e-ISSN: 2564-7954 CUSIJE 22(2): 073-089 (2025) Research Article

Cankaya University

Journal of Science and Engineering C U] SE

https://dergipark.org.tr/cankujse

Development of an Android-Based Malware Detection Model

Ajibola Gbotosho! ", Patrick Ozoh! ™, Tosin Oyetayo!

! Department of Computer Science, Osun State University, Osogbo, Nigeria

Keywords Abstract

The study to identify malicious threats in Android mobile phones is presented in this

And.r O.lds’ study. The sample Dataset was from DroidFusion-2018—Jupyter Notebook, together
Malicious Threats, ,
. . with Python for implementation. The techniques considered include the classifiers
Machine Learning, . . :
. . mentioned in the study. An ensemble of techniques was developed for the study. The
Manifest Analysis.

Ensemble model achieved 97% accuracy, compared to 71%, 77%, and 79% attained by
SVM, KNN, and RF. The study designed a model for detecting malicious Android
applications that are integrated into existing malware detection platforms to improve
their usage and acceptance.

1. Introduction

Mobile devices have become increasingly important for contemporary civilization over the last decade, directly
contributing to its growth in establishing mobile information access. Nowadays, smartphones are frequently used
to complete tasks such as making payments, bookings, and so on. The enhancement of the operating system has
also supported the growth of mobile devices. During the market's volatile growth, it became its largest
intelligence. Android and iOS are the dominant operating systems in the industry. Android phones continued to
hold the top spot in the mobile operating system, dominating the market [1]. Google penetrated the mobile
industry and later made it available to the general public.

The cost is another factor dominating the global market for Android [2]. Cost is therefore the first consideration
when choosing a mobile phone. Apple cannot compete with Google in that market. They can be given to several
users worldwide [3]. According to McAfee, any malicious software is malware. Cybercriminals utilize software
against victims to their advantage to profit financially. The term contains malicious software like viruses, Trojans,
worms, bots, backdoors, spam, spyware, ransomware, etc. [4]. Mobile malware controls a mobile device
remotely, disables it, or steals personal information. It targets Android-powered devices.

Malware is disseminated via altered or blatantly harmful applications hosted on third-party mobile app stores [5].
Android malware distribution is not limited to third-party applications but also includes visiting unidentified
websites. In September 2019, 172 fraudulent apps, totaling nearly 330 million installations, were discovered. This
study claims that the malicious components were concealed within the system [6]. Android malware is commonly
deceptive. It is one form of malware that irritates Android phone users by bombarding them with advertisements,
even when using unrelated apps, for which the developers receive payment to display them [7], hence [8]. This
research detects malicious Android applications with several features.

* Corresponding Author: patrick.ozoh@uniosun.edu.ng
Received: June 13, 2025, Accepted: September 9, 2025

73

mailto:patrick.ozoh@uniosun.edu.ng
https://orcid.org/0009-0004-4264-7299
https://orcid.org/0000-0001-9616-2423
https://orcid.org/0009-0005-2192-0740
https://dergipark.org.tr/cankujse

Gbotosho et al. CUIJSE 22(2): 073-089 (2025)
The contributions to the knowledge are:

1) This will produce a reliable malware detection mechanism for Android
2) This study will be integrated into existing malware detection platforms to improve usage and acceptance.

2. Past Works

The reviews are relevant and include a brief description of techniques used in illegal transactions made in
mobile applications [9]. The malicious software for Android devices is known as Android malware [10]. The
Various characteristics of malware apps have been apportioned into various families [11].

Various critical elements are measured during analysis for malware's functionality. Vulnerability analysis, source
code analysis, and behavioral analysis are examples of informal analysis [12]. There are three predominant
analysis techniques [13]. These include application binaries, source code, and malicious threats [14]. The
taxonomy of the view is in Fig. 1.

Static
Analysis

Analyze Dyuam.ic
APKs Analysis

Hybrid
Analysis

Identify
Malware

ML with Static
Analysis

Reduce Threads
to Android

Detect Malware ML with Dynamic
with ML Analysis

Identify User ML with Hybrid
Mistakes Analysis

Figurel. Taxonomy of the Review

The dynamic analysis approach was developed to address limitations [15]. This paper enhances the ability to
detect malicious software effectively. Android malware systems have greater features compared to traditional
inflexible phone bugs. [16]. This enables the detection of variants of old malware and wholly novel malware.
[17] measures machine learning classifiers to obtain authorization [18] aimed to improve the foundation of
malware detection. [19] aimed to examine the effect of authorizations in a malware detection system using
established techniques. [20]-[24] proposes static detection methods. [21] aimed to provide a solution that detects
malware from several families efficiently and accurately with minimum time and resources. The aim of [22] is
to utilize the attributes used by Androids. The study performed a manifest analysis for permissions.

