J Inno Sci Eng, 2025, 9(2):259-267

DOI:https://doi.org/ 10.38088/jise.1717959

Lightweight CNN-Based Intrusion Detection for Automotive CAN Bus in Light
Commercial Vehicles

Emre TUFEKCIiOGLU 2

Cemal HANILCi ¢ Hakan GURKAN !

! Department of Electrical and Electronics Engineering, Bursa Technical University, 16310 Bursa, Tiirkiye
2KARSAN Otomotiv Sanayi ve Ticaret A.§, 16280 Niliifer | BURSA, Tiirkiye

ARTICLE INFO

Received Date: 11/06/2025
Accepted Date: 7/07/2025

Cite this paper as:

Tufekcioglu, E., Hanilci C. & Girkan H.
(2025). Lightweight CNN-Based Intrusion
Detection for Automotive CAN Bus in Light
Commercial Vehicles. Journal of Innovative
Science and Engineering. 9(2), 259-267.

*Corresponding author: Emre Tufekcioglu
E-mail:emre.tufekcioglu@karsan.com.tr

Keywords:

CAN Bus

Intrusion Detection System,
Cybersecurity,

Vehicular Communication,
Deep Learning,

CNN,

Artificial Intelligence,
Anomaly Detection,

Light Commercial Vehicles

© Copyright 2025 by
Bursa Technical University. Available
online at http://jise.btu.edu.tr/

The works published in Journal of
Innovative Science and Engineering
(JISE) are licensed under a Creative
Commons Attribution-NonCommercial
4.0 International License.

ABSTRACT

With the rapid advancement of digitalization and automation, modern vehicles,
especially in the light commercial segment, have evolved into complex,
interconnected platforms resembling mobile computing systems. This
transformation has increased the dependency on in-vehicle communication
networks and, as a result, exposed them to a wider range of cybersecurity
threats. A fundamental aspect of the proposed method is the use of a
lightweight CNN model specific for deployment in embedded automotive
environments with limited computational resources and optimized for
efficiency. Operating on low-power hardware platforms such as edge ECUs,
the tiny device developed in this study works effectively unlike conventional
deep learning architectures seeking high processing power and memory.
Despite its minimal computational footprint, the model is capable of accurately
distinguishing between legitimate and spoofed communication traffic, as well
as detecting a variety of attack forms that target different CAN protocol
components. The performance metrics of the model further highlight its
effectiveness, achieving a ROC AUC Score of 0.9887, an Accuracy of 0.9887,
a Precision of 0.9825, a Recall of 0.9952, and an F1-Score of 0.9888.
Particularly for real-time on-vehicle intrusion detection systems, this harmony
between performance and efficiency makes the strategy especially important.
Just as importantly is the introduction of a specifically produced hybrid dataset,
which is fundamental for system evaluation and training. The dataset
aggregates synthetic generated attack scenarios with real-world spoofing,
injection, and denial-of- service (DoS) conditions using actual CAN traffic
acquired from a J1939-compliant light commercial vehicle. Standard 11-bit
identities combined with industrial communication protocols help the dataset
to reflect real-world vehicle dynamics across several ECUs under various
scenarios. The model can learn fine-grained patterns often missed by
conventional rule-based or manually engineered approaches by means of the
image-like transformation of CAN messages—preserving bit-level and
temporal information. In intelligent transportation systems, the lightweight
CNN architecture and the strong dataset combine to create a scalable and
deployable IDS framework that can improve in-vehicle cybersecurity.

1. Introduction

services. These conveniences, however, enlarge the
attack surface. Controller Area Network (CAN) is
still the backbone of in-vehicle communication

Research Article

Mobility is evolving rapidly in today’s data-driven
automotive landscape. Modern vehicles now function
as networked computing platforms that integrate
electric propulsion, partial autonomy and cloud-based

because of its real-time guarantees and low cost, yet
it provides neither encryption nor message
authentication. Consequently, adversaries can inject,
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spoof or flood messages that putting vehicle in danger
safety-critical control units. High-profile incidents
such as the Jeep Cherokee hack and the recent CAN-
injection thefts of Toyota models demonstrate the
tangible risks. Against this backdrop, research
interest has shifted toward lightweight, deep-
learning-based intrusion-detection systems (IDS) that
can run on embedded hardware. Recent studies
explore depth-wise separable CNNs (DSC-KAN),
transformer architectures enhanced with federated
learning and unsupervised GAN-based models.
Building on these advances, we propose an IDS that
transforms raw CAN frames into 8 X 13 binary
images and classifies them with a compact CNN,
achieving high accuracy (98.9 %) while fitting the
resource constraints of light commercial vehicles.

