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Abstract

In this note, we set up existence, uniqueness as well as the stability of a special class
of fractional differential equation (FDE) with Hilfer-Katugampola fractional differential
operator (HKFDO). The outcomes are given by employing the Schaefer’s fixed point
theorem and Banach contraction principle. Moreover, we modify the fractional Ulam
stability (FUS) concept utilizing HKFDO.

1. Introduction

The idea of impulsive differential equations has had attention many investigators. Its developments over more than twenty years in almost all
science. It performed as an essential role in present day in current applied mathematical model of real techniques bobbing up in phenomena
studied in physics, chemical generation, population studies and political economy; one can follow the monograph of Lakshmikantham
et al. [12]. The analysis of impulsive differential equation involving classical derivatives one can refer to [2, 13, 14, 16]. Nowadays the
investigation of FDE involving Hilfer fractional operator introduced by Hilfer [4] is increasing rapidly one can refer to [3, 9, 10]. Later on
the generalized fractional derivative introduced by U.N. Katugampola [11] is unified with Hilfer fractional derivative by Oliveira and E.
Capelas de Oliveira in [15] is named as Hilfer-Katugampola fractional derivative.

The fractional Ulam-Hyers stability (FUHRS) of FDE has been studied in [5, 17] utilizing the classical fractional calculus. While, this
form of stability has been formalized in a complex domain for the Cauchy problem in [6]-[8]. Here, we shall introduce a generalization for
FUHRS involving a multi- power of fractional calculus.

Consider the impulsive differential equation involving Hilfer-Katugampola fractional derivative of the form
ρDα,βv(t) = f (t,v(t)), t ∈ I

′
:= I \{t1, ..., tm} , I := [0,b]

∆ρI1−γv(t)|t=tk = χkv(t
−
k ),

ρI1−γv(0) = v0, γ = α +β −αβ ,

(1.1)

where ρDα,β is Hilfer-Katugampola fractional differential operator of order α(0<α < 1), β (0≤ β ≤ 1), ρI1−γ is a generalization fractional
integral operator of order 1− γ , ρ > 0, f : I×R→ R is a given continuous function, χk : R→ R, and 0 = t0 < t1 < ... < tm < tm+1 = b,
∆ρ I1−γv|t=tk =

ρI1−γv(t+k )− ρI1−γv(t−k ), and ρI1−γv(t+k ) = limh→0+ v(tk +h), ρI1−γv(t−k ) = limh→0− v(tk + h) are the right and left
limits of v(t) at t = tk respectively.

The paper constructed as follows: In Section 2, we present the main definitions and preliminaries. In Section 3, we deal with the finding
results. In Section 4, we introduce a generalization of a special class of FUHRS.
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2. Preliminaries

Here, we recall some of well known concepts ( see [1, 13, 15]). Consider the space

PC(I,R) =
{
v : I→ R : v(t) ∈C(tk, tk+1],k = 0, ...,m; there exists v(t+k )andv(t−k )

}
.

Now we consider the weighted space PCγ (I,R).

PCγ,ρ (I,R) =

{
v :

(
tρ − tρ

k
ρ

)γ

v|[tk ,tk+1] ∈C[tk, tk+1],k = 0, ...,m where 0≤ γ < 1

}
.

Obviously, it is a Banach space with norm

‖v‖PCγ,ρ
= sup

(tk ,tk+1]

{(
tρ − tρ

k
ρ

)γ

v(t)

}
,k = 0, ...,m.

The following spaces are used to solve the problem:

PCα,β
1−γ,ρ (I,R) =

{
f ∈ PC1−γ,ρ (I,R),ρDα,β f ∈ PCµ,ρ (I,R)

}
and

PCγ

1−γ,ρ (I,R) =
{

f ∈ PC1−γ,ρ (I,R),ρDγ f ∈ PC1−γ,ρ (I,R)
}
.

