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Abstract

In this article, the existence of positive solutions for a nonlinear third-order three-point
boundary value problem with integral condition is investigated. By using Leray-Schauder
fixed point theorem, sufficient conditions for the existence of at least one positive solution
are obtained. Illustrative examples are also presented to show the applicability of our results.

1. Introduction

This paper is devoted to the existence of positive solutions for the following third-order nonlocal integral boundary value problem (BVP):

u′′′ (t)+a(t) f (t,u(t)) = 0, 0 < t < T, (1.1)

u(0) = u′′ (0) = 0, u(T ) = α

∫
η

0
u(s)ds, (1.2)

where 0 < η < T , 0 < α < 2T
η2 and

(H1) f ([0,T ]× [0,+∞) , [0,+∞));

(H2) a ∈C ([0,T ] , [0,+∞)) and there exists t0 ∈ [η ,T ] such that a(t0)> 0.

Set

f0 = lim
u→0+

f (t,u)
u

, f∞ = lim
u→∞

f (t,u)
u

,

then f0 = 0 and f∞ = ∞ correspond to the superlinear case, f0 = ∞ and f∞ = 0 correspond to the sublinear case.
Third-order boundary-value problems for differential equations arise in variety of different areas of applied mathematics and physics. They
have been many scholars’ research object. For example, heat conduction, chemical engineering, underground water flow, thermoelasticity,
and plasma physics can produce boundary-value problems with integral boundary conditions; see [3, 9, 11]. They include two, three,
multipoint, and nonlocal boundary-value problems as special cases. By using the Krasnoselskii’s fixed point theorem, Liu and Ma [19]
studied the problem

u′′′ (t)+ f (u(t)) = 0, 0 < t < 1, (1.3)
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subject to integral boundary condition of the form

u′ (0) = 0, u′ (1) = 0, u(0) =
∫ 1

0
k (s)u(s)ds. (1.4)

Benaicha and Haddouchi [17] considered the fourth-order two-point boundary value problem

u′′′′ (t)+ f (u(t)) = 0, t ∈ (0,1) , (1.5)

u′ (0) = u′ (1) = u′′ (0) = 0, u(0) =
∫ 1

0
a(s)u(s)ds. (1.6)

We quote also the reasearchs of [2, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 18, 20] which concern the differential equations under various boundary
conditions and by different approaches.
Motivated by the works mentioned above, we obtain the existence results for the problem (1.1)-(1.2) by using the Leray-Shauder fixed point
theorem if f0 = 0 ( condition f∞ = ∞ being unnecessary ) , as well as, for f∞ = 0 ( condition f0 = ∞ being unnecessary ). In this way we
remove the half of the assumptions to prove the existence of a solution when using Krasnoselskii’s fixed point theorem.(See [10, 17, 19]).
Moreover, we establish our results for t in [0,T ].
Our main tool is the following Leray-Schauder fixed point theorem.

Theorem 1.1. [1] Let Ω be the convex subset of Banach space E, 0 ∈Ω, Φ : Ω→Ω be completely continuous operator. Then, either
(i) Φ has at least one fixed point in Ω;
or
(ii) the set {x ∈Ω | u = λΦu, 0 < λ < 1} is unbounded.

2. Background

To prove the main existence results we will employ several straightforward lemmas.

Lemma 2.1. Let 2T 6= αη2. Then for y ∈C ([0,T ] , [0,∞)), the problem

u′′′ (t)+ y(t) = 0, (2.1)

u(0) = u′′ (0) = 0, u(T ) = α

∫
η

0
u(s)ds, η ∈ (0,T ) , α > 0, (2.2)

has a unique solution given by

u(t) =
t

2T −αη2

∫ T

0
(T − s)2 y(s)ds− αt

3
(
2T −αη2

) ∫ η

0
(η− s)3 y(s)ds

− 1
2

∫ t

0
(t− s)2 y(s)ds.

Proof. From equation (2.1) we have u′′′ (t) =−y(t). Then, integrating from 0 to t we obtain

u′′ (t) =−
∫ t

0
y(s)ds.

