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 Lightweight CNN-Based Intrusion Detection for Automotive CAN Bus in Light 

Commercial Vehicles 

 
A R T I C L E  I N F O  

 
A B S T R A C T  

 
With the rapid advancement of digitalization and automation, modern vehicles, 

especially in the light commercial segment, have evolved into complex, 

interconnected platforms resembling mobile computing systems. This 

transformation has increased the dependency on in-vehicle communication 

networks and, as a result, exposed them to a wider range of cybersecurity 

threats. A fundamental aspect of the proposed method is the use of a 

lightweight CNN model specific for deployment in embedded automotive 

environments with limited computational resources and optimized for 

efficiency. Operating on low-power hardware platforms such as edge ECUs, 

the tiny device developed in this study works effectively unlike conventional 

deep learning architectures seeking high processing power and memory. 

Despite its minimal computational footprint, the model is capable of accurately 

distinguishing between legitimate and spoofed communication traffic, as well 

as detecting a variety of attack forms that target different CAN protocol 

components. The performance metrics of the model further highlight its 

effectiveness, achieving a ROC AUC Score of 0.9887, an Accuracy of 0.9887, 

a Precision of 0.9825, a Recall of 0.9952, and an F1-Score of 0.9888. 

Particularly for real-time on-vehicle intrusion detection systems, this harmony 

between performance and efficiency makes the strategy especially important. 

Just as importantly is the introduction of a specifically produced hybrid dataset, 

which is fundamental for system evaluation and training. The dataset 

aggregates synthetic generated attack scenarios with real-world spoofing, 

injection, and denial-of- service (DoS) conditions using actual CAN traffic 

acquired from a J1939-compliant light commercial vehicle. Standard 11-bit 

identities combined with industrial communication protocols help the dataset 

to reflect real-world vehicle dynamics across several ECUs under various 

scenarios. The model can learn fine-grained patterns often missed by 

conventional rule-based or manually engineered approaches by means of the 

image-like transformation of CAN messages—preserving bit-level and 

temporal information. In intelligent transportation systems, the lightweight 

CNN architecture and the strong dataset combine to create a scalable and 

deployable IDS framework that can improve in-vehicle cybersecurity.  
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1.  Introduction 

Mobility is evolving rapidly in today’s data-driven 

automotive landscape. Modern vehicles now function 

as networked computing platforms that integrate 

electric propulsion, partial autonomy and cloud-based 

services. These conveniences, however, enlarge the 

attack surface. Controller Area Network (CAN) is 

still the backbone of in-vehicle communication 

because of its real-time guarantees and low cost, yet 

it provides neither encryption nor message 

authentication. Consequently, adversaries can inject, 
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spoof or flood messages that putting vehicle in danger 

safety-critical control units. High-profile incidents 

such as the Jeep Cherokee hack and the recent CAN-

injection thefts of Toyota models demonstrate the 

tangible risks. Against this backdrop, research 

interest has shifted toward lightweight, deep-

learning-based intrusion-detection systems (IDS) that 

can run on embedded hardware. Recent studies 

explore depth-wise separable CNNs (DSC-KAN), 

transformer architectures enhanced with federated 

learning and unsupervised GAN-based models. 

Building on these advances, we propose an IDS that 

transforms raw CAN frames into 8 × 13 binary 

images and classifies them with a compact CNN, 

achieving high accuracy (98.9 %) while fitting the 

resource constraints of light commercial vehicles. 

The development of a lightweight, embedded-

suitable Intrusion Detection System (IDS) for CAN 

networks in electric light commercial vehicles is the 

main topic of this work. The proposed architecture 

converts CAN messages into binary matrices by 

means of an image-based feature extraction technique 

coupled with a small CNN. Under different traffic 

conditions and bus load levels, this design helps the 

model to learn spatial and temporal patterns in real 

traffic and correctly identify spoofed or imposter 

communications. 