It is obvious that

PCγ

1−γ,ρ (I,R)⊂ PCα,β
1−γ,ρ (I,R).

Definition 2.1. The generalized left-sided fractional integral ρ Iα
a+ f of order α ∈C(ℜ(α)) is defined by

(
ρIα

a+
)

f (t) =
ρ1−α

Γ(α)

∫ t

a
(tρ − sρ )α−1sρ−1 f (s)ds, t > a. (2.1)

The generalized fractional differential operator, corresponding to the generalized fractional integral operator (2.1), is defined for 0≤ a < t,
by

(
ρDα

a+ f
)
(t) =

ρα−n−1

Γ(n−α)

(
t1−ρ d

dt

)n ∫ t

a
(tρ − sρ )n−α+1sρ−1 f (s)ds, (2.2)

if the integral exists.

Definition 2.2. The Hilfer-Katugampola fractional derivative with respect to t, with the fractional power ρ > 0, is defined by(
ρD

α,β
a± f

)
(t) =

(
±ρIα

a±

(
tρ−1 d

dt

)
ρI

(1−β )(1−α)
a±

)
(t) (2.3)

=
(
±ρIα

a±δρ
ρI

(1−β )(1−α)
a±

)
(t).

• The operator ρD
α,β
a+ can be written as

ρD
α,β
a+ = ρI

β (1−α)
a+ δρ

ρI
1−γ

a+ = ρI
β (1−α)
a+

ρD
γ

a+ , γ = α +β −αβ .

• The fractional operator ρD
α,β
a+ is considered as interpolation, with the convenient parameters, of the following fractional derivatives,

Hilfer fractional differential operator when (ρ → 1), Hilfer-Hadamard fractional derivative when (ρ → 0), generalized fractional
derivative when (β = 0), Caputo-type fractional derivative when (β = 1), Riemann-Liouville fractional differential operator when
(β = 0,ρ → 1), Hadamard fractional operator when (β = 0,ρ → 0), Caputo fractional operator when (β = 1,ρ → 1). Caputo-
Hadamard fractional operator when (β = 1,ρ → 0), Liouville fractional operator when (β = 0,ρ → 1,a = 0), Hadamard fractional
operator when (β = 0,ρ → 1,a =−∞), We consider the following parameters α,β ,γ satisfying

γ = α +β −αβ , 0≤ γ < 1,α > 0, β < 1.

For α > 0, β > 0 and 0≤ γ < 1. The properties are given as follows,

1. If f ∈Cγ (I,R), then we have the following semigroup property

(ρIα ρIβ f )(t) = (ρIα+β )(t).

2. If f ∈Cγ (I,R), then

(ρDα ρIα f )(t) = f (t).
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3. If t > 0 then

ρIα

(
tρ

ρ

)β−1
(t) =

Γ(β )

Γ(α +β )

(
tρ

ρ

)α+β−1
,

and

ρDα

(
tρ

ρ

)β−1
(t) = 0.

4. If f ∈ PCγ and ρI1−α f ∈ PC1
γ (I,R), then

(ρIα ρDα )(t) = f (t)−
(

ρI1−α f
)
(0)

Γ(α)

(
tρ

ρ

)α−1
,

5. If α > γ , then ρIα f is continuous on [0,b]

ρIα f (0) = lim
t→0

ρIα f (t) = 0.

6. If f ∈ PCγ
γ,ρ (I,R), then

ρIγ ρDγ f (t) = ρIα ρDα,β f (t) (2.4)

and

ρDγ ρIα f (t) = ρDβ (1−α) f (t). (2.5)

7. Let f ∈ L1(0,b). If ρDβ (1−α) f occurs on L1(0,b), then

ρDα,β ρIα f (t) = ρIβ (1−α)ρDβ (1−α) f (t).

8. If f ∈ PCγ,ρ (I,R) and ρI1−β (1−α) ∈ PC1
1−γ

(I,R), then ρDα,βIα exists on [0,b] and

ρDα,βIα f (t) = f (t).

