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ABSTRACT. The limited size of publicly available sparse matrix datasets creates a significant chal-
lenge for benchmarking, testing, and validating algorithms in scientific computing, artificial intelli-
gence and other data-intensive applications. Existing approaches such as random matrix generators
or general data augmentation methods often fail to produce structurally realistic matrices. To ad-
dress this gap, we present MatGen which a tool for generating realistic variations of a given sparse
matrix using signal processing and image processing techniques. MatGen takes a real sparse matrix
as input and produces structurally consistent matrices at different sizes, introducing controlled vari-
ation while preserving key sparsity patterns. We evaluate the effectiveness of MatGen by analyzing
structural features and visual similarities between original and generated matrices. Experimental
results show that MatGen can produce realistic, scalable sparse matrices suitable for a wide range of
applications including benchmarking computational methods, and sparse data techniques.

1. INTRODUCTION

Machine learning (ML) and deep learning (DL) models need wide range of data to capture complex
patterns. This need is more important in sparse data settings since missing values and weak relations
reduce model performance more [1]]. Sparse matrices arise in many domains, such as recommendation
systems [2], natural language processing (NLP), and scientific simulations. In these domains, the distri-
bution of nonzero values often reflects important relationships or physical structures. However, only a
few real sparse datasets are publicly available [3,4]. This makes it difficult to train and test ML or DL
models that use sparse data as input. Therefore, models may perform poorly when trained on limited data
that does not reflect real structures.

In the literature, to solve this issue researchers apply data augmentation, transfer learning, or matrix
completion techniques. Synthetic and random data generation is also used to enlarge datasets and im-
prove model robustness. However, these methods often generate matrices that do not reflect realistic or
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structured patterns. Despite these efforts, creating new real sparse matrices from scratch can be chal-
lenging due to the need for domain-specific knowledge, simulation software, and complex preprocessing
workflows. These requirements make large-scale generation infeasible for many users. Furthermore,
matrices produced from physical simulations are usually computationally expensive to obtain and are not
always publicly available.

To provide a more effective solution, we propose MatGenﬂ which is a tool that generates realistic sparse
matrices from real examples. MatGen can keep important structural properties present in real-world data
and also allows controlled variation and size flexibility. It uses image processing and signal processing
techniques to capture sparsity and structure effectively. Controlled randomness adds diversity without
losing important structural features.

In the experiments, we compare generated matrices with their original counterparts. We evaluate sim-
ilarity using density, bandwidth, profile, row and column-wise distribution statistics, and other sparsity
related features. Our results show that MatGen produces realistic and structurally consistent sparse ma-
trices. The generated matrices can preserve key structural characteristics while allowing variation in size
and sparsity. We also analyze visual patterns to measure how well the methods maintain the shape and
distribution of nonzero entries.

The main scientific contributions of this work are threefold. First, we design and implement a new
framework called MatGen, which can generate realistic sparse matrices by transforming existing matri-
ces. Second, we adapt a variety of scaling techniques originally developed for image and signal process-
ing. These adaptations allow the techniques to work effectively with sparse matrices while preserving
key structural features. Third, we conduct detailed experiments to evaluate the quality of the generated
matrices. We compare them using visual patterns and structural features across different matrix sizes
and transformation types. This work is especially important for scientific computing, numerical simu-
lation, and machine learning. In these areas, realistic sparse matrices may be required for tasks such as
benchmarking, evaluating linear solvers, and developing algorithms that use matrix structure.

2. SPARSE MATRICES: STRUCTURE AND APPLICATIONS

Sparse matrices appear in many areas like science, engineering, Al, and medical imaging. Using
sparse data structures for them, we can save memory and speed up computation. This is useful in large
problems such as optimization and solving linear systems. Such problems often come from simulations,
data models, or high-performance computing application domains.

The structural properties of sparse matrices can vary considerably across different application domains.
For instance, matrices resulting from PDE-based physical simulations often show structured sparsity,
such as banded or block-diagonal patterns. On the other hand, those from network analyses, chemical
simulation or data-driven models may show irregular or clustered patterns. Figure |1| shows the sparsity
patterns from a variety of applications, demonstrating the diversity in matrix structure.

