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1. Introduction

The concept of convergence of sequences of real numbers R has been transferred to statistical convergence by Fast [5] and independently by
Schoenberg [16]. .#-convergence was first studied by Kostyrko et al. [9] in order to generalize of statistical convergence which is based
on the structure of the ideal .# of subset of the set of natural numbers N. Das et al. [4] introduced new notions, namely . -statistical
convergence and .¥-lacunary statistical convergence by using ideal.

There are different convergence notions for sequence of sets. One of them handled in this paper is the concept of Wijsman convergence (see,
[11, [3], [11], [21], [22]). The concepts of statistical convergence and lacunary statistical convergence of sequences of sets were studied
in [11, 18] in Wijsman sense. Also, new convergence notions, for sequences of sets, which is called Wijsman .#-convergence, Wijsman
# -statistical convergence and Wijsman .# -Cesaro summability by using ideal were introduced in [7], [8], [20].

Marouf [10] peresented definitions for asymptotically equivalent and asymptotic regular matrices. This concepts was investigated in
[12, 13, 14]. The concept of asymptotically equivalence of sequences of real numbers which is defined by Marouf [10] has been extended
by Ulusu and Nuray [19] to concepts of Wijsman asymptotically equivalence of set sequences. Moreover, natural inclusion theorems are
presented. Kisi et al. [8] introduced the concepts of Wijsman .# -asymptotically equivalence of sequences of sets.

2. Definitions and notations

Now, we recall the basic definitions and concepts (See [1, 2, 6,7, 8,9, 10, 11, 15, 19, 20]).
Let (Y, p) be a metric space. For any point y € Y and any non-empty subset U of Y, we define the distance from y to U by d(y,U) = in{fjp(y, u).
ue

Let (Y, p) be a metric space and U, U; be any non-empty closed subsets of Y. The sequence {U;} is Wijsman convergent to U if for each
yey,

1—0

Let (Y,p) be a metric space and U, U; be any non-empty closed subsets of Y. The sequence {U;} is Wijsman statistical convergent to U if
{d(y,U;)} is statistically convergent to d(y,U); i.e., for every € > 0 and for eachy € Y,

o1
lim —
n—oo p

’{ign: |d(y,U;) —d(y,U) 25}’ =0.
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A family of sets .# C 2N is called an ideal if and only if (i) @ € ., (ii) Foreach U,V € .# we have UUV € .#, (iii) ForeachU € .
and eachV CU we have V € .¥.
An ideal is called non-trivial ideal if N ¢ .# and non-trivial ideal is called admissible ideal if {n} € .# for each n € N.

A family of sets % C 2V is a filter if and only if (i) 0 ¢ .%, (ii) Foreach U,V € .% we have UNV € .%, (iii) For each U € .% and each
VDOUwehaveV € 7.

Proposition 2.1. ([9]) .7 is a non-trivial ideal in N if and only if
F(I)={ECN: (U € #)(E=N\U)}
is a filter in N.

Throughout the paper, we let (Y, p) be a separable metric space, . C 2N be an admissible ideal and U, U; be any non-empty closed subsets
of Y.

The sequence {U;} is Wijsman .7 -convergent to U, if for every £ > 0 and for eachy € ¥, U(y,e) ={i€N:|d(»,U;)—d(y,U)| > €}
belongs to .#.
The sequence {U;} is Wijsman .# -statistical convergent to U, if for every € >0, 6 > 0 and foreachy € Y,

{neN:Hﬁgn:W@Uo—ﬂxUMZSH28}6]

S(A
and we write U; (—W>) U.

The sequence {U;} is Wijsman .#-Cesaro summable to U, if for every € > 0 and for each y € Y,

1
{nGN ‘;Z »U;) — yU)‘>£}Eﬂ

C (fw)

and we write U; — " U.
The sequence {U;} is Wijsman strongly .#-Cesaro summable to U, if for every € > 0 and for each y € Y,

‘l n
L= i) —dy,U)| 2
{neN ni;ld(yﬂ) d(y,U)| e} es

B
and we write Uj; M ] U.

The sequence {U;} is Wijsman p-strongly .#-Cesaro summable to U, if for every € > 0, for each p positive real number and for eachy € ¥,

1 n
{né N:~ Y 1 U) —d(yU)|P > 8} es
i=1

CplAy]
and we write U; ~— " U.
By a lacunary sequence we mean an increasing integer sequence 6 = {k,} such that ko = 0 and h, = k, — k,_] — o0 as r — oo. In this paper

the intervals determined by 6 will be denoted by I = (k,—1,k,] and ratio ki{il will be abbreviated by g,

Let 0 be a lacunary sequence. The sequence {U;} is Wijsman strongly .#-lacunary summable to U, if for every € > 0 and foreach y € Y,

{rGN — Y ld(y,Uy) )>s}eﬂ

” iel,

9[7w]

and we write Uj; U.