Lemma 2.3. Let v ∈ PC1−γ (I,R) satisfies the following inequality

|v(t)| ≤ c1 + c2

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1 |v(t)|ds+ ∑

0<tk<t
χk |v(tk)| ,

where c1 is a non-negative, continuous and non-decreasing function on I and c2,χi are constants. Then

|v(t)| ≤ c1

(
1+χEα (c2Γ(α)tα )kEα (c2Γ(α)tα

)
f or t ∈ (tk.tk+1],

where χ = sup{χk : k = 1,2,3, ...,}.

Theorem 2.4. (Schaefer’s fixed point theorem) Let P : K→K be completely continuous operator. If set E[P] = {v ∈ K : v= δ (Pv), for some δ ∈ [0,b]}
is bounded, Then P has fixed point.

Lemma 2.5. A function v is the solution of fractional impulsive differential equation
ρDα,βv(t) = f (t,v(t)), t ∈ I

′

∆ρI1−γv(t)t=tk = χkv(t
−
k ),

ρI1−γv(0) = a,

if and only if v achieves the integral equation

v(t) =

(
tρ − tρ

k
ρ

)γ−1
1

Γ(γ)

[
a+ ∑

0<tk<t
χkv(tk)+ ∑

0<tk<t

ρI
1−β (1−α)
tk−1

f (tk,v(tk))

]
+ ρIα

tk f (t,v(t)). (2.6)
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3. Findings

We make the following hypotheses to prove our main results.

(H1) Let f : I×R−→ R be a continuous function and a positive constant L > 0 accomplishing | f (t,v)− f (t,v)| ≤ L |v−v| , for all v,v∈ R.
(H2) Let f : I×R→ R be a completely continuous function and a function µ ∈ L1 fulfilling | f (t,v)| ≤ |µ(t)| , for all t ∈ I, v ∈ R.
(H3) Let the functions χk : R→ R be continuous and a constant L∗k > 0 achieving∣∣χk(v(t

−
k ))−χk(v(t

−
k ))
∣∣≤ L∗k |v(tk)−v(tk)| , for all v,v ∈ R, k = 1,2, ...,m.

(H4) Let the functions χk : R→ R be continuous and a constant µ ∈ L1 satisfying∣∣χk(v(t
−
k ))
∣∣≤ |µ∗(t)| , for all v ∈ R, k = 1,2, ...,m.

(H5) There is an increasing function ϕ ∈ PC1−γ,ρ (I,R) and there occurs λϕ > 0 such that for any t ∈ I

ρIα
ϕ(t)≤ λϕ ϕ(t).

Theorem 3.1. Assume that [H1] - [H4] are satisfied. Then, Eq.(1.1) has at least one solution.

Proof. The proof will be given in several steps.
Consider the operator P : PC1−γ,ρ (I,R)→ PC1−γ,ρ (I,R). The equivalent integral Eq. (2.6) which can be written in the operator form

v(t) =Pv(t)

where

Pv(t) =

(
tρ − tρ

k
ρ

)γ−1
1

Γ(γ)

[
a+ ∑

0<tk<t
χkv(tk)+ ∑

0<tk<t

ρI
1−β (1−α)
tk−1

f (tk,v(tk))

]
+ ρIα

tk f (t,v(t)).

(3.1)

We shall show that the operator P is continuous and completely continuous.

Claim 1: P is continuous.
Let vn be a sequence such that vn→ v in PC1−γ,ρ (I,R). Then for each t ∈ I,∣∣∣∣∣∣((Pvn)(t)− (Pv)(t))

(
tρ − tρ

k
ρ

)1−γ
∣∣∣∣∣∣≤ 1

Γ(γ)

[
∑

0<tk<t
|χk(vn(tk))−χk(v(tk))|+ ∑

0<tk<t
I

1−β (1−α)
tk−1

| f (tk,vn(tk))− f (tk,v(tk))|
]

+

(
tρ − tρ

k
ρ

)1−γ

Iα
tk | f (t,vn(t))− f (t,v(t))| ,

since f is continuous, then we have

‖(Pvn)(t)− (Pv)(t)‖PC1−γ,ρ
→ 0 as n→ ∞.