2.1 Related Works

The extensive use of Android applications has made it easier for Cybercriminals to pilfer sensitive information
and execute malicious attacks. The quick advances made in the use of Android-based smartphones have led to
emerging threats from malware devices. As a result, Android malware has become increasingly complicated in
its usage. The Malware detection model characterizes malicious behavior. Traditional techniques lack high-
dimensional feature specifics, which increases computational complexity and reduces the detection accuracy.

Work [25] proposes a technique to enhance Android malware detection by utilizing a reliable feature
optimization model. The study utilizes the Relief algorithm to reduce the feature space. As a result, eliminates

74

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

redundant and irrelevant features. The ensemble model uses three datasets (Derbin, Malgenome, and Prerna)
across all features. The experimental results show that detection accuracy can improve with an optimal feature

vector. [26] presents a widely used study of current malware detection techniques in Android-based phones.
The paper examines the techniques for developing malware threats and includes a hybrid detection technique,
together with real-time threat intelligence, applicable to the cyber threat landscape.

Work [27] presents a general detection framework for system calls as a privacy-preserving data source. The
method allows preserving user privacy. The study utilizes the accuracy of detection in a secure environment in
the real world. A framework integrating Genetic Algorithms (GA) with its level of accuracy specified at 98%
[28]. The experimental results on the Android malware detection datasets indicate a success rate, increasing
accuracy from 24% to 97%. The results show that current security controls do not sufficiently alleviate the impact
of the proposed framework against attacks. [29] propose a malware detection technique for improved
performance, proposing that the ensemble is more accurate than current techniques in a thorough manner. The
study lays down a basic foundation for future research. The reviewed literature proposes widespread mobile
phone threats over the past decade, specifically in the area of malware. Recent studies have leveraged artificial
intelligence techniques to tackle these challenges.

2.2 Exploratory Texts on Methods
2.2.1 Support Vector Machine

[30] investigate machine learning techniques to select spam in messages using Kaggle. The study employs
supporting vector machine technique, with performance evaluation. The support vector machine using these
features results in better accuracy compared to previous studies.

A parallel between the techniques was carried out by [31]. An evolutionary programming technique was
employed during the testing. [32] Propose a system by evaluating the model. The system shows a high accuracy
in identifying spam messages. The study analyzes language patterns and features within the text and proposes a
robust framework for reducing SMS spam and improving user experiences.

2.2.2 K-Nearest Neighbour (KNN)

This study uses [33]. The study estimates the sample size with the outcome having more accuracy using the
Multinational Naive Bayes Algorithm, when the methods' average performance is compared to identify the more
accurate technique. [34] present a unique technique by combining the K-Nearest Neighbour technique for feature
extraction with the collection of classification characteristics. The outcome shows an accuracy of 98.36% and
precision (99.19%). This indicates a more accurate model performance compared to current measurements. This
method provides a functional SMS spam detection technique, enhancing the classifiers.

[35] proposes a framework for detecting SMS spam by developing robust and efficient spam detection models.
The K-Nearest Neighbour technique oversees feature extraction in representing text data. The model can then
capture important characteristics by differentiating spam from non-spam messages. The results provide a solution
for enhancing SMS spam detection.

2.2.3 Random Forest (RF)

The study utilizes the Random Forest Algorithm to remove irrelevant features and proposes that accuracy can be
improved through optimal feature selection. [36]. The performance of this study is assessed using Random Forest
models. The datasets were evaluated on their level of accuracy. The study was also conducted in a non- English
format. [37] Apply an ensemble to incorporate separate methods for detection. The techniques used indicate that
the ensemble model is more accurate than individual algorithms, providing active protection against malicious
SMS attacks. [38] propose a unique technique for spam detection, achieving improved accuracy than previous
methods. The results present a robust and remarkable improvement in spam detection.

75

Gbotosho et al.

CUISE 22(2): 073-089 (2025)

2.3 Comparison of Techniques

The positive and negative attributes for each technique are considered in this section, summarized in the table
below to identify and discuss the reasons for choosing the methods used in this study.

