
 
 ESKİŞEHİR TECHNICAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY  

 A- APPLIED SCIENCES AND ENGINEERING  

  

 Estuscience – Se,  2025, 26 (3)  pp. 317 - 331, DOI: 10.18038/estubtda.1716669 

*Corresponding Author: ali.nazlipinar@dpu.edu.tr 

 

RESEARCH ARTICLE 

 

INVESTIGATION OF DETERMINISTIC AND STOCHASTIC SIR EPIDEMIOLOGICAL 

MODEL WITH NONLINEAR INCIDENCE RATE 

 

 

Ali Serdar NAZLIPINAR 1, *, Kübra EROL 2  

 
1 Department of Mathematics, Dumlupinar University, Kütahya, Türkiye 

ali.nazlipinar@ dpu.edu.tr  -  0000-0002-5114-208X  
 
2 Department of Mathematics, Dumlupinar University, Kütahya, Türkiye 

kubra.erol1@ogr.dpu.edu.tr  -   0009-0005-9681-6999  
 

Abstract  Keywords 

In this study, an expanded SIR-type model is provided that takes behavioral and 

environmental factors into account when analyzing the dynamics of transmission. 

Equilibrium points and their local stability are explored in a deterministic framework, 

and the fundamental reproduction number is also calculated. The model is then 

reconstructed using a discrete-time Markov chain (DTMC) technique to represent the 

random character of illness propagation in real-world settings. The evolution of the 

epidemic can be analyzed probabilistically using transition probabilities thanks to this 

stochastic framework. Numerical simulations are used to verify the outcomes of the 

deterministic and stochastic versions, and a comparison of their predictive tendencies 

is made. The results have demonstrated the need to include stochasticity in 

epidemiological models, particularly when taking variability and uncertainty in 

transmission dynamics into consideration. This dual viewpoint gives useful insights 

for public health policies as well as a fuller knowledge of how diseases spread. 
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1. INTRODUCTION 

 

Comprehending the dynamics of infectious illness transmission is essential for developing public health 

initiatives and controlling epidemics [1]. In order to facilitate these endeavors, mathematical modeling 

has emerged as a crucial instrument for the quantitative examination of epidemiological processes [2]. 

The classical SIR (Susceptible–Infected–Recovered) model is notable among these models due to its 

simplicity and deterministic structure, which captures the fundamental principles of disease recovery 

and dissemination [2, 3]. 

 

The fundamental work of Kermack and McKendrick in 1927 [2] is where the SIR model got its start, 

and it has subsequently sparked a large amount of study in both deterministic and stochastic contexts [4, 

5]. The SIR system may be used to reasonably mimic a number of infectious illnesses, particularly those 

with a relatively simple pattern of transmission and those in which immunity develops after infection. 

Some examples of diseases can be modeled as an SIR system include: Mumps, rubella, chickenpox, 

influenza etc. 

 

Nonetheless, empirical observations and real-world data reveal that the progression of epidemics is 

subject to various uncertainties and random fluctuations [6, 7]. These stochastic influences often arise 

from heterogeneous contact patterns, environmental variability, and behavioral responses. 
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According to a number of studies, including stochastic elements is crucial to enhancing model realism 

and capturing important dynamics like outbreak variability, extinction likelihood, or epidemic initiation 

latency [8, 9]. Therefore, depending exclusively on deterministic models might lead to simplistic 

evaluations, which emphasizes the need for stochastic components in epidemiological models [4]. 

 

In this work, we create an expanded SIR-type model by adding more parameters that take into 

consideration outside variables that affect the spread of illness. These variables are intended to represent 

behavioral feedback mechanisms, social interaction levels, and environmental influences [10, 11]. 

 

In the deterministic context, we first determine the fundamental reproduction number  𝑅0 and examine 

the equilibrium points of the model together with their local stability criteria [12]. A discrete-time 

Markov chain (DTMC) technique is then used to reframe the model within a stochastic framework, 

allowing for a probabilistic examination of the system dynamics through transition probabilities [7, 9, 

13]. Lastly, numerical simulations are used to confirm the theoretical results, and the predictive behavior 

of the stochastic and deterministic formulations is contrasted. 

 

This technique is innovative because it provides a more thorough and accurate depiction of epidemic 

evolution by directly integrating behavioral and environmental factors into the transmission function. 

Furthermore, a more sophisticated comprehension of system stability and variability in real-world 

scenarios is made possible by the dual analysis, which combines deterministic and stochastic elements 

[1, 4, 13]. 

 

The structure of the paper is as follows: We look at the equilibrium states and their stability 

characteristics in Section 2. Section 3 involves a stochastic reformulation of the model, theoretical 

calculations within the Markov chain framework, and a detailed examination of the epidemic dynamics 

using the resulting transition probabilities. Section 4 provides numerical simulations to validate the 

theoretical insights and compares the deterministic and stochastic models. In conclusion, Section 5 

provides a recap of the main findings and discusses possible directions for future studies. 