The development of a lightweight, embedded-
suitable Intrusion Detection System (IDS) for CAN
networks in electric light commercial vehicles is the
main topic of this work. The proposed architecture
converts CAN messages into binary matrices by
means of an image-based feature extraction technique
coupled with a small CNN. Under different traffic
conditions and bus load levels, this design helps the
model to learn spatial and temporal patterns in real
traffic and correctly identify spoofed or imposter
communications.

To train and evaluate the system, a custom dataset
was constructed using CAN traffic collected from a
production-grade electric vehicle developed by
Karsan. The dataset includes both genuine and
adversarial scenarios, covering injections, spoofing,
and DosS attacks. To the best of our knowledge, this
is the first study to implement an IDS on CAN traffic
conforming to the J1939 protocol, which is widely
used in commercial vehicle architecture but remains
underexplored in the literature [5,6].

The CAN protocol, originally developed by Bosch in
the late 1980s, is widely adopted for its efficiency and
simplicity in enabling communication among
electronic control units (ECUs) without a centralized
controller. However, it was not designed with
external connectivity in mind, leaving it vulnerable to
unauthorized access and manipulation [5,6]. Real-
world incidents have demonstrated that attackers,
whether through physical or remote access, can
exploit these vulnerabilities to compromise vehicle
safety [1,2]. For instance, falsified brake commands
may lead to unintended vehicle behavior, posing
serious risks to passenger safety [2,3]. To address
these challenges, the automotive cybersecurity
community has increasingly turned to artificial
intelligence and machine learning techniques. Deep

learning models, particularly CNNs, have shown
promise in identifying complex patterns within CAN
traffic, enabling adaptive intrusion detection beyond
the capabilities of traditional rule-based systems
[5,6,10].

This study introduces a scalable and intelligent IDS
system that dynamically detects threats by learning
from authentic communication sequences. Designed
for deployment in embedded automotive
environments, the system aims to enhance
cybersecurity in next generation connected and
autonomous vehicles by offering a novel detection
mechanism, a reproducible dataset, and robust
empirical performance metrics.

2. Related Work

Intrusion Detection Systems (IDS) intended for
Controller Area Network (CAN) communications
have garnered significant interest in recent years,
especially with the development of autonomous,
connected, and electric vehicles. Although
conventional rule-based detection techniques offer
simplicity, they are insufficient in adapting to
complex and evolving cyberattack patterns. Thus,
recent literature has moved towards methodologies
based on deep learning (DL), particularly those
employing convolutional neural networks (CNNs) [7-
10] and recurrent models like LSTM [6]. More recent
research includes lightweight depth wise separable
CNNs that maintain accuracy with fewer parameters
[11], transformer-based  federated  learning
approaches that preserve data privacy across vehicles
[12], unsupervised GAN-driven detectors that require
no labelled data [14] and graph convolutional
methods that model sequential frame dependencies
[19].

Other recent efforts have explored unsupervised IDS
based on attention autoencoders [13], deep embedded
clustering approaches [14], ensemble multi-class
classifiers  for  in-vehicle networks  [16],
comprehensive CNN/LSTM/GRU comparisons that
evaluate model complexity and accuracy trade-offs
[17], triple-attention architectures coupled with
global optimization [18] and fully unsupervised
detection frameworks tailored for CAN traffic [20].
Recent studies propose highly efficient architectures
such as depth wise separable CNNs [11] and

LETNN-based models that approximate
self-attention ~ with  Toeplitz matrices [15],
demonstrating real-time inference on

automotive-grade microcontrollers.

These contributions together position our work as a
practical, scalable, protocol-aware intrusion detection
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system fit for contemporary intelligent transportation
systems. While Wu et al [6] created a byte-level
lightweight CNN fit for embedded systems [6],
Shahriar et al. [5], proposed ConvIDS, a CNN
architecture meant to identify payload anomalies in
sequential CAN IDs [5]. Image-based representations
of CAN messages were first presented by Marchetti
and Stabili [4], allowing CNNs to extract spatial
features free from handcrafted features [4]. These
studies show three important constraints addressed in
this work, even if they reflect major developments in
CAN Bus security:

First, most current works use datasets gathered under
simulated or limited environments that fail to reflect
the high-volume and heterogeneous traffic observed
in _modern electric vehicle (EV) infrastructures.
Characterized by high message density and
continuous ECU interaction, our study focuses on
CAN traffic obtained from a light commercial EV, so
reflecting a more realistic and stress-intensive
communication environment.

