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The study to identify malicious threats in Android mobile phones is presented in this 

study. The sample Dataset was from DroidFusion-2018—Jupyter Notebook, together 

with Python for implementation. The techniques considered include the classifiers 

mentioned in the study. An ensemble of techniques was developed for the study. The 

Ensemble model achieved 97% accuracy, compared to 71%, 77%, and 79% attained by 

SVM, KNN, and RF. The study designed a model for detecting malicious Android 

applications that are integrated into existing malware detection platforms to improve 

their usage and acceptance. 

 

 

1. Introduction 

 
Mobile devices have become increasingly important for contemporary civilization over the last decade, directly 

contributing to its growth in establishing mobile information access. Nowadays, smartphones are frequently used 

to complete tasks such as making payments, bookings, and so on. The enhancement of the operating system has 

also supported the growth of mobile devices. During the market's volatile growth, it became its largest 

intelligence. Android and iOS are the dominant operating systems in the industry. Android phones continued to 

hold the top spot in the mobile operating system, dominating the market [1]. Google penetrated the mobile 

industry and later made it available to the general public. 

The cost is another factor dominating the global market for Android [2]. Cost is therefore the first consideration 

when choosing a mobile phone. Apple cannot compete with Google in that market. They can be given to several 

users worldwide [3]. According to McAfee, any malicious software is malware. Cybercriminals utilize software 

against victims to their advantage to profit financially. The term contains malicious software like viruses, Trojans, 

worms, bots, backdoors, spam, spyware, ransomware, etc. [4]. Mobile malware controls a mobile device 

remotely, disables it, or steals personal information. It targets Android-powered devices. 

Malware is disseminated via altered or blatantly harmful applications hosted on third-party mobile app stores [5]. 

Android malware distribution is not limited to third-party applications but also includes visiting unidentified 

websites. In September 2019, 172 fraudulent apps, totaling nearly 330 million installations, were discovered. This 

study claims that the malicious components were concealed within the system [6]. Android malware is commonly 

deceptive. It is one form of malware that irritates Android phone users by bombarding them with advertisements, 

even when using unrelated apps, for which the developers receive payment to display them [7], hence [8]. This 

research detects malicious Android applications with several features. 
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The contributions to the knowledge are: 

 

1) This will produce a reliable malware detection mechanism for Android 

2) This study will be integrated into existing malware detection platforms to improve usage and acceptance. 

 

2. Past Works 

The reviews are relevant and include a brief description of techniques used in illegal transactions made in 

mobile applications [9]. The malicious software for Android devices is known as Android malware [10]. The 

Various characteristics of malware apps have been apportioned into various families [11]. 

Various critical elements are measured during analysis for malware's functionality. Vulnerability analysis, source 

code analysis, and behavioral analysis are examples of informal analysis [12]. There are three predominant 

analysis techniques [13]. These include application binaries, source code, and malicious threats [14]. The 

taxonomy of the view is in Fig. 1. 

 
Figure1. Taxonomy of the Review 

 

The dynamic analysis approach was developed to address limitations [15]. This paper enhances the ability to 

detect malicious software effectively. Android malware systems have greater features compared to traditional 

inflexible phone bugs. [16]. This enables the detection of variants of old malware and wholly novel malware. 

[17] measures machine learning classifiers to obtain authorization [18] aimed to improve the foundation of 

malware detection. [19] aimed to examine the effect of authorizations in a malware detection system using 

established techniques. [20]-[24] proposes static detection methods. [21] aimed to provide a solution that detects 

malware from several families efficiently and accurately with minimum time and resources. The aim of [22] is 

to utilize the attributes used by Androids. The study performed a manifest analysis for permissions. 

2.1 Related Works 

The extensive use of Android applications has made it easier for Cybercriminals to pilfer sensitive information 

and execute malicious attacks. The quick advances made in the use of Android-based smartphones have led to 

emerging threats from malware devices. As a result, Android malware has become increasingly complicated in 

its usage. The Malware detection model characterizes malicious behavior. Traditional techniques lack high- 

dimensional feature specifics, which increases computational complexity and reduces the detection accuracy. 