 

To train and evaluate the system, a custom dataset 

was constructed using CAN traffic collected from a 

production-grade electric vehicle developed by 

Karsan. The dataset includes both genuine and 

adversarial scenarios, covering injections, spoofing, 

and DoS attacks. To the best of our knowledge, this 

is the first study to implement an IDS on CAN traffic 

conforming to the J1939 protocol, which is widely 

used in commercial vehicle architecture but remains 

underexplored in the literature [5,6]. 

The CAN protocol, originally developed by Bosch in 

the late 1980s, is widely adopted for its efficiency and 

simplicity in enabling communication among 

electronic control units (ECUs) without a centralized 

controller. However, it was not designed with 

external connectivity in mind, leaving it vulnerable to 

unauthorized access and manipulation [5,6]. Real-

world incidents have demonstrated that attackers, 

whether through physical or remote access, can 

exploit these vulnerabilities to compromise vehicle 

safety [1,2]. For instance, falsified brake commands 

may lead to unintended vehicle behavior, posing 

serious risks to passenger safety [2,3]. To address 

these challenges, the automotive cybersecurity 

community has increasingly turned to artificial 

intelligence and machine learning techniques. Deep 

learning models, particularly CNNs, have shown 

promise in identifying complex patterns within CAN 

traffic, enabling adaptive intrusion detection beyond 

the capabilities of traditional rule-based systems 

[5,6,10]. 

This study introduces a scalable and intelligent IDS 

system that dynamically detects threats by learning 

from authentic communication sequences. Designed 

for deployment in embedded automotive 

environments, the system aims to enhance 

cybersecurity in next generation connected and 

autonomous vehicles by offering a novel detection 

mechanism, a reproducible dataset, and robust 

empirical performance metrics. 

2.  Related Work 

Intrusion Detection Systems (IDS) intended for 

Controller Area Network (CAN) communications 

have garnered significant interest in recent years, 

especially with the development of autonomous, 

connected, and electric vehicles. Although 

conventional rule-based detection techniques offer 

simplicity, they are insufficient in adapting to 

complex and evolving cyberattack patterns. Thus, 

recent literature has moved towards methodologies 

based on deep learning (DL), particularly those 

employing convolutional neural networks (CNNs) [7-

10] and recurrent models like LSTM [6]. More recent 

research includes lightweight depth wise separable 

CNNs that maintain accuracy with fewer parameters 

[11], transformer‑based federated learning 

approaches that preserve data privacy across vehicles 

[12], unsupervised GAN‑driven detectors that require 

no labelled data [14] and graph convolutional 

methods that model sequential frame dependencies 

[19].  

Other recent efforts have explored unsupervised IDS 

based on attention autoencoders [13], deep embedded 

clustering approaches [14], ensemble multi‑class 

classifiers for in‑vehicle networks [16], 

comprehensive CNN/LSTM/GRU comparisons that 

evaluate model complexity and accuracy trade‑offs 

[17], triple‑attention architectures coupled with 

global optimization [18] and fully unsupervised 

detection frameworks tailored for CAN traffic [20]. 

Recent studies propose highly efficient architectures 

such as depth wise separable CNNs [11] and 

LETNN‑based models that approximate 

self‑attention with Toeplitz matrices [15], 

demonstrating real‑time inference on 

automotive‑grade microcontrollers. 

These contributions together position our work as a 

practical, scalable, protocol-aware intrusion detection 
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system fit for contemporary intelligent transportation 

systems. While Wu et al [6] created a byte-level 

lightweight CNN fit for embedded systems [6], 

Shahriar et al. [5], proposed ConvIDS, a CNN 

architecture meant to identify payload anomalies in 

sequential CAN IDs [5]. Image-based representations 

of CAN messages were first presented by Marchetti 

and Stabili [4], allowing CNNs to extract spatial 

features free from handcrafted features [4]. These 

studies show three important constraints addressed in 

this work, even if they reflect major developments in 

CAN Bus security: 

First, most current works use datasets gathered under 

simulated or limited environments that fail to reflect 

the high-volume and heterogeneous traffic observed 

in modern electric vehicle (EV) infrastructures. 