 

2. DETERMINISTIC MODEL 

 
Mathematical epidemiology employs a variety of compartmental models to capture the transmission 

dynamics of infectious diseases within populations. These models classify individuals according to their 

epidemiological status, such as susceptible (S), infected (I), and recovered (R), resulting in widely 

studied frameworks including SIS, SIR, SEIR, SEIRS, and SI models. The nomenclature directly 

reflects the compartments considered, each tailored to the biological and immunological characteristics 

of specific diseases [2, 4, 14]. Over time, these models have evolved to incorporate additional biological 

realism, control strategies, and environmental factors, enhancing their applicability across diverse 

epidemic contexts [5, 6]. In this study, we focus on the classical SIR model, which explicitly accounts 

for immunity acquired post-infection. We undertake a deterministic analysis of the model dynamics, 

investigating the influence of key epidemiological parameters and stability properties of equilibria. 

 

In the presented model, the variables 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) represent the counts of susceptible, infected, 

and recovered individuals at time 𝑡, respectively. The total population size is given by 𝑁 = 𝑆(𝑡) +
𝐼(𝑡) + 𝑅(𝑡). The initial conditions satisfy 𝑆(0) + 𝐼(0) + 𝑅(0) = 𝑁. We assume that the birth rate 

equals the death rate, so that the total population size is constant, 
𝑑𝑁

𝑑𝑡
= 0. The natural mortality rate and 

recovery rate of infected people are denoted by the values 𝜇 and 𝑟, respectively. While 𝛽 > 0 indicates 

the transmission rate, the recently added parameters 𝛼1, 𝛼2, and 𝛼3 represent the impact of 

environmental factors, social interaction, and population density on disease transmission [7, 12]. The 

fact that disease transmission is influenced by larger social and environmental factors in addition to 

interpersonal interaction is reflected in this formulation. 
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The following figure represents the population’s dynamic transitions: 

 

                        𝜇𝑁                        
𝛽𝑆𝐼

1 + 𝛼1𝑆 + 𝛼2𝐼 + 𝛼3𝑆𝐼
                       𝑟𝐼                            

 

                                   
                            

                                         𝜇𝑆                                                           𝜇𝐼                             𝜇𝑅               
 

Figure 1. SIR Compartmental Diagram 

 

Based on the previously mentioned hypotheses, differential equations that describe the dynamics of a 

SIR epidemic model have the following form:  

 
𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − 𝜇𝑆 −

𝛽𝑆𝐼

1+𝛼1𝑆+𝛼2𝐼+𝛼3𝑆𝐼
,

                                                      
𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

1+𝛼1𝑆+𝛼2𝐼+𝛼3𝑆𝐼
− (𝜇 + 𝑟)𝐼,

𝑑𝑅

𝑑𝑡
= 𝑟𝐼 − 𝜇𝑅.

                                                      (2.1) 

 

This system describes the evolution of the population compartments by incorporating both demographic 

processes (births and deaths) and disease-specific dynamics, infection and recovery. The introduction 

of the 𝛼𝑖 parameters allows the model to account for behavioral adaptations, policy interventions, and 

environmental variability—thus enhancing its applicability to complex epidemic scenarios [6]. 

 
It can be observed that that in the first two equations of (2.1), the compartment 𝑅 = 𝑅(𝑡) is absent. The 

last equation of the system (2.1) , 𝑅 = 𝑁 − 𝑆 − 𝐼, can be used to determine 𝑅. Consequently, we can 

think about the sub-system provided by 

 

                                                      

𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − 𝜇𝑆 −

𝛽𝑆𝐼

1+𝛼1𝑆+𝛼2𝐼+𝛼3𝑆𝐼
,

𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

1+𝛼1𝑆+𝛼2𝐼+𝛼3𝑆𝐼
− (𝜇 + 𝑟)𝐼.                                         (2.2)       

 

The reduced system (2.2) allows for a more concise analysis of the interaction between susceptible and 

infected individuals [8]. 

 

The basic reproduction number,  𝑅0, is the number of secondary infections caused by one infected 

individual in an entirely susceptible population [3, 4, 6, 15].To calculate the basic reproduction number, 

𝑅0, it is necessary to determine the appearance of new infections and exits from the system. 𝑅0 can be 

found using the next generation matrix method introduced by Van Den Driessche & Watmough. In this 

method, the emergence of new infections caused by infected individuals, and their exits from the system 

(i.e., through recovery or death), are analyzed. 

 

The part containing new infections appears only in the differential equation of the 𝐼 variable. If we 

denote the new infections by ℱ, then for our system, the new infections are given by 

 

ℱ =
𝛽𝑆𝐼

1 + 𝛼1𝑆 + 𝛼2𝐼 + 𝛼3𝑆𝐼
. 