Work [25] p roposes a technique to enhance Android malware detection by utilizing a reliable feature 

optimization model. The study utilizes the Relief algorithm to reduce the feature space. As a result, eliminates 



Gbotosho et al. CUJSE 22(2): 073-089 (2025) 

75 

      

 

redundant and irrelevant features. The ensemble model uses three datasets (Derbin, Malgenome, and Prerna) 

across all features. The experimental results show that detection accuracy can improve with an optimal feature 

vector. [26] presents a widely used study of current malware detection techniques in Android-based phones. 

The paper examines the techniques for developing malware threats and includes a hybrid detection technique, 

together with real-time threat intelligence, applicable to the cyber threat landscape. 

Work [27] presents a general detection framework for system calls as a privacy-preserving data source. The 

method allows preserving user privacy. The study utilizes the accuracy of detection in a secure environment in 

the real world. A framework integrating Genetic Algorithms (GA) with its level of accuracy specified at 98% 

[28]. The experimental results on the Android malware detection datasets indicate a success rate, increasing 

accuracy from 24% to 97%. The results show that current security controls do not sufficiently alleviate the impact 

of the proposed framework against attacks. [29] propose a malware detection technique for improved 

performance, proposing that the ensemble is more accurate than current techniques in a thorough manner. The 

study lays down a basic foundation for future research. The reviewed literature proposes widespread mobile 

phone threats over the past decade, specifically in the area of malware. Recent studies have leveraged artificial 

intelligence techniques to tackle these challenges. 

2.2 Exploratory Texts on Methods 

 

2.2.1 Support Vector Machine 

 

[30] investigate machine learning techniques to select spam in messages using Kaggle. The study employs 

supporting vector machine technique, with performance evaluation. The support vector machine using these 

features results in better accuracy compared to previous studies. 

A parallel between the techniques was carried out by [31]. An evolutionary programming technique was 

employed during the testing. [32] Propose a system by evaluating the model. The system shows a high accuracy 

in identifying spam messages. The study analyzes language patterns and features within the text and proposes a 

robust framework for reducing SMS spam and improving user experiences. 

2.2.2 K-Nearest Neighbour (KNN) 

 

This study uses [33]. The study estimates the sample size with the outcome having more accuracy using the 

Multinational Naive Bayes Algorithm, when the methods' average performance is compared to identify the more 

accurate technique. [34] present a unique technique by combining the K-Nearest Neighbour technique for feature 

extraction with the collection of classification characteristics. The outcome shows an accuracy of 98.36% and 

precision (99.19%). This indicates a more accurate model performance compared to current measurements. This 

method provides a functional SMS spam detection technique, enhancing the classifiers. 

[35] proposes a framework for detecting SMS spam by developing robust and efficient spam detection models. 

The K-Nearest Neighbour technique oversees feature extraction in representing text data. The model can then 

capture important characteristics by differentiating spam from non-spam messages. The results provide a solution 

for enhancing SMS spam detection. 

2.2.3 Random Forest (RF) 

The study utilizes the Random Forest Algorithm to remove irrelevant features and proposes that accuracy can be 

improved through optimal feature selection. [36]. The performance of this study is assessed using Random Forest 

models. The datasets were evaluated on their level of accuracy. The study was also conducted in a non- English 

format. [37] Apply an ensemble to incorporate separate methods for detection. The techniques used indicate that 

the ensemble model is more accurate than individual algorithms, providing active protection against malicious 

SMS attacks. [38] propose a unique technique for spam detection, achieving improved accuracy than previous 

methods. The results present a robust and remarkable improvement in spam detection. 
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2.3 Comparison of Techniques 

 

The positive and negative attributes for each technique are considered in this section, summarized in the table 

below to identify and discuss the reasons for choosing the methods used in this study. 

 

Table 1. Characteristics of Methods Used in the Study 

Method             Advantages                   Disadvantages 

Random Forest 

(RF) 

•   The performance evaluation is less complex 

•    Reduced overfitting 

•    Takes care of missing data 

•   Usefull for classification and regression 

functions 

• Random Forest gives knowledge of the features 

that are important for predictions 

• Requires much memory and needs many 

resources 

• Less interpretable than individual decision 

trees 

 

K-Nearest 

Neighbor 

(KNN) 