Second, past IDS datasets and models sometimes
ignore industry-specific protocols and stress standard
11-bit CAN identifiers. Conversely, our hybrid
dataset includes J1939-compliant messages, SO
enabling detection capabilities spanning heavy-duty
and commercial vehicle networks where this protocol
is extensively used.

Third, many deep learning-based IDS systems are
computationally demanding and inappropriate for
embedded deployment notwithstanding their
accuracy. We developed small and resource-efficient
CNN architecture especially targeted for low-power
edge devices.

These contributions together position our work as a
practical, scalable, protocol-aware intrusion detection
system fit for contemporary intelligent transportation
systems.

3. Proposed Intrusion Methods

3.1 Attack Scenarios

Though in-car communication mostly uses the
Controller Area Network (CAN) Bus protocol, it
lacks the necessary security elements, such as
message authentication, encryption, and access
control [1-5]. This weakness makes it an easy target
for different cyberattacks. This work tested four
different attack techniques in a controlled laboratory
environment using both simulated intrusion attempts
and real CAN traffic. The assaults were injected using
a Raspberry Pi 5 and MCP2515 module, while normal

traffic was tracked with CANoe software and a
Vector VN1630 interface. Table 1 provides a
comparative overview of various attack types with
respect to their complexity and visibility
characteristics

Tablel: Comparisons of CAN Bus Attack Types by
Complexity, Visibility

Attack Type | Complexity | Visibility | References
M_esse_lge Low Medium [4,5]
Injection
Spoofing Medium Low [2,3,6]

Replay Medium Low [2,6]

Masquerade High Very Low [5]

DoS Low High [1-4]
Fuzzy . .
Attack Medium Medium [1]

ID Flooding Medium High [3]

Message Injection, one of the most basic attack forms
in CAN systems is message injection. It sends illegal
frames using current message IDs on the bus.
Rewording or copying accurate ECU messages helps
to produce these hostile messages influencing vehicle
behavior. To remain invisible in the network, an
assailant could send modified throttle, RPM, or break
status messages with suitable IDs and frequency
[4,5].

In Spoofing attack, under incorrect source identities,
messages are sent allowing spoofing attacks to pass
for real ECUs. This kind of attack uses the broadcast
part and the absence of authentication in CAN
communication. Utilizing real communications and
changing their content before retransmission enabled
us to spoof, or copy, the anti-lock braking system or
transmission control module in our tests. [2,3,6].

At Denial-of-Service (DoS) Attack, typically
utilizing low identification values to dominate the
arbitration process, DoS attacks seek to flood the
CAN bus with a high frequency of messages.
Permanent high-priority frame delivery allows
attackers to delay or obstruct authorized transfer,
consequently possibly displaying important safety
mechanisms useless. This was accomplished in our
system by repeatedly low-1D messages like 0x000 at
high speeds [1-4].

In Replay Attacks, essential CAN communications
are recorded during normal operation and then
transmits in replay attacks. Replayed frame structure
and timing seem reasonable, hence traditional rule-
based systems find it difficult to identify such
assaults. For instance, while the car is unattended, one

261



Tifekcioglu, Hanilgi and Girkan (2025). J Inno Sci Eng 9(2):259-267

can replay a previously captured message for door
unlocking or headlight activation [2,6].

Masquerade Attacks, Masquerade assaults, a
sophisticated form of spoofing, include an attacker
delivering fake messages implied to disable or control
a real ECU and seize control of its communication
abilities. Since these attacks can avoid systems
depending simply on message frequency or 1D, they
are extremely dangerous. Our technology replicated
masquerade behavior by replacing approved
messages with material controlled by attackers [5].

As part of fuzzy attacks, transmission of random or
controlled CAN packets with arbitrary identities and
contents is involved. One can aim to affect ECUs by
identifying latent properties or inducing unexpected
system responses. Continuous generation and
injection of random IDs and 8-byte payloads let us
evaluate how resilient the system was under fuzzing
conditions [1].

Arbitration Abuse (ID Flooding), Lower ID value
frames are given priority under the CAN arbitration
system. Attackers might use this weakness by
constantly sending low-ID messages to control the
bus, so preventing or blocking communication with
ECUs having higher IDs. This specific flooding
method monitored the transmission latency of
diagnostic or infotainment information by fast
injection of IDs, such 0x001 or 0x003 [3].