 

S I R 
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The exits from the infections are represented as 

 
𝒱 = (𝜇 + 𝑟)𝐼. 

 

The 𝒱 equation describes the departure of individuals from the system due to recovery (𝑟𝐼) and natural 

death (𝜇𝐼). The basic reproduction number 𝑅0 is 

 
𝑅0 = 𝜌(ℱ𝒱

−1), 
 

 

where 𝜌 denotes the largest eigenvalue of the matrix. 

 

Remark 2.1 To calculate 𝑅0, we need to consider the disease spread in the "initial outbreak" situation. 

That is, when the disease is just starting to spread, we assume 𝑆 ≈ 𝑆0 (the population is mostly 

susceptible, with only a few infected individuals). Therefore, we will replace 𝑆 with 𝑆0 in the 𝐅 matrix. 

 

𝐅 = [
𝛽𝑆0

1 + 𝛼1𝑆0
] 

 

𝑅0 = 𝜌(𝐹𝑉
−1) 

 

Here, 𝐹𝑉−1 represents the matrix that shows the spread of the infection, and 𝜌(𝐹𝑉−1) denotes the largest 

eigenvalue of the 𝐹𝑉−1 matrix. 
𝑉 = [𝜇 + 𝑟]

𝑉−1 = [
1

𝜇 + 𝑟
]

𝐹𝑉−1 = [
𝛽𝑆0

1 + 𝛼1𝑆0
] [

1

𝜇 + 𝑟
]

= [
𝛽𝑆0

(1 + 𝛼1𝑆0)(𝜇 + 𝑟)
]

 

 

Since the resulting matrix is of size 1 × 1, its only eigenvalue is the matrix itself. Therefore for model 

(2.2), the basic reproduction number is defined as follows: 

𝑅0 =
𝛽𝑆0

(1 + 𝛼1𝑆0)(𝜇 + 𝑟)
. 

Here, 𝑆0 was taken for values where the disease is absent or minimal. Thus, for 𝐼 = 0 or 𝐼 ≈ 0, we have 

𝑆0 ≈ 𝑆
∗ = 𝑁. That is, the basic reproduction number is given by 

𝑅0 =
𝛽𝑁

(1 + 𝛼1𝑁)(𝜇 + 𝑟)
. 

 

 

Theorem 2.2 

• If 𝑅0 ≤ 1, then system (2.2) has a unique disease-free equilibrium of the form 𝐸0(𝑆0, 0) =
(𝑁, 0). 

• If 𝑅0 > 1, the disease-free equilibrium is still present and system (2.2) has a unique endemic 

equilibrium of the form 𝐸∗(𝑆∗, 𝐼∗) = (𝑆∗,
𝜇𝑁−𝜇𝑆∗

𝑋
), where 
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𝑆∗ = 𝑁 +
𝑋(𝛼1𝑋 − 𝛽 − 𝛼3𝜇𝑁 − 𝛼2𝜇 + √Δ)

2𝜇𝛼3𝑋
, 

𝐼∗ = −
(𝛼1𝑋 − 𝛽 − 𝛼3𝜇𝑁 − 𝛼2𝜇 + √Δ)

2𝛼3𝑋
, 

 
with 𝑋 = 𝜇 + 𝑟 and Δ = 𝛼1

2𝜇2 + 2𝛼1
2𝜇𝑟 + 𝛼1

2𝑟2 − 2𝛼1𝛼2𝜇
2 − 2𝛼1𝛼2𝜇𝑟 + 2𝛼1𝛼3𝜇

2𝑁 +
2𝛼1𝛼3𝜇𝑁𝑟 − 2𝛽𝛼1𝜇 − 2𝛽𝛼1𝑟 + 𝛼2

2𝜇2 + 2𝛼2𝛼3𝜇
2𝑁 + 2𝛽𝛼2𝜇 + 𝛼3

2𝜇𝑁2 − 2𝛽𝛼3𝜇𝑁 + 4𝛼3𝜇
2 +

4𝛼3𝜇𝑟 + 𝛽
2 

 

Δ can be simplified as Δ = (𝛽 − 𝛼1𝑋 + 𝛼2𝜇 − 𝛼3𝜇𝑁)
2 + 4𝛼3𝜇(𝑋 + 𝛼2𝜇𝑁). 