Figure [l Alshows a classic example which is a banded sparse matrix that results from the discretization
of the 2D Poisson equation using finite differences. Other figures show real-world sparse matrices from

1https:// github.com/AYBU-ParLab/MatGen
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FIGURE 1. Comparison of different sparsity patterns.

various domains. These include chemical process simulation (Figure [IB]), circuit simulation (Figures[IC|
and [ID), computational fluid dynamics (Figure[TE])), an economic model (Figure[IF), and electrophoresis
(Figures [IG] and [TH). Understanding and utilizing the properties of these various matrices are important
for designing efficient algorithms for tasks such as sparse matrix-vector multiplication, iterative solvers,
preconditioning techniques and Al or ML applications involving sparse data.

Within specific scientific domains and problem types, sparse matrices often share consistent structural
characteristics. These similarities typically arise from common discretization methods, geometric con-
straints, or data organization. For instance, matrices resulting from finite element discretizations of PDEs
usually have structured sparsity related to the mesh. On the other hand, matrices from social networks or
recommendation systems often reflect local interactions and exhibit irregular patterns.

Figure[I]also highlights the structural similarities that often occur within the same application domain.
For instance, the matrices from circuit simulation (Figures [IC| and [ID) and electrophoresis problems
(Figures [IG] and show closely related sparsity patterns. These examples show that some structural
properties often repeat in matrices from similar application areas.

Sparse matrices also play an important role in machine learning and deep learning. In recommender
systems [2], user-item interaction matrices are typically sparse because users engage with only a small
fraction of the available items. In natural language processing (NLP) [5]], term-document matrices and
word embeddings are sparse due to the limited co-occurrence of words in large corpora. These ma-
trices are commonly stored using compressed formats and often processed using matrix factorization
techniques such as singular value decomposition (SVD), non-negative matrix factorization (NMF) or
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principal component analysis (PCA). In seismic imaging [|6] and other scientific fields [[7-9]], sparse ma-
trix structures derived from similar models are also exploited for compression, memory usage economy,
and computational acceleration.

In deep learning, sparsity is utilized to improve performance through pruning [10], leading to sparse
weight matrices that reduce memory and computation without compromising accuracy. Graph neural
networks (GNNs) [[11./12] operate directly on sparse adjacency matrices to capture complex relationships
in structured data, such as social networks or molecular graphs.

3. RELATED WORK

Although sparse matrices are widely used in machine learning, statistics, and data science, there is
limited access to real-world examples. Several resources and tools have been developed to support the
study and application of sparse data. Among the most widely used is the SuiteSparse Matrix Collection
(formerly the UF Sparse Matrix Collection) 3], which provides access to a broad set of sparse matrices
from real applications, including structural analysis, circuit simulation, and optimization. While this
collection is essential for benchmarking, it consists of a fixed set of problem-specific matrices and does
not support the generation of new matrices with user-defined structural properties or varying dimensions.

Due to the limited availability of real-world matrices, researchers often rely on synthetic data genera-
tors. Standard tools such as scipy.sparse.random in Python and the sprand function in MATLAB allow
users to create sparse matrices with a specified density and size. However, the sparsity patterns gener-
ated by these tools are typically unstructured and uniformly random. These patterns are often unrealistic
and fail to capture the complex structures and dependencies observed in matrices derived from physical
simulations or real-world data sources.

In some application-specific domains, matrix generation is guided by graph models. The R-MAT
model [13]] and Stochastic Block Models [14] are widely used to generate synthetic adjacency matrices
with community structure. These models are useful for simulating social and biological networks, but
they are not intended for general sparse matrix generation, especially where solver-relevant properties
are important.

Alternative methods uses fixed templates or structural rules to generate matrices with specific patterns.
For instance, Farhadi et al. [15] propose an approach for creating structured sparse matrices based on a
predefined format. However, such methods are limited in flexibility and do not adapt to the structure of
existing data. They also lack mechanisms for learning or transferring patterns from real examples to new,
synthetic instances.

Recent developments in ML and AI highlight the importance of realistic sparse matrix generation. In
graph neural networks (GNNs), sparse matrix—matrix multiplication is a core operation, and its perfor-
mance heavily depends on the input sparsity structure [[16]]. Similarly, sparse attention mechanisms used
in transformer architectures rely on structured sparsity to reduce memory and computation costs [[17]].
These applications underscore the importance of developing tools capable of generating structured and
realistic sparse matrices.
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Despite recent developments in synthetic data generation, there is no general-purpose tool that cur-
rently exists for generating sparse matrices by capturing structural patterns from real-world matrices
across scientific or engineering domains. To address this gap, we propose MatGen, a tool that extracts
structural features from a real sparse matrix and uses signal processing and image processing techniques
to generate new matrices that preserve these features. This approach enables the creation of datasets with
realistic variability while maintaining the complexity and essential structural properties of the original
data.