For t ∈ [0,T ] we have, by integrating in t and using integration by parts,

u′ (t) = u′ (0)−
∫ t

0

(∫ x

0
y(s)ds

)
dx

= u′ (0)−
∫ t

0
(t− s)y(s)ds

u(t) = u′ (0) t−
∫ t

0

(∫ x

0
(x− s)y(s)ds

)
dx

= u′ (0) t− 1
2

∫ t

0
(t− s)2 y(s)ds.

(2.3)

Thus, for t = T we find

u(T ) = u′ (0)T − 1
2

∫ T

0
(T − s)2 y(s)ds. (2.4)

Integrating again from 0 to η the expression (2.3), where η ∈ (0,T ), we obtain∫
η

0
u(s)ds =

1
2

u′ (0)η
2− 1

2

∫
η

0

(∫ x

0
(x− s)2 y(s)ds

)
dx

=
1
2

u′ (0)η
2− 1

6

∫
η

0
(η− s)3 y(s)ds.

(2.5)
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From (2.2) and (2.4) we have∫
η

0
u(s)ds =

1
α

u(T ) = u′ (0)
T
α
− 1

2α

∫ T

0
(T − s)2 y(s)ds.

Then, using (2.5) we see that

u′ (0)
T
α
− 1

2α

∫ T

0
(T − s)2 y(s)ds =

1
2

u′ (0)η
2− 1

6

∫
η

0
(η− s)3 y(s)ds.

Thus,

u′ (0)
(

2T −αη2

2α

)
=

1
2α

∫ T

0
(T − s)2 y(s)ds− 1

6

∫
η

0
(η− s)3 y(s)ds

or

u′ (0) =
1(

2T −αη2
) ∫ t

0
(T − s)2 y(s)ds− α

3
(
2T −αη2

) ∫ η

0
(η− s)3 y(s)ds.

Therefore, the BVP (2.1)–(2.2) has a unique solution

u(t) =
t

2T −αη2

∫ T

0
(T − s)2 y(s)ds− αt

3
(
2T −αη2

) ∫ η

0
(η− s)3 y(s)ds

− 1
2

∫ t

0
(t− s)2 y(s)ds.

The existence of positive solutions of the problem (2.1)–(2.2) is given in the next result.

Lemma 2.2. . Let 0 < α < 2T
η2 . If y ∈C ([0,T ] , [0,+∞)), then the unique solution of the problem (2.1)–(2.2) satisfies u(t)≥ 0 for t ∈ [0,T ].

Proof. From u′′′ (t) =−y(t), t ∈ [0,T ], we get that u′′ (t) is decreasing on [0,T ]. Then, the condition u′′ (0) = 0 ensures that have u′′ (t)≤ 0,
t ∈ [0,T ], which implies u(t) is concave. Observe also that if u(T )≥ 0, the concavity of u and the fact that u(0) = 0 imply that u(t)≥ 0 for
t ∈ [0,T ].
Since the graph of u is concave down (0,T ), we get∫

η

0
u(s)ds≥ 1

2
ηu(η) (2.6)

where 1
2 ηu(η) is the area of triangle under the curve u(t) from t = 0 to t = η for η ∈ (0,T ).

If we assume that u(T )< 0, then from 2.2 we have∫
η

0
u(s)ds < 0. (2.7)

By concavity of u and
∫ η

0 u(s)ds < 0, it implies that u(η)< 0.
Hence

u(T ) = α

∫
η

0
u(s)ds≥ 2T

η2 ×
1
2

ηu(η) =
T
η

u(η) ,

which contradicts the concavity of u.

Lemma 2.3. Let α > 2T
η2 . If y ∈C ([0,T ] , [0,+∞)), then the problem (2.1)-(2.2) has no positive solution.

Proof. Suppose that the problem (2.1)-(2.2) has a positive solution u.
If u(T )> 0, then

∫ η

0 u(s)ds > 0. It implies that u(η)> 0 and

u(T )
T

=
α

T

∫
η

0
u(s)ds >

2
η2

(
1
2

ηu(η)

)
=

u(η)

η

This contradicts the concavity of u.
If u(T ) = 0, then

∫ η

0 u(s)ds = 0, this is u(t)≡ 0 for all t ∈ [0,η ]. If there exists t0 ∈ (η ,T ) such that u(t0)> 0, then u(0) = u(η)< u(t0),
which contradicts the concavity of u. Therefore, no positive solutions exist.