Claim 2: We show that P is the mapping of two bounded set.
For r > 0, there exists a positive constant l such that
Br =

{
v ∈ PC1−γ,ρ (I,R) : ‖v‖PC1−γ

≤ r
}

, we have ‖(Nv)‖PC1−γ,ρ
≤ l.∣∣∣∣∣∣(Pv)(t)

(
tρ − tρ

k
ρ

)1−γ
∣∣∣∣∣∣≤ 1

Γ(γ)

[
a+ ∑

0<tk<t
|χk(v(tk))|+ ∑

0<tk<t
I

1−β (1−α)
tk−1

| f (tk,v(tk))|
]
+

(
tρ − tρ

k
ρ

)1−γ

Iα
tk | f (t,v(t))|

≤ 1
Γ(γ)

a+m

(
tρ − tρ

k
ρ

)γ−1

‖µ∗(t)‖PC1−γ,ρ
+‖µ(t)‖PC1−γ,ρ

(
tρ

k − tρ

k−1
ρ

)α

mB(γ,1−β (1−α))

Γ(1−β (1−α))


+

(
tρ − tρ

k
ρ

)1−γ

B(γ,α)

Γ(α)

(
tρ − tρ

k
ρ

)α+γ−1

‖µ(t)‖PC1−γ,ρ

≤ 1
Γ(γ)

[
a+m

(
bρ

ρ

)γ−1
‖µ∗(t)‖PC1−γ,ρ

+
mB(γ,1−β (1−α))

Γ(1−β (1−α))

(
bρ

ρ

)α

‖µ(t)‖PC1−γ,ρ

]

+
B(γ,α)

Γ(α)

(
bρ

ρ

)α

‖µ(t)‖PC1−γ,ρ

= l.
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Claim 3: We show that P maps bounded sets into equicontinuous set.
Let t1, t2 ∈ I, t1 < t2,Br be a bounded set of PC1−γ,ρ (I,R) as in Claim 2, and v ∈ Br. Then,∣∣∣∣∣∣(Pv)(t1)

(
tρ

1 − tρ

k
ρ

)1−γ

− (Pv)(t2)

(
tρ

2 − tρ

k
ρ

)1−γ
∣∣∣∣∣∣

≤ 1
Γ(γ)

[
a+ ∑

0<tk<t1

χkv(tk)+ ∑
0<tk<t1

ρI
1−β (1−α)
tk−1

f (tk,v(tk))

]
+

(
tρ

1 − tρ

k
ρ

)1−γ

ρIα
tk f (t1,v(t1))

− 1
Γ(γ)

[
a+ ∑

0<tk<t2

χkv(tk)+ ∑
0<tk<t2

ρI
1−β (1−α)
tk−1

f (tk,v(tk))

]
−

(
tρ

2 − tρ

k
ρ

)1−γ

ρIα
tk f (t2,v(t2))

≤ 1
Γ(γ)

[
∑

0<tk<t1−t2

χkv(tk)+ ∑
0<tk<t1−t2

ρ I1−β (1−α)
tk−1

f (tk,v(tk))

]

+‖ f‖PC1−γ,ρ

B(γ,α)

Γ(α)

∣∣∣∣∣
(

tρ

1 − tρ

k
ρ

)α

−

(
tρ

2 − tρ

k
ρ

)α
∣∣∣∣∣

As t1→ t2, the right hand side of the above inequality tends to zero. From Claim 1 to 3, together with Arzela-Ascoli theorem, we conclude
that P : PC1−γ,ρ (I,R)→ PC1−γ,ρ (I,R) is continuous and completely continuous.