 

Next, we study the local stability of the disease-free equilibrium 𝐸0(𝑆0, 0) and the endemic equilibrium 

𝐸∗(𝑆∗, 𝐼∗). We define the Jacobian matrix of system (2.2) at any equilibrium 𝐸(𝑆, 𝐼) by 

 

                                         𝐽𝐸(𝑆,𝐼) = (
−𝜇 −

𝛽𝐼(1+𝛼2𝐼)

(1+𝛼1𝑆+𝛼2𝐼+𝛼3𝑆𝐼)
2

−𝛽𝑆(1+𝛼1𝑆)

(1+𝛼1𝑆+𝛼2𝐼+𝛼3𝑆𝐼)
2

𝛽𝐼(1+𝛼2𝐼)

(1+𝛼1𝑆+𝛼2𝐼+𝛼3𝑆𝐼)
2

𝛽𝑆(1+𝛼1𝑆)

(1+𝛼1𝑆+𝛼2𝐼+𝛼3𝑆𝐼)
2 − 𝑋

).                  (2.3) 

 

 

Theorem 2.3.  The disease-free equilibrium 𝐸0(𝑆0, 0) is locally asymptotically stable if 𝑅0 ≤ 1 and 

unstable whenever 𝑅0 > 1. 

 
Proof.  The equilibrium point of the system is 𝐸0(𝑆0, 0) = (𝑁, 0), and at 𝐸0(𝑆0, 0), (2.3) becomes 

 

                                                                     𝐽(𝐸0) = (
−𝜇

−𝛽𝜇𝑁

𝜇(𝛼1𝑁+1)

0
𝛽𝜇𝑁

𝜇(𝛼1𝑁+1)
− 𝜇 − 𝑟

)                                 (2.4) 

 

det(𝐽(𝐸0) − 𝑘𝐼) =

∣
∣
∣
∣
∣
∣
∣
−𝜇 − 𝑘

−𝛽𝜇𝑁

𝜇(𝛼1𝑁 + 1)

0
𝛽𝜇𝑁

𝜇(𝛼1𝑁 + 1)
− 𝜇 − 𝑟 − 𝑘

∣
∣
∣
∣
∣
∣
∣

 

 

                    det(𝐽(𝐸0) − 𝑘𝐼) = (−𝜇 − 𝑘) ⋅ (
𝛽𝜇𝑁

𝜇(𝛼1𝑁 + 1)
− 𝜇 − 𝑟 − 𝑘) − 0 = 0 

 

(−𝜇 − 𝑘) ⋅ (
𝛽𝜇𝑁

𝜇(𝛼1𝑁 + 1)
− 𝜇 − 𝑟 − 𝑘) = 0 

 
−𝜇 − 𝑘 = 0  ⇒ 𝑘1 = −𝜇 

 
𝛽𝜇𝑁

𝜇(𝛼1𝑁 + 1)
− 𝜇 − 𝑟 − 𝑘 = 0 

 
𝛽𝜇𝑁

𝜇(𝛼1𝑁 + 1)
− 𝜇 − 𝑟 = 𝑘2 
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Thus, the eigenvalues 𝑘1 and 𝑘2 are obtained. Since 𝑘1 < 0, this condition is already satisfied for this 

eigenvalue. Now, let’s analyze the eigenvalue 𝑘2. 

 

𝑘2 ≤ 0 ⇒
𝛽𝜇𝑁

𝜇(𝛼1𝑁 + 1)
− 𝜇 − 𝑟 ≤ 0

⇒
𝛽𝜇𝑁

𝛼1𝜇𝑁 + 𝜇
− (𝜇 + 𝑟) ≤ 0

⇒ (𝜇 + 𝑟) [
𝛽𝑁

(𝛼1𝑁 + 1)(𝜇 + 𝑟)
− 1] ≤ 0

⇒ (𝜇 + 𝑟)[𝑅0 − 1] ≤ 0

⇒ [𝑅0 − 1] ≤ 0

𝑅0 ≤ 1

 

 

Hence, the eigenvalues 𝑘1 and 𝑘2 of system (2.4) are negative when 𝑅0 ≤ 1. Therefore, the equilibrium 

point 𝐸0 is locally asymptotically stable for 𝑅0 ≤ 1, and becomes unstable whenever 𝑅0 > 1.  ▫                                                     

 

Theorem 2.4 The endemic equilibrium 𝐸∗(𝑆∗,
𝜇𝑁−𝜇𝑆∗

𝑋
) is locally asymptotically stable if 𝑅0 > 1 and 

unstable whenever 𝑅0 ≤ 1. 