Lemma 2.4. . Let 0 < α < 2T
η2 . If y ∈C ([0,T ] , [0,+∞)), then the unique solution of the problem (2.1)–(2.2) satisfies

min
t∈[η ,T ]

u(t)≥ γ ‖u‖ , ‖u‖= max
t∈[0,T ]

|u(t)| , (2.8)

where

γ := min
{

η

T
,

αη2

2T
,

αη (T −η)

2T −αη2

}
. (2.9)
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Proof. Set u(τ) = ‖u‖. We consider three cases.
Case 1. If η ≤ τ ≤ T and mint∈[η ,T ] u(t) = u(η), then the concavity of u implies that

u(η)

η
≥ u(τ)

τ
≥ u(τ)

T

Thus,

min
t∈[η ,T ]

u(t)≥ η

T
‖u‖ .

Case 2. If η ≤ τ ≤ T and mint∈[η ,T ] u(t) = u(T ), then (2.2)-(2.6) and the concavity of u implies

u(T ) = α

∫
η

0
u(s)ds≥ α

η2

2

[
u(η)

η

]
≥ α

η2

2

[
u(τ)

τ

]
)≥ αη2

2T
u(τ) .

Therefore,

min
t∈[η ,T ]

u(t)≥ αη2

2T
‖u‖ .

Case 3. If τ ≤ η ≤ T , then mint∈[η ,T ] u(t) = u(T ). Using the concavity of u and (2.2)-(2.6), we have

u(τ)−u(T )
τ−T

≥ u(T )−u(η)

T −η

u(τ)≤ u(T )+
u(T )−u(η)

T −η
(τ−T )

u(τ)≤ u(T )+
u(T )−u(η)

T −η
(0−T )

≤ u(T )

[
1−T

1− 2
αη

T −η

]

= u(T )
[

2T −αη2

αη (T −η)

]
.

(2.10)

This implies that

min
t∈[η ,T ]

u(t)≥ αη (T −η)

2T −αη2 ‖u‖ .

This completes the proof.

3. Main results

In this section, we establish the existence of positive solution for the (BVP) (1.1)-(1.2).

Let

E =C [0,T ] , β =
∫ T

0
(T − s)2 a(s)ds

Theorem 3.1. Assume (H1) and (H2) hold and 0 < α < 2T
η2 . If f0 = 0, then the problem (1.1)-(1.2) has at least one positive solution.

Proof. From Lemma 2.1, u is a solution to the boundary value problem (1.1)-(1.2) if and only if u is a fixed point of operator A, where A is
defined by

Au(t) =
t

2T −αη2

∫ T

0
(T − s)2 a(s) f (s,u(s))ds

− αt
3
(
2T −αη2

) ∫ η

0
(η− s)3 a(s) f (s,u(s))ds− 1

2

∫ t

0
(t− s)2 a(s) f (s,u(s))ds.

(3.1)

Denote that

Ω =

{
u | u ∈C ([0,T ] ,R) , u≥ 0, min

t∈[η ,T ]
u(t)≥ γ ‖u‖

}
,

where γ is defined in (2.9). Then Ω is the convex subset of E.
We choose ε > 0 and ε ≤ 2T−αη2

T β
. By f0 = 0, it there exists constant M > 0, such that f (u)< εu for 0 < u < M. For u ∈Ω, from Lemma

2.2 and Lemma 2.4, we have Au(t)≥ 0 and mint∈[η ,T ] Au(t)≥ γ ‖Au‖.
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On the other hand,

Au(t)≤ t
2T −αη2

∫ T

0
(T − s)2 a(s) f (u(s))ds

≤ t
2T −αη2

∫ T

0
(T − s)2 a(s)εu(s)ds

≤ ‖u‖ T ε

2T −αη2

∫ T

0
(T − s)2 a(s)ds

≤ ‖u‖ ≤M.

Thus ‖Au‖ ≤ ‖u‖. u ∈ K∩∂Ω1. Hence AΩ⊂Ω. It easy to check that A : Ω→Ω is completely continuous. For u ∈Ω and 0 < λ < 1 , we
have u(t) = λAu(t)< Au(t)≤M, which implies ‖u‖ ≤M. So {u ∈Ω | u = λAu, 0 < λ < 1} is bounded. By Theorem 1.1 the operator A
has at least one fixed point in Ω. Thus the problem (1.1)-(1.2) has at least one positive solution. The proof is complete.