Characterized by high message density and 

continuous ECU interaction, our study focuses on 

CAN traffic obtained from a light commercial EV, so 

reflecting a more realistic and stress-intensive 

communication environment.  

Second, past IDS datasets and models sometimes 

ignore industry-specific protocols and stress standard 

11-bit CAN identifiers. Conversely, our hybrid 

dataset includes J1939-compliant messages, so 

enabling detection capabilities spanning heavy-duty 

and commercial vehicle networks where this protocol 

is extensively used. 

Third, many deep learning-based IDS systems are 

computationally demanding and inappropriate for 

embedded deployment notwithstanding their 

accuracy. We developed small and resource-efficient 

CNN architecture especially targeted for low-power 

edge devices.  

These contributions together position our work as a 

practical, scalable, protocol-aware intrusion detection 

system fit for contemporary intelligent transportation 

systems. 

3.  Proposed Intrusion Methods 

3.1. Attack Scenarios 

 Though in-car communication mostly uses the 

Controller Area Network (CAN) Bus protocol, it 

lacks the necessary security elements, such as 

message authentication, encryption, and access 

control [1-5]. This weakness makes it an easy target 

for different cyberattacks. This work tested four 

different attack techniques in a controlled laboratory 

environment using both simulated intrusion attempts 

and real CAN traffic. The assaults were injected using 

a Raspberry Pi 5 and MCP2515 module, while normal 

traffic was tracked with CANoe software and a 

Vector VN1630 interface. Table 1 provides a 

comparative overview of various attack types with 

respect to their complexity and visibility 

characteristics 

Table 1 : Comparisons of CAN Bus Attack Types by 

Complexity, Visibility 

Attack Type Complexity Visibility References 

Message 

Injection 
Low Medium [4,5] 

Spoofing Medium Low [2,3,6] 

Replay Medium Low [2,6] 

Masquerade High Very Low [5] 

DoS Low High [1-4] 

Fuzzy 

Attack 
Medium Medium [1] 

ID Flooding Medium High [3] 

 

Message Injection, one of the most basic attack forms 

in CAN systems is message injection. It sends illegal 

frames using current message IDs on the bus. 

Rewording or copying accurate ECU messages helps 

to produce these hostile messages influencing vehicle 

behavior. To remain invisible in the network, an 

assailant could send modified throttle, RPM, or break 

status messages with suitable IDs and frequency 

[4,5]. 

In Spoofing attack, under incorrect source identities, 

messages are sent allowing spoofing attacks to pass 

for real ECUs. This kind of attack uses the broadcast 

part and the absence of authentication in CAN 

communication. Utilizing real communications and 

changing their content before retransmission enabled 

us to spoof, or copy, the anti-lock braking system or 

transmission control module in our tests. [2,3,6]. 

At Denial-of-Service (DoS) Attack, typically 

utilizing low identification values to dominate the 

arbitration process, DoS attacks seek to flood the 

CAN bus with a high frequency of messages. 

Permanent high-priority frame delivery allows 

attackers to delay or obstruct authorized transfer, 

consequently possibly displaying important safety 

mechanisms useless. This was accomplished in our 

system by repeatedly low-ID messages like 0x000 at 

high speeds [1-4]. 

In Replay Attacks, essential CAN communications 

are recorded during normal operation and then 

transmits in replay attacks. Replayed frame structure 

and timing seem reasonable, hence traditional rule-

based systems find it difficult to identify such 

assaults. For instance, while the car is unattended, one 
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can replay a previously captured message for door 

unlocking or headlight activation [2,6]. 