Claim 4: A priori bounds.
Now we prove that

ω =
{
v ∈ PC1−γ,ρ (I,R) : v= δN(v),0 < δ < 1

}
is bounded set.
Let v ∈ ω, v= δP(v) for some 0 < δ < 1. Thus for each t ∈ I. We have

v(t) = δ

( tρ − tρ

k
ρ

)γ−1
1

Γ(γ)

[
a+ ∑

0<tk<t
χkv(tk)+ ∑

0<tk<t

ρI
1−β (1−α)
tk−1

f (tk,v(tk))

]
+ ρIα

tk f (t,v(t))

 .
We show this Claim by letting the estimation in Claim 2. Finally, by Theorem 2.4, we deduce that P has a fixed point and it is the solution of
problem (1.1).

Theorem 3.2. Assume that the hypothesis (H1) and (H3) are fulfilled. If[
1

Γ(γ)

(
mL∗

(
bρ

ρ

)γ−1
+

mLB(γ,1−β (1−α))

Γ(1−β (1−α))

(
bρ

ρ

)α
)
+

LB(γ,α)

Γ(α)

(
bρ

ρ

)α
]
< 1

then, Eq. (1.1) has a unique solution.

Proof. Let v,v ∈ PC1−γ,ρ (I,R) and t ∈ I, then we have∣∣∣∣∣∣(Pv(t)−Pv(t))

(
tρ − tρ

k
ρ

)1−γ
∣∣∣∣∣∣

≤ 1
Γ(γ)

[
∑

0<tk<t
|χkv(tk)−χkv(tk)|+ ∑

0<tk<t

ρI
1−β (1−α)
tk−1

| f (tk,v(tk))− f (tk,v(tk))|
]

+

(
tρ − tρ

k
ρ

)1−γ

ρIα
tk | f (t,v(t))− f (t,v(t))|

≤ 1
Γ(γ)

mL∗
(

tρ − tρ

k
ρ

)γ−1

‖v−v‖PC1−γ,ρ
+

mLB(γ,1−β (1−α))

Γ(1−β (1−α))

(
tρ

k − tρ

k−1
ρ

)α

‖v−v‖PC1−γ,ρ


+

(
tρ − tρ

k
ρ

)1−γ

LB(γ,α)

Γ(α)

(
tρ − tρ

k
ρ

)α+γ−1

‖v− y‖PC1−γ,ρ

≤ 1
Γ(γ)

[
mL∗

(
bρ

ρ

)γ−1
‖v−v‖PC1−γ,ρ

+
mLB(γ,1−β (1−α))

Γ(1−β (1−α))

(
bρ

ρ

)α

‖v−v‖PC1−γ,ρ

]

+
LB(γ,α)

Γ(α)

(
bρ

ρ

)α

‖v−v‖PC1−γ,ρ

≤

[
1

Γ(γ)

(
mL∗

(
bρ

ρ

)γ−1
+

mLB(γ,1−β (1−α))

Γ(1−β (1−α))

(
bρ

ρ

)α
)
+

LB(γ,α)

Γ(α)

(
bρ

ρ

)α
]
‖v−v‖PC1−γ,ρ

= ‖v−v‖PC1−γ,ρ
.

This yields that P admits a unique fixed point, which is a solution of Eq. (1.1).
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4. FUS Analysis

In this section, we exam the FUS for our FDE (1.1). Let ϕ : I→ R+ be a continuous function and ε > 0. We need the following inequalities:

{
|ρDαu(t)− f (t,u(t))| ≤ ε,∣∣∆ρI1−γu(t)t=tk −χk(u(t

−
k ))
∣∣ ≤ ε,

(4.1)

{
|ρDαu(t)− f (t,u(t))| ≤ εϕ(t),∣∣∆ρI1−γu(t)t=tk −χk(u(t

−
k ))
∣∣ ≤ εϕ(t),

(4.2)