 

Proof. At 𝐸∗(𝑆∗, 𝐼∗),  (2.3) becomes 

 

                        𝐽(𝐸∗(𝑆∗, 𝐼∗)) = (
−𝜇 −

𝛽𝐼∗(1+𝛼2𝐼
∗)

(1+𝛼1𝑆
∗+𝛼2𝐼

∗+𝛼3𝑆
∗𝐼∗)2

−𝛽𝑆∗(1+𝛼1𝑆
∗)

(1+𝛼1𝑆
∗+𝛼2𝐼

∗+𝛼3𝑆
∗𝐼∗)2

𝛽𝐼∗(1+𝛼2𝐼
∗)

(1+𝛼1𝑆
∗+𝛼2𝐼

∗+𝛼3𝑆
∗𝐼∗)2

𝛽𝑆∗(1+𝛼1𝑆
∗)

(1+𝛼1𝑆
∗+𝛼2𝐼

∗+𝛼3𝑆
∗𝐼∗)2

− 𝑋
)             (2.5) 

 

For simplicity, let us assume the following equalities: 

 

• 
𝛽𝐼∗(1+𝛼2𝐼

∗)

(1+𝛼1𝑆
∗+𝛼2𝐼

∗+𝛼3𝑆
∗𝐼∗)2

= 𝐺 

• 
𝛽𝑆∗(1+𝛼1𝑆

∗)

(1+𝛼1𝑆
∗+𝛼2𝐼

∗+𝛼3𝑆
∗𝐼∗)2

= 𝐻 

 

Thus, we can rewrite the (2.5) as: 

 

𝐽(𝐸∗(𝑆∗, 𝐼∗)) = (
−𝜇 − 𝐺 −𝐻
𝐺 𝐻 − 𝑋

) 

 

 

det (𝐽(𝐸∗) − 𝑘𝐼) = ∣∣
∣−𝜇 − 𝐺 − 𝑘 −𝐻

𝐺 𝐻 − 𝑋 − 𝑘∣
∣∣

= (−𝜇 − 𝐺 − 𝑘)(𝐻 − 𝑋 − 𝑘) + 𝐺𝐻 = 0

= 𝑘2 + (𝐺 −𝐻 + 𝑋 + 𝜇)𝑘 + 𝐺𝑋 − 𝜇𝐻 + 𝜇𝑋 = 0
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det (𝐽(𝐸∗) − 𝑘𝐼) = ∣∣
∣−𝜇 − 𝐺 − 𝑘 −𝐻

𝐺 𝐻 − 𝑋 − 𝑘∣
∣∣

= (−𝜇 − 𝐺 − 𝑘)(𝐻 − 𝑋 − 𝑘) + 𝐺𝐻 = 0

= 𝑘2 + (𝐺 −𝐻 + 𝑋 + 𝜇)𝑘 + 𝐺𝑋 − 𝜇𝐻 + 𝜇𝑋 = 0

 

 

Hence, the eigenvalues of 𝐽(𝐸∗) are 

 

                                           𝑘1,2 =
−(𝐺−𝐻+𝑋+𝜇)±√(𝐺−𝐻+𝑋+𝜇)2−4(𝐺𝑋−𝜇𝐻+𝜇𝑋)

2
                                  (2.6) 

 

The characteristic equation of the (2.5) is 

 
𝑘2 + 𝑎1𝑘 + 𝑎0 = 0 

where 

 

• 𝑎0 = 𝐺𝑋 − 𝜇𝐻 + 𝜇𝑋, 

• 𝑎1 = (𝐺 − 𝐻 + 𝑋 + 𝜇). 
 

We assume that 𝑅0 > 1 . Hence, 𝑎0 > 0 and 𝑎1 > 0 whenever 𝑅0 > 1. Thus , by Routh-Hurwitz 

criterion [19] , all the eigenvalues of the (2.5) system of equations defining the model have negative real 

parts at point 𝐸∗ for 𝑅0 > 1, which ensures the locally asymptotic stability of equilibrium point for 𝑅0 >
1 and unstable whenever 𝑅0 ≤ 1.          

 

 
3. FORMULATION OF DTMC SIR EPIDEMIC MODEL 

 
Stochastic models, such as discrete-time Markov chains (DTMC), provide a valuable framework for 

capturing the randomness inherent in epidemic spread within finite populations [4, 13].  

 

In this section, we formulate the extended SIR model as a DTMC by defining the state space and 

transition probabilities, incorporating environmental and behavioral factors into the transmission 

dynamics. Beyond deterministic predictions, this stochastic approach allows for a thorough probabilistic 

examination of illness course [6, 16]. 

 

A Markov chain with a limited state space is used to formulate the discrete-time stochastic SIR model. 

In a population of fixed size 𝑁, the state space is defined as the set of ordered pairs {(𝑁, 0),  (𝑁 −
1,0),  … ,  (0,0),  (𝑁 − 1,1),  (𝑁 − 2,1),  … ,  (0,1),  … ,  (0, 𝑁)}, where each (𝑆, 𝐼) combination 

corresponds to the susceptible and infected population sizes at a given time point. 

 
The stochastic SIR model is a bivariate process characterized by the random variables 𝑆 and 𝐼, 
representing the number of susceptible and infected individuals at time 𝑡, respectively. The number of 

recovered individuals at time 𝑡 is calculated as 𝑅(𝑡) = 𝑁 − 𝑆(𝑡) − 𝐼(𝑡). 
 