Masquerade Attacks, Masquerade assaults, a 

sophisticated form of spoofing, include an attacker 

delivering fake messages implied to disable or control 

a real ECU and seize control of its communication 

abilities. Since these attacks can avoid systems 

depending simply on message frequency or ID, they 

are extremely dangerous. Our technology replicated 

masquerade behavior by replacing approved 

messages with material controlled by attackers [5]. 

As part of fuzzy attacks, transmission of random or 

controlled CAN packets with arbitrary identities and 

contents is involved. One can aim to affect ECUs by 

identifying latent properties or inducing unexpected 

system responses. Continuous generation and 

injection of random IDs and 8-byte payloads let us 

evaluate how resilient the system was under fuzzing 

conditions [1]. 

Arbitration Abuse (ID Flooding), Lower ID value 

frames are given priority under the CAN arbitration 

system. Attackers might use this weakness by 

constantly sending low-ID messages to control the 

bus, so preventing or blocking communication with 

ECUs having higher IDs. This specific flooding 

method monitored the transmission latency of 

diagnostic or infotainment information by fast 

injection of IDs, such 0x001 or 0x003 [3].  

3.2. Custom Dataset  

This study introduces a large-scale, hybrid custom 

dataset designed to support the training and 

evaluation of deep learning-based Intrusion Detection 

Systems (IDS) for Controller Area Networks (CAN) 

in electric light commercial vehicles. The dataset 

adheres to the J1939 protocol and was collected from 

a production-grade electric vehicle developed by 

Karsan, ensuring both industrial relevance and real-

world protocol compliance. 

Data collection was carried out in two coordinated 

phases. In the first phase, authentic in-vehicle CAN 

traffic was recorded using a Vector VN1630 interface 

in conjunction with Vector CANoe, a widely used 

simulation and analysis platform. Raw messages were 

logged directly via the OBD-II port from multiple 

Electronic Control Units (ECUs), including those 

responsible for engine, transmission, braking, and 

dashboard instrumentation. To ensure diversity in 

signal frequency and bus load, data was collected 

under varied driving conditions such as idling, 

acceleration, deceleration, and highway cruising. 

Timestamping with millisecond precision allowed for 

accurate sequence modeling. 

In the second phase, cyberattack scenarios were 

simulated in a controlled environment. Using a 

Raspberry Pi 5 with an MCP2515 CAN transceiver, 

various adversarial actions—such as spoofing, 

message injection, denial-of-service (DoS), and 

replay attacks—were injected into the network. These 

intrusions were executed during both static and 

dynamic states of the vehicle. Custom Python scripts 

facilitated precise control over payload manipulation 

and timing, and all injected frames were clearly 

labeled to enable supervised learning and post-

analysis. 

To ensure consistency with previous work, the 

preprocessing pipeline was inspired by the 

framework of Marchetti and Stabili [4]. Steps 

included labeling, cleaning, time alignment, and class 

balancing. The final dataset contains 4,792,115 CAN 

frames formatted as time-ordered sequences, each 

including message ID, Data Length Code (DLC), and 

raw payload bytes. 

Table 2: Data Split Summary for the CAN Bus Dataset 

 

 

Design choices for dataset construction were 

informed by prior research. For example, stealthy 

payload manipulation strategies were guided by 

Shahriar et al. [5] and Wu et al. [6], while the 

selection of attack types aligns with works by 

Avatefipour et al. [2] and Alfardus and Rawat [1]. 

These references emphasize the importance of 

detecting not only syntactically anomalous frames but 

also semantically manipulated messages that mimic 

legitimate traffic.  

By combining real-world CAN traffic with realistic 

adversarial scenarios, this dataset offers a 

reproducible, high-fidelity foundation for developing 

and evaluating robust IDS solutions in embedded 

automotive environments. 