3.2. Custom Dataset

This study introduces a large-scale, hybrid custom
dataset designed to support the training and
evaluation of deep learning-based Intrusion Detection
Systems (IDS) for Controller Area Networks (CAN)
in electric light commercial vehicles. The dataset
adheres to the J1939 protocol and was collected from
a production-grade electric vehicle developed by
Karsan, ensuring both industrial relevance and real-
world protocol compliance.

Data collection was carried out in two coordinated
phases. In the first phase, authentic in-vehicle CAN
traffic was recorded using a Vector VN1630 interface
in conjunction with Vector CANoe, a widely used
simulation and analysis platform. Raw messages were
logged directly via the OBD-II port from multiple
Electronic Control Units (ECUs), including those
responsible for engine, transmission, braking, and
dashboard instrumentation. To ensure diversity in
signal frequency and bus load, data was collected
under varied driving conditions such as idling,
acceleration, deceleration, and highway cruising.

Timestamping with millisecond precision allowed for
accurate sequence modeling.

In the second phase, cyberattack scenarios were
simulated in a controlled environment. Using a
Raspberry Pi 5 with an MCP2515 CAN transceiver,
various adversarial actions—such as spoofing,
message injection, denial-of-service (DoS), and
replay attacks—were injected into the network. These
intrusions were executed during both static and
dynamic states of the vehicle. Custom Python scripts
facilitated precise control over payload manipulation
and timing, and all injected frames were clearly
labeled to enable supervised learning and post-
analysis.

To ensure consistency with previous work, the
preprocessing pipeline was inspired by the
framework of Marchetti and Stabili [4]. Steps
included labeling, cleaning, time alignment, and class
balancing. The final dataset contains 4,792,115 CAN
frames formatted as time-ordered sequences, each
including message 1D, Data Length Code (DLC), and
raw payload bytes.

Table 2: Data Split Summary for the CAN Bus Dataset

Set Total Attack Normal

Samples Samples Samples

Training 3204680 130999 3073681

Validation 1373435 56142 1317293
Test 80000 40000 40000

Design choices for dataset construction were
informed by prior research. For example, stealthy
payload manipulation strategies were guided by
Shahriar et al. [5] and Wu et al. [6], while the
selection of attack types aligns with works by
Avatefipour et al. [2] and Alfardus and Rawat [1].
These references emphasize the importance of
detecting not only syntactically anomalous frames but
also semantically manipulated messages that mimic
legitimate traffic.

By combining real-world CAN traffic with realistic
adversarial scenarios, this dataset offers a
reproducible, high-fidelity foundation for developing
and evaluating robust IDS solutions in embedded
automotive environments.

33. Proposed Binary Image Generation
Algorithm

To transform CAN Bus messages into a visual
representation suitable for convolutional neural
network (CNN)-based intrusion detection models, a
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structured preprocessing algorithm was developed.

Algorithm 1: Pseudocode for Binary Image
Generation from CAN Messages

Input: Input folder with CAN message CSV files
Output: 8x13 grayscale images representing CAN
mesSages

1. Open or create a log file in the output folder
2. foreach CSV file in the input folder do
2.1. Load the CSV file as a table of CAN
messages
2.2. foreach row in the table do
a. Extract timestamp, CAN_ID, DLC, data
bytes
Convert CAN_ID to binary (11 or 29 bits)
Convert DLC to 4-bit binary
Convert each data byte to 8-bit binary
Concatenate all binary segments into one
binary stream
if binary stream length < 104 bits then
Pad with zeros to reach 104 bits
Reshape the 104-bit binary stream into an
8 x 13 binary matrix
i. Convert binary matrix to a grayscale image
(0 = black, 1 = white)
j. Save the image using a unique name
(e.g., timestamp CANID.png)
k. Log the image path and source message
info to the log file
3. Close the log file

o0 o

se

The initial samples and their matrix representations
are also logged for traceability and debugging. By
converting sequential CAN messages into spatially
structured visual inputs, this approach supports the
use of computer vision techniques in the context of
CAN Bus intrusion detection [5], [6].

Figure 1: Binary Image Example

Finally, depending on their source filenames, the
images are stored into organized output folders. This
company helps with deep learning pipelines to
process future batches. The approach allows the use

of computer vision methods to CAN Bus intrusion
detection by converting temporal and semantic
message features into a visual domain. Figure 1
shows a visual representation of the produced binary
image.