{
|ρDαu(t)− f (t,u(t))| ≤ ϕ(t),∣∣∆ρI1−γu(t)t=tk −χk(u(t

−
k ))
∣∣ ≤ ϕ(t),

(4.3)

Definition 4.1. The Eq. (1.1) is FUS if there finds a real number C f > 0 such that for each ε > 0 and for each solution u ∈ PC1−γ,ρ (I,R) of
the inequality (4.1) there exists a solution v ∈ PC1−γ,ρ (I,R) of Eq. (1.1) with

|u(t)−v(t)| ≤C f ε, t ∈ I.

Definition 4.2. The Eq. (1.1) is FUS if there occurs a function ϕ ∈ PC1−γ,ρ (I,R), ϕ f (0) = 0 satisfying that for each solution u ∈
PC1−γ,ρ (I,R) of the inequality (4.1) there occurs a solution v ∈ PC1−γ,ρ (I,R) of Eq. (1.1) with

|u(t)−v(t)| ≤ ϕ f ε, t ∈ I.

Definition 4.3. The Eq. (1.1) is FUHR stable with respect to ϕ ∈ PC1−γ,ρ (I,R) if there occurs a real number C f ,ϕ > 0 such that for each
ε > 0 and for each solution u ∈ PC1−γ,ρ (I,R) of the inequality (4.2) there exists a solution v ∈ PC1−γ,ρ (I,R) of Eq. (1.1) with

|u(t)−v(t)| ≤C f ,ϕ εϕ(t), t ∈ I.

Definition 4.4. The Eq. (1.1) is FUHRS with respect to ϕ ∈ PC1−γ,ρ (I,R) if there finds a real number C f ,ϕ > 0 such that for each solution
u ∈ PC1−γ,ρ (I,R) of the inequality (4.3) there occurs a solution v ∈C1−γ,ρ (I,R) of Eq. (1.1) with

|u(t)−v(t)| ≤C f ,ϕ ϕ(t), t ∈ I.

Remark 4.5. A function u ∈ PC1−γ,ρ (I,R) is a solution of the inequality (4.1) if and only if there finds a function g ∈ PC1−γ,ρ (I,R) such
that

(i) |g(t)| ≤ ε, |gk|< ε, t ∈ I.
(ii) ρDα,βu(t) = f (t,u(t))+g(t), t ∈ I

′
.

(iii) ∆ρI1−γu(t)t=tk = χku(t
−
k )+gk.

Remark 4.6. If u is a solution of the inequality (4.1), then u is a solution of the following integral inequality∣∣∣∣∣∣u(t)−
(

tρ − tρ

k
ρ

)γ−1
1

Γ(γ)

[
a+ ∑

0<tk<t
χku(tk)+ ∑

0<tk<t

ρ I1−β (1−α)
a+ f (tk,u(tk))

]
− ρ Iα

a+ f (t,u(t))

∣∣∣∣∣∣
≤ ε

[(
b
ρ

)γ−1 1
Γ(γ)

(
m+

m
Γ(2−β (1−α))

(
b
ρ

)1−β (1−α)
)
+

1
Γ(α +1)

(
b
ρ

)α−1
]
.

Moreover, by Remark 4.5, one can realize that

ρDα,βu(t) = f (t,u(t))+g(t), t ∈ I

∆
ρI1−γu(t)t=tk = χku(t

−
k )+gk.

Then

u(t) =

(
tρ − tρ

k
ρ

)γ−1
1

Γ(γ)

[
a+ ∑

0<tk<t
χku(tk)+ ∑

0<tk<t

ρI
1−β (1−α)
a+ f (tk,u(tk))

]
+ ρIα

a+ f (t,u(t)).