• Develops training instances 

      for a general model 

• Approximations are made to 

      the target function 

• These algorithms can easily 

      adapt to new data collected 

      over time  

• A form of lazy learning 

• Relies on storing data 

• The complexity of the hypothesis can 

grow with the data 

• Each query consists of beginning 

the new model from scratch, leading to high 

classification costs 

• A huge memory is required to store data 

Support Vector  

Machine 

• SVM is adequate for high- 

      dimensional spaces and  

   image classification analysis 

• Handles nonlinear 

      Relationships 

• Improves accuracy 

• SVM is adequate for text 

Classification 

• Overfitting of models 

• Slow  for  big  datasets, 

       impacting performance 

• Adjusting parameters needs 

      careful tuning 

• SVM is difficult with noisy 

      datasets, reducing its       

      effectiveness 

This study compared techniques reviewed in literature with a dataset from Kaggle, an online data repository. The 

study compares the methods to investigate the most accurate technique. The results from the study indicate that the 

Random model was the most widely used technique. An Ensemble model of the three techniques will enhance the 

accuracy of the results. The four variables used in [39] improve the study by using a combination 

of these four parameters. This study proposes an ensemble model to detect malicious Android mobile applications, 

as the decision-making of a bigger group is superior to that of a single expert. 

2.4 Description of Practical Applications 

 

For use in real-world apps, there is a need to describe the following: 

2.4.1 Real-Time Processing 

Real-time performance of a system encompasses every component, including hardware, BIOS, operating system, 

network, and application. Real-time applications execute within a certain period, across several iterations. Real-

time applications conventionally perform the following tasks: 1. Process new input. 2. Compute a computation. 

3. Submit a result. These functions must be completed within a period. 

[40]-[43] presents an evaluation of different models, providing insights into malware characteristics. The study 

outcome includes result visualization, with results displayed in real-time, presenting their prevalence for 

preventing related cyber threats. In [44], a hybrid mobile malware detection model that enhances detection 
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accuracy and makes the model more resilient to new malware is proposed. The proposed model is more accurate 

than classical machine learning algorithms. However, there is a need to build real-time detection components to 

tackle mobile malware in new connected ecosystems. 

2.4.2 Memory Usage and Latency 

 

Memory is a vital component of a computer system, focusing on the CPU and the storage system for the fast 

processing of data. Computer users often examine the relationship between memory speed and system performance. 

Work [45] presents a model that introduces data splitting as Testing and Training data, enhancing the classification 

process. A major challenge of this paper is its inability to deal with the prediction of noise. [46] presents the 

performance of machine learning classifiers using representations learned by an encoder from malware datasets. 

Results from the study indicate the Ensemble model performs better than the others. A drawback to the study is 

that the study outcome cannot provide insight into features impacting the latent space. 

3. Methodology 

This section discusses the methodology for developing a malware detection model for Android mobile phones. The 

section gives details of data collection, model design, and implementation. 

3.1. Data Collection 

The first module is data collection. The data was sourced from the Kaggle repository and includes both malicious 

(S) and benign (B) categories extracted from various applications. It contains 5560 malicious applications and 

9476 benign applications. Fig. 2 shows that the features represented in Table 1 have no class imbalance in the 

dataset. Fig 3 shows the Android malware. 

 

 

Figure 2. Dataset Features 
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Table 2. Dataset Features Distribution 

S/N     Category Feature 

1 Manifest Permissions 113 

2 API Call Signatures 73 

3 Command Signatures 6 

4 Intents 23 

TOTAL 215 

 

 

Figure 3. Android Malware and Benign Data Set 

 

3.2 Methods Used in the Study 

This research utilizes Pearson's Correlation Coefficient for feature selection to select relevant variables from the 

original dataset. Pearson's correlation coefficient is the association between the variables of interest and selects 

features for a machine-learning model associated with two variables. The correlation coefficient 'r' is given by      

              

(1) 
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Where,         𝑟: correlation coefficient 

𝑥𝑖 : 𝑟: values of the x − variable in a sample 

           𝑥̅ ∶ mean of the values of the x − variable 

𝑦𝑖 : 𝑟: values of the y − variable in a sample 

𝑦̅ ∶ mean of the values of the x − variable 

 

The data set, which contains 15036 instances, was later reduced to 15031 instances because five (5) out of the 

entire data set contained null values, which were removed after prepossessing, and 55 attributes out of its 215 

attributes were selected by the Pearson correlation coefficient for training the model. This is given in Fig. 4. 