Theorem 3.2. Assume (H1) and (H2) hold, and 0 < α < 2T
η2 . If f∞ = 0, then the problem (1.1)-(1.2) has at least one positive solution.

Proof. Choose ε < 2T−αη2

2T β
. By f∞ = 0, we know there exists Constant N, such that f (u)< εu for u > N.

Select

M ≥ N +1+
2T β

2T −αη2 max
0≤u≤N

f (u)

Let

Ω =

{
u | u ∈C [0,T ] , u≥ 0, ‖u‖ ≤M, min

t∈[η ,T ]
u(t)≥ γ ‖u‖

}
,

then Ω is the convex subset of E. For u ∈Ω, by Lemma 2.2 and Lemma 2.4 we know Au(t)≥ 0 and mint∈[η ,T ] Au(t ()≥ γ ‖Au‖).
On the other hand,

Au(t)≤ t
2T −αη2

∫ T

0
(T − s)2 a(s) f (u(s))ds

≤ T
2T −αη2

∫ T

0
(T − s)2 a(s)εu(s)ds

=
T

2T −αη2

∫
I1={s∈[0,T ],u(s)>N}

(T − s)2 a(s) f (u(s))ds+
T

2T −αη2

∫
I2={s∈[0,T ],u(s)≤N}

(T − s)2 a(s) f (u(s))ds

≤ T
2T −αη2

∫ T

0
(T − s)2 a(s)εu(s)ds+

T
2T −αη2

∫ T

0
(T − s)2 a(s)ds. max

0≤u≤N
f (u)

≤ T ε

2T −αη2 ‖u‖
∫ T

0
(T − s)2 a(s)ds+

T
2T −αη2

∫ T

0
(T − s)2 a(s)ds. max

0≤u≤N
f (u)

≤ T ε

2T −αη2 M
∫

(T − s)2 a(s)ds+
T

2T −αη2

∫ T

0
(T − s)2 a(s)ds. max

0≤u≤N
f (u)

≤ T ε

2T −αη2 Mβ +
T

2T −αη2 β max
0≤u≤N

f (u)

≤ 1
2

M+
1
2

M = M.

Thus ‖Au‖ ≤M. Hence, AΩ⊂Ω. IT easy to check that A : Ω→Ω is completely continuous.
For u ∈Ω and u = λAu, 0 < λ < 1, we have u(t) = λAu(t)< Au(t)≤M, which implies ‖u‖ ≤M. So, {u ∈Ω : u = λAu, 0 < λ < 1} is
bounded. By Theorem 1.1, we know the operator A has at least one fixed point in Ω. Thus the problem (1.1)-(1.2) has at least one positive
solution. The proof is complete.

Theorem 3.3. Assume (H1) and (H2) hold, and 0 < α < 2T
η2 . If there exists constant ρ1 > 0, such that f (u)≤ (2T−αη2)ρ1

T β
T β for 0 < u < ρ1,

then the problem (1.1)-(1.2) has at least one positive solution.

Proof. Let Ω =
{

u | u ∈C [0,1] , u≥ 0, ‖u‖ ≤ ρ1, mint∈[η ,T ] u(t)≥ γ ‖u‖
}

, then Ω is the convex subset of E.
For u ∈Ω, by Lemma 2.2 and Lemma 2.4, we have

Au(t)≥ 0 and mint∈[η ,T ] Au(t)≥ γ ‖Au‖ . (3.2)

On the other hand

Au(t)≤ t
2T −αη2

∫ T

0
(T − s)2 a(s) f (u(s))

≤ t
2T −αη2

∫ T

0
(T − s)2

(
2T −αη2)ρ1

T β
ds = ρ1.