3.3. Proposed Binary Image Generation 

Algorithm 

To transform CAN Bus messages into a visual 

representation suitable for convolutional neural 

network (CNN)-based intrusion detection models, a 

Set 
Total 

Samples 

Attack 

Samples 

Normal 

Samples 

Training 3204680 130999 3073681 

Validation 1373435 56142 1317293 

Test 80000 40000 40000 
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structured preprocessing algorithm was developed. 

__________________________________________ 

Algorithm 1: Pseudocode for Binary Image 

Generation from CAN Messages 

__________________________________  

Input: Input folder with CAN message CSV files 

Output: 8×13 grayscale images representing CAN 

messages 

  1. Open or create a log file in the output folder 

 2. foreach CSV file in the input folder do 

2.1. Load the CSV file as a table of CAN  

     messages 

2.2. foreach row in the table do 

   a. Extract timestamp, CAN_ID, DLC, data        

           bytes 
b. Convert CAN_ID to binary (11 or 29 bits) 

c. Convert DLC to 4-bit binary 

d. Convert each data byte to 8-bit binary 

e. Concatenate all binary segments into one  

  binary stream 

f. if binary stream length < 104 bits then 

g. Pad with zeros to reach 104 bits 

h. Reshape the 104-bit binary stream into an  

  8 × 13 binary matrix 

i. Convert binary matrix to a grayscale image  

  (0 = black, 1 = white) 

j. Save the image using a unique name  

  (e.g., timestamp_CANID.png) 

k. Log the image path and source message  

  info to the log file 

3. Close the log file 

The initial samples and their matrix representations 

are also logged for traceability and debugging. By 

converting sequential CAN messages into spatially 

structured visual inputs, this approach supports the 

use of computer vision techniques in the context of 

CAN Bus intrusion detection [5], [6]. 

 

Figure  1 : Binary Image Example 

Finally, depending on their source filenames, the 

images are stored into organized output folders. This 

company helps with deep learning pipelines to 

process future batches. The approach allows the use 

of computer vision methods to CAN Bus intrusion 

detection by converting temporal and semantic 

message features into a visual domain. Figure 1 

shows a visual representation of the produced binary 

image. 

3.4. Proposed Model Architecture 

The proposed model adopts a compact convolutional 

neural network (CNN) architecture designed to 

process binary-encoded CAN messages represented 

as 8×13 grayscale images. The structure and meaning 

of each CAN frame are shown in this way. It includes 

the message ID, the data length code (DLC), and the 

data payload, all of which are organized into a fixed-

length binary matrix. The model's architecture is kept 

simple on purpose to keep the performance for 

detecting different types of attacks high while 

reducing the amount of work that needs to be done. 

An input layer accepting 8x13 single-channel 

grayscale images starts the architecture.  Two 

consecutive convolutional layers transverse this 

input.  Using ReLU activation and a 3x3 kernel size, 

the first convolutional layer employs 16 filters.  To 

lower spatial dimensions, a max pooling operation 

with a 2x2 pool size follows.  Following another max 

pooling layer, the second convolutional layer uses 32 

filters, also with a 3x3 kernel size and ReLU 

activation. The feature maps are flattened into a one-

dimensional vector following the convolutional 

blocks and then fed through a fully connected dense 

layer comprising 32 units and ReLU activation.  One 

uses a dropout layer with a rate of 0.2 to enhance 

generalization and stop overfitting.  A further dense 

layer with sixteen units follows this to act as a 

compact feature representation layer.  Applied before 

the last output layer is still another dropout layer with 

a higher dropout rate of 0.4.  One sigmoid-activated 

single neuron in the output layer generates a binary 

prediction showing whether the input message is 

authentic or hostile. Table 3 presents a summary of 

the proposed architecture for the deep learning model. 