4. PROPOSED METHODS

In this section, we present our methods in MatGen for generating realistic sparse matrices. The Mat-
Gen includes eight approaches which are based on Nearest Neighbor Interpolation, Bilinear Interpolation,
Image-based Rescaling, Lanczos Interpolation, Gaussian Pyramid, Discrete Fourier Transform, Discrete
Cosine Transform, and Wavelet Transform techniques. Among these, Gaussian Pyramid-based method
is designed specifically for downscaling, while the others support both upscaling and downscaling.

4.1. Nearest-Neighbor Interpolation. Nearest-neighbor interpolation [[18] is a well-established tech-
nique which is originally developed for applications in image processing and computer graphics. It as-
signs to each interpolated point the value of its closest known neighbor, resulting in a piecewise-constant
approximation. In MatGen, this method is adapted to scale sparse matrices while preserving their sparsity
structure. It maps the coordinates of existing nonzero entries to new positions.

For a coordinate (x,y), the interpolated value is:

f(x,y) = f(round(x/s), round(y/s)), (D

where s is the scaling factor. During upscaling, this method replicates nearby values that lead to in-
creasing the number of nonzeros while maintaining the original pattern. Since it avoids dense 2D matrix
conversion and preserves nonzero distribution well, it is especially useful in scenarios where structural
patterns is more important than maintaining exact sparsity.

4.2. Bilinear Interpolation. In MatGen, we adapt Bilinear interpolation to generate scaled sparse ma-
trices. Bilinear interpolation computes an interpolated value at a given continuous location (x,y) based
on the four nearest points in a grid. Formally, let (x,y) be a location within a rectangular region defined
by points (x;,y;), (Xi+1,¥;), (xi,¥j+1), and (xi+1,yj+1). The interpolated value f(x,y) is given by:

f,y) = fxi,y)(1—0o)(1—=B)+ f(xip1,y;) (1= B) + f(xi,yj11) (1 — ) B+ f(xiy1,y41)aB, (2)

where @ = x —x; and B = y —y;. Although Bilinear interpolation usually smooths values, in our sparse
setting it tends to produce smaller interpolated values near zero, which are then removed by filtering
operation. This results in output matrices that are often sparser than the original.
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4.3. Image-Based Rescaling. Sparse matrices can be naturally represented as images, where nonzero
entries becomes corresponding pixels in the image. Thus, image processing techniques become powerful
tools for capturing and generating structural patterns. However, since images are stored in 2D dense
format keeping them is very expensive for very large matrices. Therefore, they should be used carefully.

In Matgen, our Image-based rescaling method begins by converting the matrix into a visual heatmap,
where nonzero values are color-coded and zero entries appear as white. This heatmap is then converted
to a grayscale image, where pixel values corresponds to the magnitude of matrix entries. The image is
resized to the desired dimensions using a resampling method. In our setting, we use the box resampling
method [19]], which is efficient and suitable for preserving average intensity. Furthermorer, other interpo-
lation techniques such as bilinear or bicubic resampling can also be applied. After resizing, the image is
mapped back to a sparse matrix. This approach provides a simple and general mechanism to approximate
rescaled versions of a matrix.

4.4. Gaussian Pyramid Downscaling. The Gaussian pyramid method [20] is a classical image pro-
cessing technique that smooths and subsamples a matrix to produce lower-resolution versions. In our
approach, the Gaussian pyramid method is used to successively smooth and subsample the original ma-
trix. Given a sparse matrix A, the downscaled version Apeqyceq 15 Obtained by applying a Gaussian filter
G and subsampling:

Areduced (i) = Y Y A(2i+m,2j+n) G(m,n), (3)
m n
where G(m,n) is a Gaussian weighting kernel defined as:
1 m? + n?
G(m,n) = 7752 SXP (_W> : 4)

Gaussian pyramid downscaling preserves important structural features of the original sparse matrix. It
captures sparsity patterns at multiple levels of resolution. However, due to its fixed halving behavior, it
is only applicable when generating significantly smaller matrices, such as those with half the number of
rows and columns. This method does not support resizing to intermediate or closely related dimensions.

