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Abstract

Using a Diagonalization Theorem obtained when the spectrum is Lipschitzian, we extend
a result of G. Braatvedt on scalar characterization in Banach algebras to Banach-Jordan
algebras. We also establish that any element of a semisimple Banach-Jordan algebra with
the property that all elements in some neighbourhood of the identity are spectrally invariant
under multiplication by the quadratic U operator, has analogs with the identity.

1. Preliminaries

A unital Banach-Jordan algebra is a vector space with a binary product

(x,y) 7→ x · y

satisfying the identities:

x · y = y · x, (x · y)2 = x2 · (y · x2) ∀x,y ∈ A,

and endowed with a complete norm ‖ · ‖ such that, for all x,y ∈ A,

‖ x · y ‖≤‖ x ‖‖ y ‖ .

N. Jacobson introduced the notion of invertibility in Jordan algebras, which generalizes the notion of invertibility in associative algebras.
Given x in A we say that x is invertible in A if there exists y in A such that x · y = 1 and x2 · y = x. This element y is unique and is usually
denoted by x−1. It turns out that this notion of inverse is intimalely related to the quadratic map U : A 7→BL (A) defined by

Uxy = 2x · (x · y)− x2 · y

for any x,y ∈ A. Keeping in mind that the mapping x 7→ Ux from A into BL (A) is continuous, the invertible elements Ω = {a ∈ A :
Ua is invertible} form an open subset of A; in particular, Ω is locally connected as shown by O. Loos in [7], so its connected components are
open. Also, the space C[x] spanned by all powers of x is a commutative associative subalgebra with respect to the linear Jordan product. By
continuity, the same holds for its closure C in A. We refer the reader to Chapter 4 of [6] for more details on spectral theory in Banach-Jordan
algebras. For general theory of Jordan algebras see [8] and [10].

Theorem 1.1. An element x of A is invertible if and only if Ux is invertible in L (A), the algebra of linear operators on A, in which case
Ux−1 = U−1

x . If x, y ∈ A, then they are both invertible if and only if Ux(y) is invertible in A. In particular, x is invertible if and only if xn is
invertible for every integer n≥ 1.

This theorem implies that the set of invertible elements Ω(A) is invariant when taking powers, but unfortunately, it is not stable for the
product. For x ∈ A we denote respectively by Sp(x) = {λ1− x /∈Ω(A)} and ρA(x) = sup{|λ | : λ ∈ Sp(x)} the spectrum and spectral radius
of x.
In what follows, an important tool will be the theory of subharmonic functions, based essentially on the celebrated result of Aupetit and
Zraibi, which allow us to use analytic tools in Banach-Jordan algebras.
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Theorem 1.2 (Aupetit-Zraibi). Let f : D→ A be a holomorphic function from a domain D of C into a Banach-Jordan algebra. Then the
mapping λ → Sp( f (λ )) is an analytic multifunction. Consequently, λ 7−→ ρ( f (λ )) and λ 7−→ logρ( f (λ )) are subharmonic on D.

We will require the following fundamental result from the theory of subharmonic functions [1].

Theorem 1.3 (Maximum Principle for Subharmonic Functions). Let f be a subharmonic function on a domain D of C. If there exists λ0 ∈D
such that f (λ )≤ f (λ0) for all λ ∈ D, then f (λ ) = f (λ0) for all λ in D.

Another important ingredient is Aupetit’s characterization of the McCrimmon radical Rad(A) of A (see [3]) and its corollaries.

Theorem 1.4 (Aupetit). Let a be an element of a Banach-Jordan algebra A. Then a is in the McCrimmon radical of A if and only if
sup{ρ(x+ ta) : t ∈ C}< ∞ for every x in A.

Corollary 1.5. An element a of a Banach-Jordan algebra A is in the McCrimmon radical of A if and only if supρ(Uxa) = 0 for every x in A.

Corollary 1.6. An element a of a Banach- Jordan algebra A is in the McCrimmon radical of A if and only if there exists C ≥ 0 such that
ρ(x)≤ C ‖ x−a ‖ for every x in a neighborhood of a.

2. Some results under the condition of a Lipschitzian spectrum

The next lemma is a spectral characterization of the Jacobson radical in terms of the Lipshitzian behaviour of the spectrum. It was obtained
by Aupetit in [3] for Banach algebras and we extend it here to Banach-Jordan algebras.