Within the DTMC epidemic framework, time evolves in discrete intervals 𝑡 ∈ {0, Δ𝑡, 2Δ𝑡, … }, where Δ𝑡 
denotes the constant time step. The system assumes that at most one event (infection or recovery) occurs 

during each time interval [7, 13, 17]. 

 

The stochastic SIR model has a joint probability function, 
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                                                   𝑝(𝑠,𝑖)(𝑡) = 𝑃𝑟𝑜𝑏(𝑆(𝑡) = 𝑠, 𝐼(𝑡) = 𝑖)                                        (3.1) 

 

where 𝑠, 𝑖 = 0,1,2,… ,𝑁 and 0 ≤ 𝑠 + 𝑖 ≤ 𝑁.  

 

Let, 
𝛽𝑆𝐼

1+𝛼1𝑆+𝛼2𝐼+𝛼3𝑆𝐼
Δ𝑡,   𝑟𝐼Δ𝑡  and 1 − [

𝛽𝑆𝐼

1+𝛼1𝑆+𝛼2𝐼+𝛼3𝑆𝐼
+ 𝑟𝐼] Δ𝑡 denote the probability of infection of a 

susceptible individual, the probability of recovery of an infective or the probability of no change, 

respectively: 

 

𝑃𝑟𝑜𝑏[𝑆𝑡+Δ𝑡 = 𝑠 − 1, 𝐼𝑡+Δ𝑡 = 𝑖 + 1  ] | 𝑆𝑡 = 𝑠, 𝐼𝑡 = 𝑖] =
𝛽𝑆𝐼

1+𝛼1𝑆+𝛼2𝐼+𝛼3𝑆𝐼
Δ𝑡  

𝑃𝑟𝑜𝑏[𝑆𝑡+Δ𝑡 = 𝑠, 𝐼𝑡+Δ𝑡 = 𝑖 − 1  ] | 𝑆𝑡 = 𝑠, 𝐼𝑡 = 𝑖] =    𝑟𝐼Δ𝑡                                

   𝑃𝑟𝑜𝑝[𝑆𝑡+Δ𝑡 = 𝑠, 𝐼𝑡+Δ𝑡 = 𝑖  ] | 𝑆𝑡 = 𝑠, 𝐼𝑡 = 𝑖] = 1 − [
𝛽𝑆𝐼

1+𝛼1𝑆+𝛼2𝐼+𝛼3𝑆𝐼
+ 𝑟𝐼] Δ𝑡 

          (3.2) 

 

Each death is balanced by a corresponding birth, maintaining a constant population size.  

 
The difference equations satisfied by the joint probability 𝑝(𝑠,𝑖)(𝑡) are 

 

                        

𝑝(𝑠,𝑖)(𝑡 + Δ𝑡) =
𝛽(𝑠+1)(𝑖−1)

1+𝛼1(𝑠+1)+𝛼2(𝑖−1)+𝛼3(𝑠+1)(𝑖−1)
Δ𝑡𝑝(𝑠+1,𝑖−1)(𝑡)

+𝑟(𝑖 + 1)Δ𝑡𝑝(𝑠,𝑖+1)(𝑡)

+ [1 − (
𝛽𝑠𝑖

1+𝛼1𝑠+𝛼2𝑖+𝛼3𝑠𝑖
+ 𝑟𝑖)Δ𝑡] 𝑝(𝑠,𝑖)(𝑡)

                              ( 3.3)                   

 

where 𝑠, 𝑖 = 0,1,2,… ,𝑁 and 𝑝(𝑠,𝑖)(𝑡) = 0 if 𝑠, 𝑖 ∉ {0,1,… ,𝑁}. To ensure that the transition probabilities 

are positive and bounded by one, it is required that 

 

∑ 𝑝(𝑠,𝑖)(𝑡)
𝑠+𝑖=0,1,…,𝑁
𝑠+𝑖≤𝑁

≤ 1. 

 

The inequality above is satisfied if Δt is chosen sufficiently small. We express equation (3.3) in matrix 

and vector notation as below, where 𝑡 = 𝑛Δ𝑡 and 𝑝(𝑡) is a row vector of probabilities for the states (𝑠, 𝑖) 
at time 𝑡: 
 

𝑝(𝑡 + Δ𝑡) = 𝑝(𝑡)𝑃 = 𝑝(0)𝑃𝑛+1 

 

The bivariate process exhibits Markov property and is time-homogeneous by nature. By selecting a 

sufficiently small-time step Δ𝑡, it can be assumed that at most one transition occurs within each interval. 

Let the initial state of the population at time 𝑡 = 0 be (𝑆0, 𝐼0) = (𝑠0, 𝑖0), implying 𝑃[(𝑆0, 𝐼0) =
(𝑠0, 𝑖0)] = 1. To predict future states, we use the Markov property [17, 18], which states that the future 

state depends only on the current state, not on the past. This is particularly expressed by the following 

equation (3.4). 