4.5. Lanczos Resampling. In MatGen, we propose a Lanczos resampling—based method [21]] for sparse
matrix scaling, adapted from classical interpolation techniques in signal processing. The method uses a
sinc-based kernel to compute new values based on nearby entries in the matrix. It selects values using
both direct mapping from the original nonzeros and random sampling to cover the whole matrix. To keep
the matrix sparse, only values above a certain threshold are kept.

Lanczos Resampling involves kernel-based resampling which could preserve structural details better
than simple interpolation methods. Given a continuous coordinate x, the Lanczos kernel L,(x) with
parameter a is defined as:

sinc(x) sinc (% if —a<x<a
La(x) _ ( ) (a) ’ ) (5)
0, otherwise,
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where the sinc function is:

. sin(7x)
= ) 6
sinc(x) p— (6)
The interpolated value f(x,y) using Lanczos kernels is computed as:
fOey) =YY f (i ) La(x—i)La(y = j)- ()
i

Lanczos scaling preserves sharp transitions and important sparsity patterns. This helps generate sparse
matrices similar to the original matrix in structure and properties.

4.6. Discrete Fourier Transform (DFT). The Discrete Fourier Transform (DFT) [22] is a classical tool
in signal processing that represents data as a sum of sinusoidal components. In our approache, we use
DFT method to resizes a sparse matrix by operating in the frequency domain. It uses the two-dimensional
DFT, which expresses the matrix as a sum of sinusoidal components. This formulation captures global
patterns in the matrix. This enables size changes through spectral manipulation.

To apply the method, the matrix is first transformed using the 2D Fast Fourier Transform (FFT). This
process produces a frequency-domain representation of the matrix, denoted by F(u,v), and is defined as
follows:

M—1N-1 e vy
Fuy)= Y ¥ fx,y)e 27 7)
x=0

y=0

In the frequency domain, the spectrum is shifted so that low-frequency components are centered. The
frequency matrix is then either cropped or zero-padded around the center to match the desired output
size. After adjusting the spectrum, the method applies the inverse FFT to return to the spatial domain and
reconstruct the scaled matrix. Finally, small values below a threshold are set to zero to recover a sparse
representation.

This method requires converting the matrix to a dense format and performing full FFT operations.
Similarly, the image-based rescaling method also relies on dense matrix representations for resizing.
Therefore, the cost of memory and computation can be high for both approaches if the sparse matrix is
large.

4.7. Discrete Cosine Transform (DCT). In MatGen, the Discrete Cosine Transform (DCT) [23]] method
is used to resize sparse matrices by operating in the frequency domain, like DFT method. While both
DFT and DCT operate in the frequency domain, DCT focuses on low-frequency components. This makes
it more suitable for capturing important structural information with fewer coefficients.

Given a matrix M € R"*" the two-dimensional DCT is defined as:

M,, = oc(u)oc(v)ni1 YEM,-,J- cos <M> cos <M) , (8)

=0 =0 2n 2n

64



where
J1/n, ifk=0,
o(k) =
(k) {\/Z/n, otherwise.

To resize a sparse matrix, first the DCT method is applied to the original matrix. The coefficient matrix
is resized by zero-padding or interpolation in the frequency domain, followed by the inverse DCT:

M; ;= ni‘j ni o(u)a(v)My,, cos (M> cos (M> . )

oy 2n 2n

Values below a threshold are dropped to maintain the sparsity of the upscaled matrix. This step ensures
that the result remains efficient in memory and computation while preserving important structure. The
full DCT has memory complexity O(n?) and computation complexity O(n*logn). When applied block-
wise, the memory complexity is reduced to O(nnz), and computation becomes O(n*logh), where b is
the block size.

4.8. Wavelet Transform. In MatGen, the Wavelet Transform method is used to rescale sparse matri-
ces using multi-level 2D wavelet transforms. The matrix is partitioned into blocks, and each block is
transformed to get low-frequency and high-frequency coefficients. These coefficients are resized and the
block is reconstructed using the inverse Wavelet transform.

In wavelet transform, the block is repeatedly split into approximation and horizontal, vertical, and
diagonal components. The number of decomposition levels controls how many times this splitting is
applied. Higher levels provide a finer multiscale representation of the data. This approach allows for
localized, resolution-aware approximation of the original matrix while preserving sparsity.