Table 2 : Model Summary Table 

# Layer Type Input Shape Output Shape 

1 Input (None,8,13,1) (None,8,13,1) 

2 Cast (None, 8, 13, 1) (None, 8, 13, 1) 

3 Conv-2D (None, 8, 13, 1) (None, 8, 13, 16) 

4 Max Pooling 2D (None, 8, 13, 16) (None, 4, 6, 16) 

5 Conv-2D (None, 4, 6, 16) (None, 4, 6, 32) 

6 Flatten (None, 4, 6, 32) (None, 768) 

7 Dense (None, 768) (None, 32) 

8 Dropout (None, 32) (None, 32) 

9 Dense (None, 32) (None, 16) 

10 Dropout (None, 16) (None, 16) 

11 Cast (None, 16) (None, 16) 

12 Dense (None, 16) (None, 1) 
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Because mixed-precision training causes the 

TensorFlow runtime to automatically insert implicit 

casting operations—also known as Cast layers—

which are then included into the model.  While 

maintaining float32 precision where needed to 

preserve numerical stability, mixed-precision 

computation lets some operations run in float16 form 

for enhanced speed and low memory use.  Cast layers 

thus show in the computation graph to translate data 

types at particular model points.  These layers are 

required for hardware-level compatibility and 

optimization but have no bearing on the logical 

framework of the network.  

With less than 200,000 trainable parameters and a 

lightweight architecture, which fits for deployment on 

embedded systems with limited memory and 

processing capability, The model is simple yet can 

learn minute changes in CAN traffic patterns 

including structural abnormalities and payload 

manipulations.  The architectural fit with image-

based CAN data enables it to exploit spatial 

correlations in the binary format, so enhancing 

detection robustness without depending on recurrent 

or temporal components. 

3.5. Experimental Setup and Results 

Emphasizing computational efficiency, 

generalization, and effective attack detection, the 

training configuration of the proposed CNN model 

has been optimized to perform effectively under real-

world constraints. Designed for binary classification, 

that is, to tell whether a CAN Bus frame is authentic 

or spoofed —the model was trained with binary 

cross-entropy loss function. Using an Adam 

optimizer with a learning rate of 1e-4 ensures stable 

convergence.  

Using TensorFlow's mixed-precision training, which 

lets some operations run in float16 precision and so 

lowers memory usage, training was accelerated. 

Combining the optimizer with a loss scaling method 

helped to preserve numerical stability under this 

precision-aware approach. Especially, model 

behavior is unaffected by runtime implicit casting 

operations introduced in mixed-precision execution. 

Early stopping and model checkpointing were used to 

avoid overfitting and guarantee generalization. 

Training stopped when the validation loss stopped 

improving, and based on validation accuracy the best-

performing model was preserved.  

Class weighting was used to correct class imbalance 

in the training data, so raising sensitivity to rare attack 

samples.  

Training, validation, and test sets formed out of the 

dataset. Training comprised specifically 3,073,681 

authentic and 130,999 imposter samples; validation 

comprised 1,317,293 authentic and 56,142 attack 

samples. There was final evaluation using 40,000   

authentic and 40,000 attack samples on a balanced 

test set. From binary-encoded CAN frame fields, 

every sample was preprocessed into an 8×13 

grayscale image. 

For a maximum of 16 epochs with a batch size of 64 

the model was trained on a high-performance 

workstation furnished with an Intel Core i7-12650H 

CPU, 16 GB RAM, and an NVIDIA GeForce RTX 

4070 Laptop GPU. 

Table 3 : Confusion Matrix 

 

Following training, the efficacy of the proposed 

model was carefully evaluated using a balanced test 

set. Essential classification metrics—namely 

Accuracy (98.87%), Precision (98.25%), Recall 

(99.52%), F1-Score (98.88%), and ROC-AUC 

(98.87%)—were employed to assess its detection 

performance. These values, derived from the 

Confusion Matrix given in Table 4, highlight the 

model's high reliability and consistent predictive 

capability. The results line up with detection 

performances reported in previous studies by 

Avatefipour et al. [2] and Jichici et al. [3], showing 

the model's strong capability to differentiate between 

genuine and counterfeit CAN traffic. 