Then ‖Au‖ ≤ ρ1. Hence, AΩ⊂Ω. It easy to check yhat A : Ω→Ω is completely continuous.
For u ∈ Ω and u = λAu, 0 < λ < 1, we have u(t) = λAu(t)< Au(t)≤ ρ1, which implies ‖u‖ ≤ d. So {u ∈Ω : u = λAu, 0 < λ < 1} is
bounded. By Theorem 1.1, we know the operator A has at least one fixed point in Ω. Thus the problem (1.1)-(1.2) has at least one positive
solution. The proof is complete.
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Theorem 3.4. Assume (H1) and (H2) hold, and 0 < α < 2T
η2 . If there exists constant ρ2 > 0, such that f (u)≤ (2T−αη2)ρ2

T β
for 0 < u < ρ1,

then the problem (1.1)-(1.2) has at least one positive solution.

Proof. Choose

d > 1+ρ2 +
T β

2T −αη2 . max
0≤u≤ρ2

f (u) .

Let

Ω =

{
u | u ∈C [0,T ] , u≥ 0, ‖u‖ ≤ d, min

t∈[η ,T ]
u(t)≥ γ ‖u‖

}
,

then Ω is the convex subset of E.
For u ∈Ω, by Lemma 2.2 and Lemma 2.4, we know Au(t)≥ 0 and mint∈[η ,T ] Au(t)≥ γ ‖Au‖.
On the other hand,

Au(t)≤ t
2T −αη2

∫ T

0
(T − s)2 a(s) f (u(s))ds

≤ T
2T −αη2

∫ T

0
(T − s)2 a(s) f (u(s))ds

=
T

2T −αη2

∫
I1={s∈[0,T ],u(s)>ρ2}

(T − s)2 a(s) f (u(s))ds+
T

2T −αη2

∫
I2={s∈[0,T ],u(s)≤ρ2}

(T − s)2 a(s) f (u(s))ds

≤ T
2T −αη2

∫ T

0
(T − s)2 a(s)

(
2T −αη2)ρ2

T β
ds+

T
2T −αη2

∫ T

0
(T − s)2 a(s) . max

0≤u≤ρ2
f (u)ds

≤ ρ2 +
T β

2T −αη2 . max
0≤u≤ρ2

f (u)< d.

Thus ‖Au‖ ≤ d. Hence AΩ⊂Ω. It easy to check that the operator A is completely continuous. For u ∈Ω and u = λAu, 0 < λ < 1, we have
u(t) = λAu(t)< Au(t)≤ d, which implies ‖u‖ ≤ d. So {u ∈Ω : u = λAu, 0 < λ < 1} is bounded. By Theorem 1.1, we know the operator
A has at least one fixed point in Ω. Thus the problem (1.1)-(1.2) has at least one positive solution. The proof is complete.

4. Examples

Example 4.1. Consider the boundary value problem

u′′′ (t)+
t2u

t + eu = 0, 0 < t <
5
4
, (4.1)

u(0) = 0, u′′ (0) = 0, u
(

5
4

)
= 35

∫ 1
4

0
u(s)ds, (4.2)

where α = 35, η = 1
4 , T = 5

4 , 0 < α = 35 < 40 = 2T
η2 , f (t,u) = u

t+eu ∈C ([0,T ]× [0,∞) , [0,∞)) and a(t) = t2 > 0 for t ∈
[

1
4 ,

5
4

]
. Since

f∞ = 0 and from Theorem 3.2, we can get that the (4.1)- (4.2) has at least one positive solution. Consequently, we cannot apply the
Krasnoselskii’s fixed point theorem like in [10, 17, 19]

Example 4.2. Consider the boundary value problem

u′′′ (t)+ et
(

u− u√
1+u

)
= 0, 0 < t <

3
4
, (4.3)

u(0) = 0, u′′ (0) = 0, u
(

3
4

)
= 15

∫ 0,2

0
u(s)ds, (4.4)

where α = 15, η = 0,2 = 1
5 , T = 3

4 , 0 < α = 15 < 37,5 = 2T
η2 , f (t,u) = u− u√

1+u
∈ C ([0,T ]× [0,∞) , [0,∞)) and a(t) = et > 0 for

t ∈
[ 1

5 ,
3
4
]
. Obviously f0 = 0. From Theorem 3.1, the (4.3)-(4.4) has at least one positive solution. On the other hand, we have f0 = 1 , then

the function f is not superlinear. Consequently, we cannot apply the Krasnoselskii’s fixed point theorem like in [10, 17, 19]
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