 

Figure 4. Pearson Correlation Coefficient Pseudocode  

 

The input process of the data set retrieved from Kaggle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Figure 5. Snapshot for Data from Kaggle A  
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A description of the classifiers is given below. 

 

   3.2.1.SVM Technique 

 

The technique separates classes in the classification for identifying spam messages. SVM maximizes the margin 

separating the margins. The better the separation, the more accurate it is. It is important and common to search 

for solutions by class splitting [23]. The pseudo-code for SVM is displayed in Fig. 6. 

 

 

Figure 6. SVM Pseudocode 

 

   3.2.2.K-Nearest Neighbour (KNN) 

 

This process includes finding the "k" closest data points to a given input. As a result, the KNN algorithm is discussed 

by [24] and the pseudocode is in ig. 7. 

 

 

Figure 7. KNN Pseudocode 

 

   3.2.3. Random Forest 

 

This is applicable for a better prediction. Individual techniques have an impact on separate data sets for 

classification or regression. This reduces errors and improves accuracy. It is used in research to solve the credibility 

problem [25]. Fig 8 illustrates the pseudo-code of the Random Forest algorithm. 
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Figure 8. Random Forest Pseudocode 

3.2.4. Ensemble 

 

Ensemble learning is a collection (or ensemble) of basic learners or models to improve the final prediction. The 

ensemble technique employed in this study is known as the Stacking Classifier. It is shown in Fig. 9. 

 

Figure 9. Stacking Pseudocode 

 

3.3 Comparison and Validation of Techniques 

 

This section compares the proposed model with previous models. The results from this study are compared 

with results from [40] and [41], using their respective error values. The process of validation of results was 

discussed by [42]. The computation of errors was described. 

 

     RMSE = √
1

n
∑ (yi − ŷi)2n

i=1                 (2) 

 

               Where, 
 yi: observed (actual)value 

 ŷi: predicted value 

 n: number of observations 
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4. Results 

The implementations performed are presented. It provides detailed findings of the models and metrics employed, 

and performance of the results. 

   4.1. Model Evaluation 

F1 would be between 0 and 1. It is calculated using a confusion matrix with the help of; 

      F1= 2*(precision*recall)/(precision + recall)                        (3) 

Fig 10 to Fig 13 indicate the evaluation metrics performed on each classifier. The figures show the respective 

performance evaluation against the metrics for the SVM, KNN, RF, and Ensemble models. 

 

Figure 10. Result for SVM 

 

 

Figure 11. Result for KNN 



Gbotosho et al. CUJSE 22(2): 073-089 (2025) 

83 

      

 

 

Figure 12. Result for Random Forest 

 

 

 

 

 

Figure 13. Ensemble Result 

 

 

Table 3 presents the performance evaluation of the Ensemble model with SVM, KNN, RF, and Ensemble models. 

The performance metric chart is given in Fig. 14. 
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Table 3. Performance Evaluation Result 

Classifiers Accuracy Precision Recall F1-Score Time(sec) 

Support Vector Machine (SVM) 70.93 56.48 98.67 71.84 48.37 

K-Nearest Neighbor (KNN) 76.82 65.50 80.97 72.42 34.91 

Random Forest (RF) 79.18 67.26 86.90 75.83 31.29 

Ensemble 97.41 97.73 95.31 96.51 46.64 

 

 

             

Figure 14. Performance Evaluation Chart 

 

    4.2.Model Deployment 

The Python software, Streamlit, and Heroku are used for the model. After creating the back-end with Python 

and Streamlit, Heroku was used to deploy the model to be accessed via the web. This is shown in Fig. 15. 

 

 

Figure 15. Heroku’s View when Deploying the Web Application 
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4.3. Results for Comparison of Techniques 

 

The results are computed based on models described in Section 3.3. From Table 4, the most accurate technique 

is seen as the Ensemble model. This is compared with previous studies [40] and [41]. 