Two nonnegative sequences a = (g;) and b = (b;) are said to be asymptotically equivalent if

ai
lim— =1
b,
and denoted by a ~ b.

We define d(y;U;,V;) as follows:

d(y,U;

%%% L YRULY;
(U Vi) =q T

<z , yeU;uVv.

The sequences {U;} and {V;} are Wijsman asymptotically equivalent of multiple ., if foreachy € Y,

limd(y:U,V;) = 2.

i—oo
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The sequences {U;} and {V;} are Wijsman asymptotically statistical equivalent of multiple %, if for every € > 0 and for eachy € Y,
1y,
’115130;]{1 <n:ldmULV) — 2| > e}‘ —0.
The sequences {U;} and {V;} are Wijsman asymptotically .# -equivalent of multiple %, if for every € >0 and eachy € Y
{ieN:|dy,U, V) - Z| > e} eI

I
and we write U; < V; and simply Wijsman asymptotically .#-equivalent if . = 1.
The sequences {U;} and {V;} are Wijsman asymptotically .#-statistical equivalent of multiple .Z, if for every € > 0, & > 0 and for each
yey,

{nEN: %‘{ignﬂd(y;U,-,Vi)f.,f\ 28}’ 25} et

S(AL
and we write U; (NW) V; and simply Wijsman asymptotically .7 -statistical equivalent if £ = 1.

Let 6 be a lacunary sequence. The sequences {U;} and {V;} are said to be Wijsman asymptotically strongly .#-lacunary equivalent of
multiple .Z, if for every € > 0 and foreachy € Y,

{reN:;Zd(y;Ui,Vi)—,S,”|>8} es

riel,

No[F5
and we write U; 42 V; and simply Wijsman asymptotically strongly .#-lacunary equivalent if .#" = 1.
3. Main results

In this section, we defined notions of asymptotically .#-Cesaro equivalence of sequences of sets. Also, we investigate the relationships
between the concepts of asymptotically strongly .#-Cesaro equivalence, asymptotically strongly .#-lacunary equivalence, asymptotically
p-strongly .#-Cesaro equivalence and asymptotically .7 -statistical equivalence of sequences of sets.

Definition 3.1. The sequences {U;} and {V;} are asymptotically .7 -Cesaro equivalence of multiple £, if for every € > 0 and for each
yey,

] n
{nEN: ;Z’|d(y;U,-,V,-)ff| 28} et

i=1

ch(#
and we write U; ' (NW) V; and simply asymptotically .#-Cesaro equivalent if £ = 1.

Definition 3.2. The sequences {U;} and {V;} are asymptotically strongly % -Cesaro equivalence of multiple £, if for every € > 0 and for
eachy €Y,

1 n
{nE N: . Z |d(y;Ui, Vi) — Z| > 8} es
i=1
oy il : . N . .
and we write U; ~ " V; and simply asymptotically strongly .#-Cesaro equivalent if £ = 1.
Theorem 3.3. Let 0 be a lacunary sequence. If liminf, g, > 1 then,

Ci[A N§[A
u; Ty, o g My

Proof. If liminf, g, > 1, then there exists & > 0 such that g, > 1+ 0 for all » > 1. Since h, = k, — k,_1, we have
ke 146 ke—1 1
— < — d < —.
e

Let € > 0 and for each y € Y, we define the set

1 &
S = {k,eN: k—Z\d(y;Ui,Vi)—.iﬂ <£}.
T =1

We can easily say that S € .% (%), which is a filter of the ideal .#, so we have

r Xldpu v -2 =

kr kr—l
T L 1d(:UiV) = 2] = E INLCADESY
1€ly i= i=

=

r

bl
>~
Ke

= -5 140U Vi) = 2]

~
0

kr—1
el LY d(n UL V) — 2|

i=1

IN
I/~
—
cn‘—l— N
(«7]
N———
™
I
| —
m\



104 Universal Journal of Mathematics and Applications

1+6

for each y € Y and for each k, € S§. Choose n = ( 5

1
) £+ 38/ . Therefore, for eachy € Y

{reN:;Zd(y;Ui,V,-)—$| <n} cF(5).