Lemma 2.1. Let q ∈ A be a quasi-nilpotent element. Suppose that there exists r,C > 0 such that ρ(x)≤C ‖ x−q ‖, for ‖ x−q ‖< r, then
q ∈ Rad(A).

Proof. Let y∈ A be arbitrary. For |λ |> ‖y‖
r , we have ρ(q+ y

λ
)≤C ‖y‖|λ | , consequently ρ(y+λq)≤C ‖ y ‖ . Hence the upper semi-continuous

function λ 7→ ρ(y+λq) is bounded on the complex plane. Being subharmonic, it is constant by Liouville’s Theorem for subharmonic
functions. Thus ρ(y+q) = ρ(y), for every y ∈ A and by Aupetit’s characterization of the radical [3], we obtain q ∈ Rad(A).

We recall that the spectrum is said to be Lipschitzian at an element a of a Banach-Jordan algebra if there exists two positive constants r and
C such that ∆(Sp(x),Sp(a))≤C ‖ x−a ‖ for all x satisfying ‖ x−a ‖< r, where ∆ represents the Hausdorff distance on compact sets of the
complex plane defined by

∆(σ1,σ2) = max{ sup
λ∈σ2

{dist(λ ,σ1)}, sup
λ∈σ1

{dist(λ ,σ2)}}

where dist(λ ,σ) = inf{|λ −µ| : µ ∈ σ} is the distance of the point λ to the compact set σ (see [1]). Using the previous lemma, we obtained
the following theorem in [9].

Theorem 2.2. Let A be a semisimple complex Banach-Jordan algebra and let a ∈ A have finite spectrum, Sp(a) = {α1, · · · ,αn}. Suppose
that the spectral mapping x 7→ SpA(x) is Lipschitzian at a. Then there exist n nonzero orthogonal projections p1, · · · , pn whose sum is 1 and
such that a = α1 p1 + · · ·+αn pn.

The next theorem obtained in [5] for Banach algebras is in fact a particular case to our theorem quoted above. We extend here this theorem to
Jordan algebras along with a new proof.

Theorem 2.3. Let A be a semisimple complex Banach-Jordan algebra and let a ∈ A. If the spectrum is Lipschitzian at a and Sp(a) = {α},
then a = α1.

Proof. Since the spectrum is Lipschitzian at a, it follows that there exists two positive constants r and C such that

∆(Sp(x),Sp(a))≤C ‖ x−a ‖

for all x satisfying ‖ x−a ‖< r. Clearly,

∆(Sp(x),Sp(a)) = ∆(Sp(x−α),Sp(a−α)) .

Since Sp(a−α) = {0}, taking x−α1 = y, we get from our assumption

ρ(y) = ∆(Sp(y),{0})
= ∆(Sp(y),Sp(a−α1))

≤C ‖ x−a ‖
=C ‖ y− (a−α1) ‖

for all ‖ y− (a−α1) ‖< r. It follows from Corollary 2 of Aupetit’s characterization of the radical, that a−α1 ∈ Rad(A) = {0}. Thus
a = α1.
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3. Scalar characterization in a Banach-Jordan algebra

Another result obtained in [5] is the following multiplicative scalar characterization of elements in a Banach algebra.

Theorem 3.1. Let A be a semisimple complex Banach algebra and let a ∈ A. Then a = 1 if and only if Sp(ax) = Sp(x) for all x in a
neighborhood of 1.

We extend this result to Banach-Jordan algebras with a slightly different conclusion. It is clear that if a = 1 then Sp(Uax) = Sp(x) for all x in
A. But the converse is not exactly as for Banach algebras. Indeed, instead of using the linear Jordan product as an analogue of multiplication
in Banach algebras, we consider multiplication by the quadratic U operator in the situation of Banach-Jordan algebras. Precisely, we
prove that if an element a in a semisimple Banach-Jordan algebra has the property that multiplication by Ua leaves all elements in some
neighbourhood of the identity spectrally invariant, then clearly that element squares to the identity.

Theorem 3.2. Let A be a complex semisimple Banach-Jordan algebra and a nonzero element a of A. If Sp(Uax) = Sp(x) for all x in a
neighborhood of 1 then a2 = 1. In particular, a is invertible and a−1 = a.