34. Proposed Model Architecture

The proposed model adopts a compact convolutional
neural network (CNN) architecture designed to
process binary-encoded CAN messages represented
as 8%x13 grayscale images. The structure and meaning
of each CAN frame are shown in this way. It includes
the message ID, the data length code (DLC), and the
data payload, all of which are organized into a fixed-
length binary matrix. The model's architecture is kept
simple on purpose to keep the performance for
detecting different types of attacks high while
reducing the amount of work that needs to be done.
An input layer accepting 8x13 single-channel
grayscale images starts the architecture. Two
consecutive convolutional layers transverse this
input. Using ReLU activation and a 3x3 kernel size,
the first convolutional layer employs 16 filters. To
lower spatial dimensions, a max pooling operation
with a 2x2 pool size follows. Following another max
pooling layer, the second convolutional layer uses 32
filters, also with a 3x3 kernel size and RelLU
activation. The feature maps are flattened into a one-
dimensional vector following the convolutional
blocks and then fed through a fully connected dense
layer comprising 32 units and ReLU activation. One
uses a dropout layer with a rate of 0.2 to enhance
generalization and stop overfitting. A further dense
layer with sixteen units follows this to act as a
compact feature representation layer. Applied before
the last output layer is still another dropout layer with
a higher dropout rate of 0.4. One sigmoid-activated
single neuron in the output layer generates a binary
prediction showing whether the input message is
authentic or hostile. Table 3 presents a summary of
the proposed architecture for the deep learning model.

Table2: Model Summary Table

Layer Type Input Shape Output Shape
Input (None,8,13,1) (None,8,13,1)
Cast (None, 8, 13,1) | (None, 8,13,1)
Conv-2D (None, 8, 13,1) | (None, 8,13, 16)

Max Pooling 2D | (None, 8, 13, 16) | (None, 4, 6, 16)

OO |N|O|O|R|[WIN(F |3

Conv-2D (None, 4, 6,16) | (None, 4, 6, 32)
Flatten (None, 4, 6,32) | (None, 768)
Dense (None, 768) (None, 32)
Dropout (None, 32) (None, 32)
Dense (None, 32) (None, 16)

10 | Dropout (None, 16) (None, 16)

11 | Cast (None, 16) (None, 16)

12 | Dense (None, 16) (None, 1)
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Because mixed-precision training causes the
TensorFlow runtime to automatically insert implicit
casting operations—also known as Cast layers—
which are then included into the model. While
maintaining float32 precision where needed to
preserve numerical stability, mixed-precision
computation lets some operations run in floatl6 form
for enhanced speed and low memory use. Cast layers
thus show in the computation graph to translate data
types at particular model points. These layers are
required for hardware-level compatibility and
optimization but have no bearing on the logical
framework of the network.

With less than 200,000 trainable parameters and a
lightweight architecture, which fits for deployment on
embedded systems with limited memory and
processing capability, The model is simple yet can
learn minute changes in CAN traffic patterns
including structural abnormalities and payload
manipulations. The architectural fit with image-
based CAN data enables it to exploit spatial
correlations in the binary format, so enhancing
detection robustness without depending on recurrent
or temporal components.

35. Experimental Setup and Results

Emphasizing computational efficiency,
generalization, and effective attack detection, the
training configuration of the proposed CNN model
has been optimized to perform effectively under real-
world constraints. Designed for binary classification,
that is, to tell whether a CAN Bus frame is authentic
or spoofed —the model was trained with binary
cross-entropy loss function. Using an Adam
optimizer with a learning rate of 1le-4 ensures stable
convergence.

Using TensorFlow's mixed-precision training, which
lets some operations run in float16 precision and so
lowers memory usage, training was accelerated.
Combining the optimizer with a loss scaling method
helped to preserve numerical stability under this
precision-aware  approach. Especially, model
behavior is unaffected by runtime implicit casting
operations introduced in mixed-precision execution.

Early stopping and model checkpointing were used to
avoid overfitting and guarantee generalization.
Training stopped when the validation loss stopped
improving, and based on validation accuracy the best-
performing model was preserved.

Class weighting was used to correct class imbalance
in the training data, so raising sensitivity to rare attack
samples.

Training, validation, and test sets formed out of the
dataset. Training comprised specifically 3,073,681
authentic and 130,999 imposter samples; validation
comprised 1,317,293 authentic and 56,142 attack
samples. There was final evaluation using 40,000
authentic and 40,000 attack samples on a balanced
test set. From binary-encoded CAN frame fields,
every sample was preprocessed into an 8x13
grayscale image.