5. EXPERIMENTAL RESULTS AND DISCUSSION

We analyze the performance of the eight methods on a set of real-world sparse matrices from the
SuiteSparse matrix collection [3[]. Four versions of each original matrix are generated with varying size.
A double-size version, matrix with double the original size, is created to test how well each method han-
dles interpolation and structural consistency during upscaling. A half-size version is generated to assess
how effectively the methods preserve dominant patterns and sparsity during compression or downsizing.
Additionally, we generate two slightly modified versions of the matrices. One with size expanded by one
(N 4 1) and another reduced by one (N — 1) are included to examine the methods performance.

To measure how well each method keeps the structure of the matrix after resizing, we use cosine
similarity (I0) between the structural feature vectors of the original and scaled matrices. Given two
feature vectors u and v, the cosine similarity is calculated as:

cosine_similarity (u,v) = v (10)
el [ - 1]

where u - v is the dot product, and ||u|| and ||v|| are the Euclidean norms of the vectors. These feature
vectors describe various aspects of sparsity and shape of the matrices.
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In Table 3} provided in Appendix, the actual feature values that are used in similarity calculation are
presented for a sample matrix (cavity03) in our dataset. In similarity calculation we used normalized
values of the features with respect to size of matrices. The average distance to the diagonal, bandwidth,
and profile capture how entries are spread around the main diagonal. Density represents the ratio of
nonzeros to the matrix size. Row-wise and column-wise maximum indices and standard deviations reflect
value distribution along axes. The feature pattern symmetry measures how symmetric the matrix structure
1s. We also include the number of diagonals that contain nonzero values and the count of entries that break
structural symmetry.

Table (1| shows the cosine similarity values for each method by taking average of cosine similarity
results of all matrices in the dataset. Higher cosine similarity values can indicate better preservation of
the matrix’s structural properties. When the matrix is slightly enlarged by one row and column (Expand
(+1)), the nearest neighbor method gives the best similarity (0.999), followed by the wavelet method
(0.991). The Bilinear and DFT methods scores the lowest (0.637 and 0.613) similarity values. In the
Upscale (2x) operation, Nearest neighbor (0.918) and Wavelet (0.906) perform better than others, while
DFT (0.593) and Bilinear (0.615) perform worst.

TABLE 1. Average structural similarity (cosine) values across the dataset for various
matrix generation methods

Method Expand (+1) Upscale (2x) Reduce (-1) Downscale (1/2x)
Bilinear 0.637 0.615 0.605 0.640
DCT 0.976 0.817 0.974 0.847
DFT 0.613 0.593 0.662 0.643
Image-based 0.805 0.750 0.805 0.786
Lanczos 0.906 0.825 0.893 0.800
NN 0.999 0.918 0.999 0.945
Wavelet 0.991 0.906 0.988 0.891
Gaussian - - - 0.748

When the matrix is reduced to half by 1/2x downsizing operation, the Nearest neighbor (0.945) and
Wavelet (0.891) methods are more successful in keeping the structure, while DFT and Bilinear again
show lower cosine values. When the size is slightly reduced (Reduce (-1)), Nearest neighbor ans Wavelet
again performs best (0.999 and 0.988), while Bilinear and DFT give the lowest results (0.605 and 0.662).

As seen in Table |1} for small changes (Expand and Reduce operations), the nearest neighbor method
gives the best results, with cosine similarity above 0.99. Wavelet and DCT-based methods also per-
form very well in these cases. This shows that these methods can handle small changes without losing
important structures in the generated matrices.

Figures [2] [3| and [4] show the sparsity patterns of the original matrix cavity03 along with the scaled
matrices generated by different methods using the Expand (+1), Upscaling 2x, Reduce (-1) and Down-
scaling 1/2x operations. Here, the original matrix is an unsymmetric sparse matrix from a finite element
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discretization of a computational fluid dynamics (CFD) problem [3]. It has a size of 317x317 and con-
tains 7311 nonzero entries.

(E) DFT (G) Lanczos (H) Wavelet

FIGURE 2. Original and generated cavity03 patterns after Expand (+1) operation.