 
𝑝(𝑠+𝑚,𝑖+𝑛),(𝑠,𝑖)(Δ𝑡) = 𝑃[(𝑆𝑡+Δ𝑡, 𝐼𝑡+Δ𝑡) = (𝑚, 𝑛) ∣ (𝑆𝑡, 𝐼𝑡) = (𝑠, 𝑖), … , (𝑆0, 𝐼0) = (𝑠0, 𝑖0). ] 

 
             𝑝(𝑠+𝑚,𝑖+𝑛),(𝑠,𝑖)(Δ𝑡) = 𝑃[(𝑆𝑡+Δ𝑡, 𝐼𝑡+Δ𝑡) = (𝑚, 𝑛) ∣ (𝑆𝑡, 𝐼𝑡) = (𝑠, 𝑖). ]                                                  (3.4) 

 

Thus, the transition probabilities of the SIR model can be represented as follows: 
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      𝑝(𝑠,𝑖),(𝑚,𝑛)=  

{
  
 

  
 

 
𝛽𝑆𝐼

1 + 𝛼1𝑆 + 𝛼2𝐼 + 𝛼3𝑆𝐼
Δ𝑡,                                                   (𝑚, 𝑛) = (𝑠 − 1, 𝑖 + 1)          

        
𝑟𝐼Δ𝑡  ,                                                                                        (𝑚, 𝑛) = (𝑠, 𝑖 − 1)                 

 1 − [
𝛽𝑆𝐼

1 + 𝛼1𝑆 + 𝛼2𝐼 + 𝛼3𝑆𝐼
+ 𝑟𝐼] Δ𝑡,                                (𝑚, 𝑛) = (𝑠, 𝑖 )                          

    0 ,                                                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                

(3.5) 

 
The only absorbing states in the model are of the form (𝑆, 0), where 𝑆 = 0,1, … ,𝑁, corresponding to 

the extinction of the disease. Once the system reaches any such state, it remains there permanently, 

meaning that the transition probability satisfies 𝑝(𝑠,0),(𝑠,0) = 1. Hence, there are 𝑁 + 1 absorbing states 

in total and the transition matrix 𝑃 as follows: 

 

𝑃 =

(

 
 
 
 
 
 
 
 
 
 
 

States (𝑁, 0) (𝑁 − 1, 0) ⋯ (1,0) (0,0) (𝑁 − 1,1) (N − 2,1) … (0,1) … (0, 𝑁)

(𝑁, 0) 1 0 ⋯ 0 0 0 0 0 0 0 0

(𝑁 − 1,0) 0 1 ⋱ 0 0 0 0 0 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

(1,0) 0 0 … 1 0 0 0 0 0 … 0

(0,0) 0 0 … 0 1 0 0 0 0 … 0

(𝑁 − 1,1) 0 𝑟Δ𝑡 … 0 0 1 − [
𝛽(𝑁 − 1)

1 + 𝛼
1
(𝑁 − 1) + 𝛼

2
+ 𝛼

3
(𝑁 − 1)

+ 𝑟] Δ𝑡 0 0 0 0 0

(N − 2,1) 0 0 0 … 0 0 1 − [
𝛽(𝑁 − 2)

1 + 𝛼
1
(𝑁 − 2) + 𝛼

2
+ 𝛼

3
(𝑁 − 2)

+ 𝑟] Δ𝑡 … 0 . . 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ 0 0 ⋮

(0,1) 0 0 … 0 𝑟Δ𝑡 0 0 … 1 − 𝑟Δ𝑡 … 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

(0, 𝑁) 0 0 0 0 0 0 0 0 0 0 1 − 𝑁𝑟Δ𝑡)

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
4. NUMERICAL SIMULATIONS 

 
In this section, we present numerical simulations to illustrate the dynamical behavior of both the 

deterministic and stochastic SIR epidemic models under consideration. The simulations are designed to 

give a thorough comparison between the discrete-time Markov chain (DTMC) formulation of the model 

and the standard deterministic method. 

 
As a starting point for comprehending the general dynamics of the epidemic, we start by looking at the 

temporal evolution of the susceptible, infected, and recovered populations in the deterministic SIR 

model. 

 

We next use many sample routes produced by the DTMC SIR epidemic model to investigate the 

stochastic behavior of the system. To illustrate the intrinsic unpredictability brought about by stochastic 

influences, these trajectories are placed next to the deterministic solution (shown by a dotted curve). 