For a maximum of 16 epochs with a batch size of 64
the model was trained on a high-performance
workstation furnished with an Intel Core i7-12650H
CPU, 16 GB RAM, and an NVIDIA GeForce RTX
4070 Laptop GPU.

Table3: Confusion Matrix

Confusion Matrix

True Label 0 39291 709
1 192 39808
0 1

Predicted Label

Following training, the efficacy of the proposed
model was carefully evaluated using a balanced test
set.  Essential classification  metrics—namely
Accuracy (98.87%), Precision (98.25%), Recall
(99.52%), F1-Score (98.88%), and ROC-AUC
(98.87%)—were employed to assess its detection
performance. These values, derived from the
Confusion Matrix given in Table 4, highlight the
model's high reliability and consistent predictive
capability. The results line up with detection
performances reported in previous studies by
Avatefipour et al. [2] and Jichici et al. [3], showing
the model's strong capability to differentiate between
genuine and counterfeit CAN traffic.

ROC Curve
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Figure 2: ROC Curve
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The ROC-AUC value of 98.87% points out the
discriminative efficiency of the proposed CNN-based
architecture. Figure 2 shows the ROC curve, which
visually represents the trade-off between true positive
and false positive rates at different thresholds.

Moreover, Figure 3 illustrates the model's learning
behavior during training, showcasing the accuracy
progression across epochs. Furthermore, Figure 4
illustrates the loss curve, providing insight into the
model's convergence and generalization patterns
during the training and validation phases. Figure 5
and 6 illustrate the PCA and t-SNE feature
embeddings, respectively, providing insights into the
model's classification of distinct classes within the
feature space.
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4. Conclusion

Specifically developed for Controller Area Network
(CAN) Bus cybersecurity in commercial vehicles,
this work presented a lightweight, image-based
intrusion detection system. By converting binary-
encoded CAN frames into 8%13 grayscale images, the
proposed CNN model successfully extracted spatial
patterns, allowing it to learn from structured message
components such as the ID, DLC, and payload.
Designed for embedded computing platforms with
limited resources, the architecture offered an effective
and low-latency solution suitable for real-time
applications—thus addressing the operational
constraints highlighted in past work [1,5,6] .

A hybrid dataset was constructed by combining real-
world CAN traffic—collected from a J1939-
compliant  light  commercial  vehicle—with
synthetically generated attack messages injected via
low-cost embedded hardware. This empirical
approach focused on realism by using authentic
vehicle communication logs and deliberately timed
intrusions, in contrast to studies based solely on
generative augmentation or virtual simulation
environments. The resulting dataset preserved both
the temporal and semantic structure of CAN traffic,
aligning with industry best practices as emphasized in
prior studies [2,3].

With 98.87% accuracy, 0.9952 recall, and a ROC-
AUC of 0.9887, experimental evaluation showed the
effectiveness of the proposed model, verifying its
strong detection capacities against spoofing,
injection, and denial-of- service (DoS) attacks.
Furthermore, applied to the feature embeddings of the
model were Principal Component Analysis (PCA), t-
distributed Stochastic Neighbor Embedding (t-SNE),
and cosine similarity analysis, so exposing obvious
separability between real and spoofed samples. In line
with trends seen in recent literature, these results
confirmed the relevance of compact CNN
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architectures  for  resource-constrained  edge
cybersecurity  systems and  validated the
discriminative quality of the learned representations

[4].

Unlike many academic methods depending just on
pre-processed datasets or theoretical assumptions,
this work offered a totally reproducible, end-to-end
solution including data acquisition, binary image
generation, model training, and performance
evaluation under real-world conditions. It also
showed how reasonably priced embedded platforms
like the Raspberry Pi can replicate attack scenarios,
so enabling real-data-based research more freely
independent of outside generative tools.

Based on empirical validation and ready for use, this
work offers a practical, efficient, and deployable
CAN Bus intrusion detection system, supporting the
larger vision of intelligent and safe transportation
systems.

The dataset will be expanded to support multi-vehicle
and fleet-level evaluations in next work, and extra
model improvements including temporal learning
modules such recurrent neural networks or
transformer-based architectures. Moreover,
distributed and cooperative cybersecurity methods
including federated learning will be investigated to
enable safe model training between several vehicle
systems without endangering data privacy.
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