In Figure [2] all generated matrices (Figures - 2H) have one additional row and column, resulting
in a size of 318x318. However, the number of nonzero entries varies depending on the method. Among
the generated matrices, the nearest neighbor (Figure 2C), DCT (Figure 2D}, Image-based (Figure 2F)
and Wavelet (Figure 2H) methods most closely preserve the structure of the original matrix. The main
diagonal band and nearby nonzero locations are well preserved in the generated matrices of these meth-
ods. There is very little distortion in these results. This matches their high cosine similarity scores that
is above 0.97. Lanczos (Figure 2G)) give a visually similar result to DCT, however there is small shifts
in the position of nonzeros. Bilinear interpolation (Figure leads to greater loss of detail and reduces
sparsity, especially near the boundaries. The DFT (Figure 2E)) introduces significant noise that results in
a matrix pattern that differs considerably from the original. This is also consistent with its low similarity
score of 0.613 across the dataset. The output of the method can be improved by stronger thresholding or
matrix based finetuning after the inverse transform.

In Figure [2 although Bilinear and Lanczos does not generate identical matrices with the original
matrix, this difference is not a drawback of the proposed method. In fact, it can be seen as a way to
generate a new matrix that still keeps key structural features of the original. It adds a level of controlled
variation, similar to randomization, but in a more intelligent and structured manner. This capability
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presents one of the main contributions of our work which is to is generating realistic but structurally
distinctive matrices.

Figure [3] shows the patterns of the original and generated matrices after applying the 2x Upscaling
operation on cavity03. All generated matrices have size 634x634, but the number of nonzeros varies
by method. Compared to the Expand (+1) operation, the structural differences become more visible
for bigger upscaling. Nearest neighbor (Figure [3C) and Lanczos (Figure [3G) still maintain the original
banded structure well. However, DCT (Figure@[) and Wavelet (Figure|[3H)), show more visible distortion
and block enlargement due to interpolation in the frequency domain.

Bilinear interpolation (Figure again results in a loss of sparsity. This is consistent with its low
average cosine similarity score of 0.615 across the dataset. DFT (Figure 3E) produces even more se-
vere distortions by introducing high-frequency noise. This disrupts the matrix’s original structure. This
outcome is also consistent with its cosine similarity score of 0.593 across the dataset. Nearest neighbor
and Wavelet methods maintain the original pattern more effectively, with similarity scores of 0.918 and
0.906. While DCT and Wavelet methods perform well in smaller scale changes (Figure[2)), their accuracy
decreases with bigger scaling.

(G) Lanczos (H) Wavelet

(E) DFT

FIGURE 3. Original and generated cavity03 patterns after 2x Upscaling operation.

Figure [4] display the matrix patterns generated after applying the Reduce (1) and Downscale (1/2x)
operations. In both operations, the goal is to shrink the original matrix while maintaining its important
structural properties. In Figures UB4H] the patterns of generated matrices are shown after using Reduce
(-1) operation which involves a minimal size reduction. In the figures, the results are more stable. Nearest
neighbor (#C), Wavelet (#H)), and DCT again perform best with similarity values above 0.97. This
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can be seen visually that these methods maintain almost perfect alignment with the original pattern (A).
Lanczos #G) also generate similar matrix with some noises at the off-diagonal areas. Methods like
Bilinear (4B)), DFT (4E), and Image-based show more deviation. DFT introduce significant noise as
seen in earlier experiments.

In Figures the patterns of generated matrices are shown after using 1/2x downsizing operation.
As seen in the figures, Nearest neighbor (Figure and Wavelet (Figure dP) methods preserve the orig-
inal banded pattern with minimal distortion. This is consistent with their high cosine similarity scores
with 0.945, and 0.891, respectively. Lanczos (Figure and Wavelet also retain much of the structure,
although slightly less accurately. In contrast, Bilinear (FigureB1)), DFT (Figure M) and Gaussian (Figure
methods introduce more sparsity loss and noise. This is also reflected in their lower similarity scores
ranging from 0.640 to 0.748. These findings show that both for moderate and slight downsizing opera-
tions, Nearest neighbor, Wavelet, and DCT methods consistently preserve structural similarity visually
and analytically.

Among the evaluated techniques, Nearest Neighbor, Wavelet, and DCT methods consistently preserve
the structural features of sparse matrices across both upscaling and downscaling operations. Nearest
Neighbor retains original nonzero locations by duplicating them without smoothing, maintaining local
sparsity. Wavelet transform captures localized features and low-frequency components, allowing it to
preserve diagonal and block patterns under size changes. DCT compresses global structure into low-
frequency coefficients, which helps it maintain the overall sparsity layout even when the matrix is resized.

