of the 5E Instructional Model and CRA approach, provide support for supplying 

concrete materials to be used in geometry instruction, and arrange classrooms suitable for group work and activity-

based learning. At the system level, education policymakers can ensure that clear guidelines and examples for using 

integrated approaches are included in mathematics curricula, include these topics in teacher education programs, and 

develop textbooks and teacher guides that support the approach. 

These implementation recommendations should be considered within the context and limitations of this study. The 

findings are based on a specific educational setting (10th-grade students in a Turkish public high school), particular 

geometric concepts (parallelograms and rhombuses), and a relatively short implementation period (4 weeks). 

Generalization of these results and recommendations to different grade levels, mathematical topics, educational 

systems, or cultural contexts should be approached with caution. Educators and policymakers are encouraged to adapt 

these recommendations to their local contexts, considering factors such as student characteristics, available resources, 

curriculum requirements, and institutional constraints before implementation. 

Various recommendations can be developed for future research in light of the research findings. In terms of scope 

expansion, repetition of this research in different geometry topics (triangles, circles, solids) and different grade levels, 

conducting follow-up studies to determine long-term effects of implementation, and adding dimensions beyond 

recognizing concepts and knowing their properties for determining concept images, and beyond transformation and 

establishing inter-conceptual connections for connection skills can be recommended. In terms of methodological 
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diversity, conducting mixed-method research where qualitative data are collected along with quantitative findings, 

conducting action research aimed at improving teachers’ classroom practices, and conducting research examining 

teachers’ views and experiences toward this approach can be beneficial. Within the scope of theoretical expansion, 

investigating 5E and CRA integration in combination with different learning theories, implementing this approach in 

technology-supported instructional environments, and examining its effects on students with special needs are 

recommended. 
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