Table 4. Comparisons 

Ahmadi et al. (2025) Shen et al. (2025)               EnsembleModel 

Actual data Estimates Actual data Estimates Actual data Estimates 

41.59 48.11 41.59 45.56 41.59 46.18 

45.60 50.43 45.60 48.77 45.60 49.91 

42.74 46.67 42.74 45.14 42.74 45.94 

44.75 50.95 44.75 48.32 44.75 49.01 

41.18 88.21 41.18 45.34 41.18 46.22 

36.79 42.66 36.79 39.21 36.79 40.54 

41.68 47.79 41.68 45.11 41.68 46.32 

42.84 46.41 42.84 44.32 42.84 44.99 

44.03 47.76 44.03 45.01 44.03 45.87 

43.78 49.46 43.78 45.32 43.78 46.58 

44.94 48.42 44.94 45.11 44.94 46.36 

42.12 47.68 42.12 43.92 42.12 44.93 

37.91 42.43 37.91 39.88 37.91 40.03 

42.95 47.74 42.95 44.43 42.95 45.46 

43.56 49.32 43.56 46.47 43.56 47.84 

44.34 47.46 44.34 45.13 44.34 45.79 

44.64 48.34 44.64 45.73 44.64 46.74 

44.15 48.85 44.15 45.58 44.15 46.36 

38.90 42.85 38.90 39.41 38.90 40.58 

37.76 41.47 37.76 38.74 37.76 39.74 

43.58 47.27 43.58 44.82 43.58 45.43 

45.15 48.11 44.15 45.15 44.15 46.85 

 

The values for results are indicated in Table 5. The results show RMSE and MAPE given by [40] and [41]. 

 

Table 5. Evaluation of Results 

 Ahmadi et al. (2025) Ensemble model Shen et al. (2025) 

RMSE 0.873 0.596 0.704 

MAPE (%) 1.957 0.921 1.199 

 

The results show the Ensemble to be the best technique. A study of past literature presented in Section 2 indicates 

that the techniques combined to form the Ensemble are efficient machine learning techniques. The strengths and 

weaknesses of these techniques are listed. The combination of the three techniques considered will improve the 

accuracy of the results. This study proposes an Ensemble model to detect malicious Android mobile applications, 

as the results from a set are more accurate than those of a single model. 

 

4.4. Results for Split Validation 

 

The split validation technique is applied to methods, ensuring a robust performance estimation (k = 5) for malware 

detection and malware category classification. The validation procedure divides the dataset into five folds. For each 
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iteration, the training technique validates the model.  

 

The results in Table 5 clearly show the validity of the Ensemble model. 

 

Table 6. Results for 5-Fold Cross Validation 

 Ensemble model RF KNN SVM 

Malware detection 96.41 78.19 71.21 70.23 

Malware category classification 86.10 84.28 83.22 83.15 

 

5. Conclusion 

This study proposed an ensemble for identifying bugs compared with the individual results of the aforementioned 

machine learning. The research was evaluated using a collection comprising 15036 instances (benign and 

malware) from the Kaggle repository. The dataset was preprocessed, and 55 features were identified in the model. 

During the experiment, the ensemble model achieved 97% accuracy compared with 71%, 77%, and 79% in SVM, 

KNN, and RF, respectively. 

Heroku is a natural language processing-based model that is quick and easy to use when the spam detection model 

is deployed. The application takes natural text from users and predicts if it's legitimate text. The model works by 

inputting the message and checking whether it's legitimate text. The limitations of Heroku in real- world use 

include cost constraints, inability to adapt and grow, and handling a growing amount of work. These limitations 

have led users to turn to alternatives. In the deployment of a Heroku application, trust is an issue because it 

involves critical and sensitive data about businesses' customers. 

The Ensemble model will analyze any form of data, including complex, cutting-edge data, adaptable in detecting 

diverse malware types, next-generation malware, and identifying malicious applications. It can perform a 

comprehensive analysis with real-time detection capabilities. The model is designed for detecting malicious 

applications that are integrated into existing malware detection platforms. As a result, enhancing their usage and 

acceptance. The model will perform similarly on different datasets. 

 

There are several machine learning techniques; it is impossible to exhaust all of these methods. This study 

investigates these techniques because they were widely used in previous studies. Furthermore, this study is limited 

to static analysis. This technique enables understanding of the application and ensures it is compliant and safe. This 

work is far-reaching for Android users in detecting malware. The result shows that the ensemble has better 

accuracy. Future research will involve the impact of failure cases and misclassifications on the spam detection 

model. 
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