Scalability and Large-Scale Matrix Generation. One of the important goals of MatGen is to generate
large-scale sparse matrices that preserve the structural properties of real input matrices. To evaluate this,
we test the scalability of our methods by applying 4x upscaling operations to a large sparse matrix.
For this experiment, we use the bcsstk30 matrix from the SuiteSparse Matrix Collection. bcsstk30 is
a large symmetric sparse matrix with a dimension of 28,924 x 28,924 and contains 1,036,208 nonzero
entries. It originates from a structural engineering problem and represent the stiffness matrix of an
offshore generator platform.

In these experiments, we use methods that support upscaling without requiring dense matrix conver-
sions. Specifically, we apply the Nearest-neighbor (NN), Lanczos, Wavelet, and DCT-based techniques,
which can operate efficiently on large matrices. By using these methods, the 4x upscaling operation
applied on bcsstk30 to produce matrices of size 115,696 x 115,696.

Table [2] shows the details of the original matrix and the matrices generated by different upscaling
methods. The column labeled Sim indicates the cosine similarity value for each method, while the other
columns are explained in the Appendix Section. Among the methods, DCT and Wavelet show better
performance in preserving the structural properties of the original matrix. In contrast, matrices generated
using Lanczos and NN show a clear loss of structural similarity. It is also seen by their lower pattern
symmetry (Psym) values.

Figure[5|shows visualizations of the original matrix and the generated matrices from bcsstk30. Due to
the large size of these matrices, differences are not easily visible at this resolution. Although all images
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FIGURE 4. Original and generated cavity03 matrix patterns after Reduce (-1) (Fig-
ures (B-H)) and 1/2x Downscaling (Figures (I-P)) operations.
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TABLE 2. Details of the bcsstk30 and generated matrices from it for 4x upscaling

experiment
Method Sim N NNZ Density Psym Diag Ndg Dist Band Profile Rmx Rmi Rstd
Original 1.00 28,924 2,043,492 0.0024 1.00 28924 6619 461 16947 41327 219 4 317
Lanczos 0.27 115,696 2,104,732 0.0002 0.33 29019 12865 1850 67807 506529 86 0 142
NN 042 115,696 7,331,809 0.0005 0.41 45887 26525 1844 67791 668956 321 0 405
Wavelet 0.77 115,696 41,627,296 0.0031 1.00 115696 28528 1938 67805 752373 1102 24 151.7
DCT 0.89 115,696 80,808,184 0.0060 1.00 115696 30422 2262 67839 919760 1664 160 239.7

appear similar, their structural characteristics vary significantly, as shown in Table 2] High-resolution

versions of these figures are available in our software repository for more detailed comparison.
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FIGURE 5. Original and generated bcsstk30 matrix patterns after 4x Upscaling opera-
tion.

These results show that MatGen can scale real matrices to much larger sizes while maintaining the

visual and structural features of the original pattern. This demonstrates its suitability for generating
synthetic test problems in large-scale simulations, benchmarking, and machine learning applications. An
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additional advantage of MatGen is that the generated matrices look visually similar to the original, even
though their structural characteristics differ. This allows the creation of a wide range of test cases that
preserve essential patterns but vary in complexity.

6. CONCLUSION AND FUTURE WORK

In this work, we introduce MatGen which is a framework for generating realistic sparse matrices
through scaling techniques while preserving important structural properties. These techniques include
interpolation and transform-domain methods which are originated from image and signal processing
area. We evaluate eight methods under four types of sparse matrix generation operations. The results
show that Nearest neighbor, Wavelet, and DCT methods preserve the structural characteristics of the
original matrices more effectively than the other methods evaluated in this study. These are supported by
visualizing patterns of the generated matrices from a sample matrix. We also perform cosine similarity
analysis on structural features to evaluate the methods.

MatGen is useful for areas like scientific computing, simulations, machine learning, signal processing,
and image processing. These fields often need many realistic sparse matrices for benchmarking solvers,
testing algorithms, and studying structural behavior under transformations. However, existing sparse
matrix datasets are often small and limited. MatGen helps address this gap by generating structurally
realistic and varied matrices for experimental evaluation.