Table 1. Characteristics of Methods Used in the Study

Method

Advantages

Disadvantages

[)
Random Forest

The performance evaluation is less complex
Reduced overfitting

Takes care of missing data

Usefull for classification and regression

Requires much memory and needs many
resources
Less interpretable than individual decision

(RF) .
functions trees
¢ Random Forest gives knowledge of the features
that are important for predictions
A fi flazy learni
e Develops training instances 9nn © aZ}'/ cAtmng
Relies on storing data
for a general model Th ot £ the hvpothesi
K-Nearest e Approximations are made to ecomP exity ot fhe fypottiesis can
.) grow with the data
Neighbor the target function Each st of beginni
(KNN) e These algorithms can easily ac duety” - CONSISIS OF bEBINAING |
the new model from scratch, leading to high
adapt to new data collected . .
) classification costs
over time . .
A huge memory is required to store data
e SVM is adequate for high- Overfitting of models
dimensional spaces and Slow for big datasets,
image classification analysis impacting performance
Support Vector ¢ Handles nonlinear Adjusting parameters needs
Machine Relationships careful tuning

Improves accuracy
SVM is adequate for text
Classification

SVM is difficult with noisy
datasets, reducing its
effectiveness

This study compared techniques reviewed in literature with a dataset from Kaggle, an online data repository. The
study compares the methods to investigate the most accurate technique. The results from the study indicate that the
Random model was the most widely used technique. An Ensemble model of the three techniques will enhance the
accuracy of the results. The four variables used in [39] improve the study by using a combination

of these four parameters. This study proposes an ensemble model to detect malicious Android mobile applications,
as the decision-making of a bigger group is superior to that of a single expert.

2.4 Description of Practical Applications

For use in real-world apps, there is a need to describe the following:

2.4.1 Real-Time Processing

Real-time performance of a system encompasses every component, including hardware, BIOS, operating system,
network, and application. Real-time applications execute within a certain period, across several iterations. Real-
time applications conventionally perform the following tasks: 1. Process new input. 2. Compute a computation.
3. Submit a result. These functions must be completed within a period.

[40]-[43] presents an evaluation of different models, providing insights into malware characteristics. The study
outcome includes result visualization, with results displayed in real-time, presenting their prevalence for
preventing related cyber threats. In [44], a hybrid mobile malware detection model that enhances detection

76

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

accuracy and makes the model more resilient to new malware is proposed. The proposed model is more accurate
than classical machine learning algorithms. However, there is a need to build real-time detection components to

tackle mobile malware in new connected ecosystems.

2.4.2 Memory Usage and Latency

Memory is a vital component of a computer system, focusing on the CPU and the storage system for the fast
processing of data. Computer users often examine the relationship between memory speed and system performance.
Work [45] presents a model that introduces data splitting as Testing and Training data, enhancing the classification
process. A major challenge of this paper is its inability to deal with the prediction of noise. [46] presents the
performance of machine learning classifiers using representations learned by an encoder from malware datasets.
Results from the study indicate the Ensemble model performs better than the others. A drawback to the study is
that the study outcome cannot provide insight into features impacting the latent space.

3. Methodology

This section discusses the methodology for developing a malware detection model for Android mobile phones. The
section gives details of data collection, model design, and implementation.

3.1. Data Collection

The first module is data collection. The data was sourced from the Kaggle repository and includes both malicious
(S) and benign (B) categories extracted from various applications. It contains 5560 malicious applications and
9476 benign applications. Fig. 2 shows that the features represented in Table 1 have no class imbalance in the
dataset. Fig 3 shows the Android malware.

RECEIVE_BOOT_COMPLETED Manifest Permission
RESTART_PACKAGES Manifest Permission
Ljava.lang.Class.getPackage API call signature
chmod Commands signature
Ljava.lang.Class.getDeclaredClasses API call signature
android.intent.action.ACTION POWER DISCO Intent
android.intent.action.PACKAGE_ADDED Intent
PathClassLoader API call signature
TelephonyM ger.getSimSeri API call signature
Runtime.load API call signature

F y ger.getCallState API call signature
BLUETOOTH Manifest Permission
READ_CALENDAR Manifest Permission
READ CALL LOG Manifest Permission
SUBSCRIBED _FEEDS WRITE Manifest Permission
READ_EXTERNAL STORAGE Manifest Permission
TelephonyM getSimC yiso API call signature
sendMultipartTextMessage API call signature
Packagelnstaller API call signature
VIBRATE Manifest Permission
remount Commands signature
android.intent.action.ACTION_SHUTDOWN Intent
sendDataMessage API call signature
ACCESS_NETWORK_STATE Manifest Permission
chown Commands signature
HttpPost.init API call signature
Ljava.lang.Class.getClasses API call signature
SUBSCRIBED FEEDS READ Manifest Permission
Teleph isN kR i API call signature
CHANGE WIFI_MULTICAST STATE Manifest Permission
WRITE_CALENDAR Manifest Permission
android.intent.action.PACKAGE_DATA_CLEAR| Intent

Figure 2. Dataset Features

77

Gbotosho et al.