7 iel,

N5
Therefore, U; eLW] Vi. O

Theorem 3.4. Let 0 be a lacunary sequence. If limsup, q, < o then,

N
l

Ui
. . Ng[Iw]
Proof. If limsup, g, < oo, then there exists K > 0 such that ¢, < K forall r > 1. Let U; "~ V; and for each y € Y, we define the sets T
and R

T:{reN — Y 140U Vi) - $|<£1}
riel,

and

1 n
R= {nGN: £Z\d(y;U,’,Vi)f.,2”\ <82}.
i=1
Let

7Z|dy’Ul7l $‘<£l
J:el

for each y € Y and for all j € T. It is obvious that T € .#(.#). Choose n is any integer with k,_; < n < k;, where r € T. Then, for each
y €Y we have

n ky
LY ULV -2 < L d(:UVi) - 2|
= i=
- L <2d(y,vl,v,> L]+ ¥ U, V)~ 2]
i€l icl
++ X Id(y;Ui,Vi)—f>
iel,
= & (ﬁiz |d<y;Ui,vi>—$|)
+44 (h, .)Z |d(y;U;, Vi) — -i”I)
ky kr .
+ot ! (hjieil Id(y,Ui,Vi)—f\)
_ kkl a1+k2kla2+ +k krl
< (SupjeTaj>T:1<8]-K.
Choose & = Z and in view of the fact that

U{n k1 <n<k.reT}CR,

A
where T € .#(.%), it follows from our assumption on 8 that the set R also belongs to .% (.#) and therefore, U; ctiml Vi. O

We have the following Theorem by Theorem 3.3 and Theorem 3.4.
Theorem 3.5. Let 0 be a lacunary sequence. If 1 <liminf, g, <limsup, g, < o then,

Cha N[
Ui ILW]Vi@Ul e[ W] l

Definition 3.6. The sequences {U;} and {V;} are asymprotically p-strongly % -Cesaro equivalence of multiple £ if for every € > 0, for
each p positive real number and for eachy €Y,

l n
{nEN: =Y ldv:Ui, Vi) — 2P 28} es
=

CL[Aw]

and we write U; V; and simply asymptotically p-strongly .#-Cesaro equivalent if £ = 1.
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Theorem 3.7. If the sequences {U;} and {V;} are asymptotically p-strongly .7 -Cesaro equivalence of multiple £ then, {U;} and {V;} are
asymptotically & -statistical equivalence of multiple £ .

CLA
Proof. LetU; [NW] Vi and € > 0 given. Then, for each y € Y we have

n n
D R A 14
p!

i=1
|d(y:0;,)-2|>e

e?-[{i<n:|dy;U,V;) - Z| > €}

v

and so

I ¢ ..
o L0 U V) =21 = (i< ni (UL Vi) = 2| 2 €}
i=1

Hence, for each y € Y and for a given d > 0,
1 1 n
{nGN: ﬁ|{i§n: |[d(y; Ui, Vi) — Z| > €} 28} - {neN: P Yy \d(y;Ui,V,-)—.,SﬂPZspﬁ} es.
i=1

({w)

Therefore, U; § V. O

Theorem 3.8. Let d(y,U;) = 0(d(y,V;)). If {U;} and {V;} are asymptotically .7 -statistical equivalence of multiple £ then, {U;} and {V;}
are asymptotically p-strongly .% -Cesaro equivalence of multiple L.

S(Hw)
Proof. Suppose that d(y,U;) = 0(d(y,V;)) and U; ~ ~
y €Y. Given € >0 and for each y € Y, we have

V;. Then, there is a K > 0 such that |d(y; U;,V;) — £| < K, for all i and for each

1 n 1 n 1 n
Py dsUL V) =21 = - X AUV =27+~ L d0sU V) =2
. ‘d(v:l/;l.\Z)f.(/‘zs \d(v:(/[l.;)—:/ks

IA

1 1
;K”\{ign: |d(y; Ui, Vi) — Z| > 8}\+;6”\{i§n: |d(y; Ui, Vi) — Z| < €}]

IN

KP
—Hisn:|dUnVi) = 2| = e} | +eP.
Then, for any 6 > 0,
1 n 1 . 6p
neN: ¥ d(nUnV) 2P 28 ConeN: - [{i<n:|d(sUn Vi)~ Z| 2 e}| 2 5 €7
n =1 n

cLA
Therefore, U; FLW] V. O
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