As future work, we plan to examine the numerical values of the generated matrices. In this way,
we ensure that MatGen produces not only structurally consistent but also numerically reliable sparse
matrices. We also aim to extend the framework to rectangular matrices and explore adaptive strategies
that choose the best scaling method based on matrix features.
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APPENDIX (A)

Detail of experiments on cavity03. In Table [3] N denotes the number of rows and columns in the
square matrix, NNZ denotes the total number of nonzero entries, and Dens is the nonzero density. Psym
denotes the pattern symmetry that is the ratio of symmetric nonzero pairs. Diag denotes the number of
nonzeros on the main diagonal, while Ndg counts how many diagonals contain at least one nonzero. Dist
is the average distance of nonzeros from the main diagonal, normalized by matrix size. Band denotes the
bandwidth, or the maximum diagonal distance of nonzero entries. Profil denotes the profile, summarizing
the distance of nonzeros from the start of each row. Row-wise sparsity is represented by Rmx, Rmi, and
Rstd, which are the maximum, minimum, and standard deviation of nonzeros per row, respectively.
Similarly, Cmx, Cmi, and Cstd describe the same statistics for the column-wise distribution.

TABLE 3. Details of the cavity03 and generated matrices from it

Operation Method N NNZ Dens Psym Diag Ndg Dist Band Profii Rmx Rmi Rstd Cmx Cmi Cstd
- Original 317 7327 0.07 0.80 243 92 306 102 27652 62 8 125 62 1 18.1
Expand Bilinear 318 1125 001 0.09 38 83 324 101 16286 14 0 2.5 18 0 29
Expand DCT 318 6583 0.07 071 216 92 30.8 102 27409 62 0 130 6l 0 159
Expand DFT 318 63459 0.63 0.84 302 314 87.5 313 95691 306 4 594 305 1 63.1
Expand Image 318 7384 0.07 0.81 244 92 308 102 27899 63 7 126 63 1 182
Expand Lanczos 318 7781 0.08 044 191 100 334 103 36229 55 3 10.1 57 0 124
Expand NN 318 7331 0.07 0.80 243 92 306 102 27737 62 0 125 62 0 18.1
Expand Wavelet 318 6583 0.07 0.71 216 92 308 102 27409 62 0 13.0 o6l 0 159
Upscale Bilinear 634 1749 0.00 0.04 29 171 63.0 205 53337 13 0 22 14 0 2.6
Upscale DCT 634 118019 0.29 095 634 224 80.1 223 172778 304 58 567 304 80 60.8
Upscale DFT 634 116754 029 0.75 544 634 163.8 633 294609 391 0 102.8 390 0 1129
Upscale Image 634 29244 0.07 0.81 486 185 612 205 111234 124 14 250 124 2 36.1
Upscale Lanczos 634 9542 0.02 029 242 192 65.6 207 120037 47 1 9.0 51 0 10.7
Upscale NN 634 13015 0.03 0.53 333 182 61.1 204 111105 75 2 137 80 0 18.1
Upscale Wavelet 634 49618 0.12 086 520 191 67.8 206 130071 187 12 389 185 0 46.0
Reduce Bilinear 316 1105 0.01 0.07 35 88 330 101 17078 15 0 2.6 13 0 29
Reduce DCT 316 6573 0.07 0.71 215 90 308 101 27335 62 4 129 ol 0 159
Reduce DFT 316 75019 0.75 0.80 307 313 89.0 312 96850 303 165 40.1 314 169 383
Reduce Image 316 7240 0.07 0.80 242 92 304 102 27403 62 7 124 62 1 179
Reduce Lanczos 316 7811 0.08 045 183 99 331 105 35996 61 5 103 59 1 122
Reduce NN 316 7292 0.07 0.80 240 92 306 102 27630 62 8 124 62 0 179
Reduce Wavelet 316 6561 0.07 0.71 215 92 307 102 27314 62 4 129 61 0 158
Downscale Bilinear 158 521 0.02 0.15 28 45 164 51 4154 12 0 2.3 13 0 2.8
Downscale DCT 158 7342 029 095 158 55 20.0 54 10632 76 15 142 76 20 15.2
Downscale DFT 158 23586 0.94 094 158 158 519 157 24779 157 130 4.6 158 135 4.7
Downscale Gaussian 159 6668 026 094 159 54 19.6 53 10213 68 15 13.0 68 4 147
Downscale Image 158 2662 0.11 085 134 47 16.2 51 7383 46 5 89 46 1 113
Downscale Lanczos 158 3191 0.13 056 133 51 172 51 9177 38 6 7.3 41 1 8.7
Downscale NN 158 2126 0.09 0.70 111 47 159 51 7295 34 2 6.6 35 0 8.9
Downscale Wavelet 158 2708 0.11 085 125 43 164 47 7188 42 0 95 40 0 10.6
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