From this it follows that∣∣∣∣∣∣u(t)−
(

tρ − tρ

k
ρ

)γ−1
1

Γ(γ)

[
a+ ∑

0<tk<t
χku(tk)+ ∑

0<tk<t

ρI
1−β (1−α)
a+ f (tk,u(tk))

]
− ρIα

a+ f (t,u(t))

∣∣∣∣∣∣
≤

(
tρ − tρ

k
ρ

)γ−1
1

Γ(γ)

[
∑

0<tk<t
|gk|+ ∑

0<tk<t

ρI
1−β (1−α)
a+ |g(tk)|

]
+ ρIα

a+ |g(t)|

≤ ε

[(
b
ρ

)γ−1 1
Γ(γ)

(
m+

m
Γ(2−β (1−α))

(
b
ρ

)1−β (1−α)
)
+

1
Γ(α +1)

(
b
ρ

)α
]
.

We have similar remarks for the inequality (4.2) and (4.3).
Now, we give the main results, FUHRS results.
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Theorem 4.7. The hypothesis [H1], [H3] and [H5] holds. Then Eq.(1.1) is FUHRS.

Proof. Let u be solution of 4.3 and by Theorem 3.2 there v is unique solution of the problem
ρDα,βv(t) = f (t,v(t),v(λ t)), t ∈ I,

∆
ρI1−γu(t)t=tk = χku(t

−
k )+gk,

ρI1−γv(0) = ρI1−γu(0).

Then, we have

v(t) =

(
tρ − tρ

k
ρ

)γ−1
1

Γ(γ)

[
a+ ∑

0<tk<t
χkv(tk)+ ∑

0<tk<t

ρI
1−β (1−α)
a+ f (tk,v(tk))

]
+ ρIα

a+ f (t,v(t)).

By differentiating inequality (4.3), we have∣∣∣∣∣∣u(t)−
(

tρ − tρ

k
ρ

)γ−1
1

Γ(γ)

[
a+ ∑

0<tk<t
χku(tk)+ ∑

0<tk<t

ρI
1−β (1−α)
a+ f (tk,u(tk))

]
− ρIα

a+ f (t,u(t))

∣∣∣∣∣∣
≤

((
bρ

ρ

)γ−1 m
Γ(γ)

(1+λϕ )+λϕ

)
ϕ(t).

Hence, it follows

|u(t)−v(t)| ≤

∣∣∣∣∣∣u(t)−
(

tρ − tρ

k
ρ

)γ−1
1

Γ(γ)

[
a+ ∑

0<tk<t
χkv(tk)+ ∑

0<tk<t

ρI
1−β (1−α)
a+ f (tk,v(tk))

]
− ρIα

a+ f (t,v(t))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣u(t)−
(

tρ − tρ

k
ρ

)γ−1
1

Γ(γ)

[
a+ ∑

0<tk<t
χku(tk)+ ∑

0<tk<t

ρI
1−β (1−α)
a+ f (tk,u(tk))

]
− ρIα

a+ f (t,u(t))

∣∣∣∣∣∣
+

(
tρ − tρ

k
ρ

)γ−1
1

Γ(γ)

(
|χku(tk)−χkv(tk)|+ ρI

1−β (1−α)
a+ | f (tk,u(tk))− f (tk,v(tk))|

)
+ ρIα

a+ | f (t,u(t))− f (t,v(t))|

≤

((
bρ

ρ

)γ−1 m
Γ(γ)

(1+λϕ )+λϕ

)
ϕ(t)+

(
bρ

ρ

)γ−1 L∗k
Γ(γ)

|u(tk)−v(tk)|

+

[
m

Γ(γ)

(
bρ

ρ

)α mL
Γ(2−β (1−α))

+
L

Γ(α)

(
bρ

ρ

)α]
|u(t)−v(t)| .

By the properties, there occurs a constant M∗ > 0 independent of λϕ ϕ(t) such that

|u(t)−v(t)| ≤M∗λϕ ϕ(t) :=C f ,ϕ ϕ(t).

Thus, Eq.(1.1) is FUHRS.
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