Proof. Note that if a = 1 then Sp(Uax) = Sp(x). We are interested by the converse. Suppose that Sp(Uax) = Sp(x) for all x in a neighborhood
V (1) of 1. Let x = 1, then Sp(Ua1) = Sp(a2) = Sp(1) = {1}. So Sp(a) ⊆ {−1,1}, hence a is invertible. Let y ∈ A arbitrary. Take λ

sufficiently small, say λ ∈ B(0,ε), such that

Sp(λy+a2) = Sp(Ua(λUa−1 y+1)) = Sp(λUa−1 y+1) = Sp(λUa−1 y)+1.

So,

Sp(λy+a2−1) = Sp(λUa−1 y)

and

ρ(y+
1
λ
(a2−1)) = ρ (Ua−1 y)

for all 0 6= λ ∈ B(0,ε). Furthermore,

ρ(y+
1
λ
(a2−1))≤‖ y+

1
λ
(a2−1)) ‖

≤‖ y ‖+| 1
λ
| ‖ a2−1 ‖

≤‖ y ‖+1
ε
‖ a2−1 ‖

for all λ ∈ C\B(0,ε).
Hence, there exists M > 0 such that

ρ(y+
1
λ
(a2−1))≤M

for all λ ∈ C\{0}. Furthermore,

limsup
λ→0

ρ

(
y+

1
λ
(a2−1)

)
≤M.

Hence, taking µ = 1
λ

it follows that the subharmonic function

φ : µ 7→ ρ

(
y+µ(a2−1)

)
is bounded on C, and

limsup
µ→∞

φ(µ) ≤ M.

By Liouville’s theorem for subharmonic functions, φ is constant. Hence,

ρ

(
y+µ(a2−1)

)
= ρ(y)

for all µ ∈ C. By Aupetit’s characterization of the radical, we obtain

a2−1 ∈ Rad(A) = {0},

that is a2 = 1.

Our last result concerns bounded elements in a finite dimensional Banach-Jordan algebra. Exactly as for Banach algebras, we get the
following theorem which extends another result of G. Braatvedt from associative Banach algebras to Non-associative Banach algebras. The
proof follows the same arguments as the associative one. Recall that an element a of a Banach-Jordan algebra is said to be power bounded if
there exists a positive constant M such that ‖ an ‖≤ M for all n ∈ N (more details on powers of elements in Banach-Jordan algebras can be
found in [5]).
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Theorem 3.3. Let A be a finite-dimensional Banach-Jordan algebra and a ∈ A. If Sp(a) = {1} and a is power bounded, then a = 1.

Proof. Note that since Sp(a) = {1}, then Sp(a− 1) = {0}. Hence, (a− 1) is quasi-nilpotent and therefore nilpotent since A is finite-
dimensional. Thus (a−1)N = 0 for some N ∈ N. Hence for all n≥ N, we get

an = ((a−1)+1)n =
n

∑
k=0

(
k
n

)
(a−1)k =

N−1

∑
k=0

(
k
n

)
)(a−1)k.

Since a is power bounded, for some M > 0 and all n ∈ N we have ‖ an ‖≤ M. Hence for all n ∈ N,

‖
N−1

∑
k=0

(
k
n

)
(a−1)k ‖≤ M =⇒‖

N−2

∑
k=0

(
k
n

)
(a−1)k +

(
n

N−1

)
(a−1)N−1 ‖≤ M

Dividing both sides by
( n

N−1
)

gives

‖
N−2

∑
k=0

(N−1)!
(n− k)(n− (k+1)) · · ·(n− (N−2))k!

(a−1)k +(a−1)N−1 ‖≤ M( n
N−1

)
(because k ≤ N− 2 < N− 1). Now considering the limit as n→ ∞ gives 0 ≤‖ (a− 1)N−1 ‖≤ 0, and so (a− 1)N−1 = 0. It follows by
induction that (a−1) = 0 that is a = 1.

Remark 3.4. The previous theorem is valid for Banach-Jordan algebras because the proof takes place in a subalgebra generated by 1 and
a, that is a full subalgebra of a Banach-Jordan algebra. In that case everything works as in classical Banach algebras as described and well
explained in Chapter 4 of [6].
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