 

Figure  2 : ROC Curve 

Confusion Matrix 

True Label 
0 39291 709 

1 192 39808 

  
0 1 

Predicted Label 
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The ROC-AUC value of 98.87% points out the 

discriminative efficiency of the proposed CNN-based 

architecture. Figure 2 shows the ROC curve, which 

 visually represents the trade-off between true positive 

and false positive rates at different thresholds. 

Moreover, Figure 3 illustrates the model's learning 

behavior during training, showcasing the accuracy 

progression across epochs. Furthermore, Figure 4 

illustrates the loss curve, providing insight into the 

model's convergence and generalization patterns 

during the training and validation phases. Figure 5 

and 6 illustrate the PCA and t-SNE feature 

embeddings, respectively, providing insights into the 

model's classification of distinct classes within the 

feature space. 

Figure  3 : Accuracy Over Epochs 

Figure  4 : Loss Over Epochs 

Figure  5 : PCA Feature Embedding 

 

Figure  6 : TSNE Feature Embedding 

4.  Conclusion 

Specifically developed for Controller Area Network 

(CAN) Bus cybersecurity in commercial vehicles, 

this work presented a lightweight, image-based 

intrusion detection system. By converting binary-

encoded CAN frames into 8×13 grayscale images, the 

proposed CNN model successfully extracted spatial 

patterns, allowing it to learn from structured message 

components such as the ID, DLC, and payload. 

Designed for embedded computing platforms with 

limited resources, the architecture offered an effective 

and low-latency solution suitable for real-time 

applications—thus addressing the operational 

constraints highlighted in past work [1,5,6] . 

A hybrid dataset was constructed by combining real-

world CAN traffic—collected from a J1939-

compliant light commercial vehicle—with 

synthetically generated attack messages injected via 

low-cost embedded hardware. This empirical 

approach focused on realism by using authentic 

vehicle communication logs and deliberately timed 

intrusions, in contrast to studies based solely on 

generative augmentation or virtual simulation 

environments. The resulting dataset preserved both 

the temporal and semantic structure of CAN traffic, 

aligning with industry best practices as emphasized in 

prior studies [2,3]. 

With 98.87% accuracy, 0.9952 recall, and a ROC-

AUC of 0.9887, experimental evaluation showed the 

effectiveness of the proposed model, verifying its 

strong detection capacities against spoofing, 

injection, and denial-of- service (DoS) attacks. 

Furthermore, applied to the feature embeddings of the 

model were Principal Component Analysis (PCA), t-

distributed Stochastic Neighbor Embedding (t-SNE), 

and cosine similarity analysis, so exposing obvious 

separability between real and spoofed samples. In line 

with trends seen in recent literature, these results 

confirmed the relevance of compact CNN 
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architectures for resource-constrained edge 

cybersecurity systems and validated the 

discriminative quality of the learned representations 

[4]. 

Unlike many academic methods depending just on 

pre-processed datasets or theoretical assumptions, 

this work offered a totally reproducible, end-to-end 

solution including data acquisition, binary image 

generation, model training, and performance 

evaluation under real-world conditions. It also 

showed how reasonably priced embedded platforms 

like the Raspberry Pi can replicate attack scenarios, 

so enabling real-data-based research more freely 

independent of outside generative tools. 

Based on empirical validation and ready for use, this 

work offers a practical, efficient, and deployable 

CAN Bus intrusion detection system, supporting the 

larger vision of intelligent and safe transportation 

systems. 

The dataset will be expanded to support multi-vehicle 

and fleet-level evaluations in next work, and extra 

model improvements including temporal learning 

modules such recurrent neural networks or 

transformer-based architectures. Moreover, 

distributed and cooperative cybersecurity methods 

including federated learning will be investigated to 

enable safe model training between several vehicle 

systems without endangering data privacy.  
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