 

Finally, we analyze the probability distribution of the states in the DTMC SIR model. This distribution 

is computed using the iterative formula 

 

𝑝(𝑡 + Δ𝑡) = 𝑝(𝑡)𝑃 = 𝑝(0)𝑃𝑛+1, 
 

where 𝑃 denotes the transition probability matrix, 𝑝(𝑡) is the state probability vector at time 𝑡, and Δ𝑡 
is the discrete time step. This analysis provides insight into the likelihood of the system residing in 

various states over time. 
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• Case I: 𝑅0 > 1 

 
When the basic reproduction number exceeds unity (𝑅0 > 1), the epidemic tends to spread through the 

population. Figure 2 displays the temporal evolution of the susceptible, infected, and recovered 

compartments according to the deterministic SIR model. As observed, the infected population grows 

rapidly, reaching a peak before declining to an endemic equilibrium. 

 
Figure 3 shows three sample paths of the discrete-time Markov chain (DTMC) SIR model, plotted 

alongside the deterministic solution (dashed line). The stochastic trajectories exhibit variability but 

generally align with the deterministic trend, emphasizing the role of randomness in disease spread. 

 

Finally, Figure 4 illustrates the evolution of the probability distribution of states in the stochastic model. 

The distribution concentrates around the endemic equilibrium over time, reflecting the persistence of 

the infection in the population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Time-course dynamics of epidemic spread in the SIR epidemic model for Case I. 

 

The simulation parameters are set as follows: Δ𝑡 = 0.01, 𝑁 = 100, 𝛽 = 0.1, 𝛼1 = 0.1, 𝛼2 = 0.02, 

𝛼3 = 0.003, 𝜇 = 0.1, 𝑟 = 0.5 with initial condition (𝑆(0), 𝐼(0)) = (98,2). In the stochastic 

formulation, the initial condition holds with certainty, i.e. , 

 

𝑃((𝑆(0), 𝐼(0)) = (98,2)) = 1. 
 

Both the basic reproduction number and the initial replacement number exceed unity, with 𝑅0 =
1.5152 > 1 . The epidemic outbreak is clearly observable in the trajectory of the deterministic solution, 

while each of the three sample paths similarly displays a characteristic epidemic curve. 
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Figure 3. Three sample paths of the DTMC SIR epidemic model are graphed with the deterministic solution 

(dashed curve). Parameter values are the same as in Figure 2 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Probability distribution of the DTMC SIR epidemic model, (𝐼(𝑡), 𝑡, 𝑝(𝑡)). Parameter values are the same 

as in Figure 2 

 

• Case II: 𝑅0 ≤ 1 

 
For 𝑅0 ≤ 1 , the infection is expected to die out, and the disease-free equilibrium is stable. This is 

demonstrated in Figure 5, where the deterministic infected population declines monotonically to zero. 

 
The stochastic sample paths presented in Figure 6 also show that the infection eventually disappears in 

all realizations, confirming the extinction of the disease. 

 

Moreover, the probability distribution depicted in Figure 7 increasingly concentrates on the disease-free 

state as time progresses, highlighting the absorbing nature of this equilibrium in the stochastic 
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framework. Now, we choose 𝛽 = 0.05, and we keep the other parameter values. In this case 𝑅0 =
0.75758 ≤ 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Time-course dynamics of epidemic spread in the SIR epidemic model for Case II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Three sample paths of the DTMC SIR epidemic model are graphed with the deterministic solution (dashed 

curve). Parameter values are the same as in Fig.5 
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Figure 7. Probability distribution of the DTMC SIR epidemic model, (𝐼(𝑡), 𝑡, 𝑝(𝑡)). Parameter values are the same 

as in Figure 5 

 

 

5. CONCLUSION 

 
In this study, we investigated the dynamics of an epidemic using both deterministic and stochastic 

formulations of the SIR model. The deterministic model was analyzed in terms of equilibrium points 

and the basic reproduction number 𝑅0, providing a foundational understanding of the system’s long-

term behavior. 

 
To capture random fluctuations inherent in real-world epidemic processes, the model was extended to a 

discrete-time Markov chain (DTMC) framework. The transition probabilities between states were 

derived, and the corresponding transition matrix was expressed in canonical form. The transient and 

absorbing states were identified and interpreted in the context of epidemic spread and extinction. 

 

Numerical simulations were carried out to visualize and compare the evolution of the epidemic under 

both deterministic and stochastic settings. For values of 𝑅0 ≤ 1, the infection was shown to die out, 

aligning with the theoretical expectation of global stability at the disease-free equilibrium. When 𝑅0 >
1, both the deterministic trajectory and the stochastic sample paths indicated sustained transmission, 

with the probability distribution eventually spreading over a range of infected states rather than 

collapsing to the disease-free condition. 

 

Overall, the results demonstrate the importance of considering stochastic effects in epidemic modeling, 

particularly for small population sizes or near the critical threshold 𝑅0 = 1, where random fluctuations 

may significantly alter the system’s outcome. The integration of deterministic analysis and stochastic 

simulation provides a comprehensive view of epidemic dynamics and enhances our understanding of 

the probabilistic nature of disease transmission. 
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