CUJSE 22(2): 073-089 (2025)

Table 2. Dataset Features Distribution

S/N Category Feature
1 Manifest Permissions 113
2 API Call Signatures 73
3 Command Signatures 6
4 Intents 23
TOTAL 215

Inmaut. unanﬁumnuhd bindServka - ottachinteriaoe SenioeConneckion mmm -BEND. SIS

Ll.wa.l‘annw“unkumm Umhﬂn.émm I.Imluu.é-lal

<]] Q]
+] a 2 u
f:: a a]
o a a o
=] 9 e u
o] a o
o 1 1 1]
[+] a a]
o a 2]
=] a 1]
1 Q] 1
o a a]
-]] il]
1 1 1 !
1] a a]
<]] a i
- Q a u
o Q 2]
o a a 1]
v} a a]
1 i i 1
-] a a]
[+ Q il u
o a a]
1 i i i
o 2] il]
o a a]
1]] a]
<] a a]
o a il]
o] il o
o] a I
o a a]
<]] a]

Figure 3. Android Malware and Benign Data Set

3.2 Methods Used in the Study

- OO O O O o

o o o o O O

(= = = R = = R = = = I = T = I = R == R R = R = B

(=10 =,

a

e @ e =

= @|= @ om a -

als = =la @ 8 = & @

B aes B A a s m|le =

[T PR SR = T S e R . T -

L

a

a
a
a

L= = R~ = O3 [= IR — R = = = | L= — | P = =] = L=

=}

E— TR — B — T — IR -

= aae =

- @m|le B8 =+ a BBl =@o|l—-= ale s \s a='"o

B aes =2 a a‘= o

This research utilizes Pearson's Correlation Coefficient for feature selection to select relevant variables from the

original dataset. Pearson's correlation coefficient is the association between the variables of interest and selects
features for a machine-learning model associated with two variables. The correlation coefficient 'r' is given by

0 ®)(i-y)

78

SNy y e

(M

Gbotosho et al. CUIJSE 22(2): 073-089 (2025)
Where, r: correlation coefficient
x;: r: values of the x — variable in a sample
X : mean of the values of the x — variable
y;: r:values of the y — variable in a sample
¥y : mean of the values of the x — variable

The data set, which contains 15036 instances, was later reduced to 15031 instances because five (5) out of the
entire data set contained null values, which were removed after prepossessing, and 55 attributes out of its 215
attributes were selected by the Pearson correlation coefficient for training the model. This is given in Fig. 4.

START
Generate Correlation between variable and Target Class
IF correlation » 8.2
data_corr <- ADD
ELSE
SKIP
REPEAT
SELECTION
Compute Correlation
UNTIL population has converged
STOP

Figure 4. Pearson Correlation Coefficient Pseudocode

The input process of the data set retrieved from Kaggle.

. T I A — T e L —— — —— SR
1 1 1] L] a] o ']
1 1 1 (] a o 1] L] a o o o
o q 1 L t 1 1 a L] 1
L] a 1 & a 1 L] a i] L] a
[] L 1 Ll 1 Al 1 L '] 1 L] a
o a 1) a 1 1 L] a 1 o L]
o L] 1 ° ' 1 1 L (] 1 L] 1
1 ' ' [' 1 1 ¥ [B 1 []
1] [t 1 1] 1 1 a
1 1 1 1 1 1] a s L] a
1 t 1] 1 1 T a 0 o o
L) q) a 1 o L) a 1 o ']
[} L] o -] L] o 1] L]] o 1 o
]] 1) a] 1]] -] o L]
1 q i L] q L] i a a L] t a
1 1 1 i i 1 L] L] a L] L] L]
1) 1 L] t 1] t] 2 n e
1 a 1 L ' 1 1 L] o o L] L)
o o 1] 1 1 a o '] 1
1 L] 1 1 t 1 1] a 1 1 1
1 1 a Ll 1 o b a a]] a
i 1 1 L] 1) 1 L]) Ll L] L)
1 a 1 1 1 1 o 1] a 1 o o
o o o « a o o e a s 1 o
|I t 1 1 a 1 1] L] a o 1 1
1 1 1 t 1 1] a a 8 o a
L] L) L) L q 1 L a L) Ll L] L)
i i i & L] 1 1 L] a 1 L] i
o] 1 ° t 1 1 L] 1 -] o o
o a) a 1 o a 1 o o 1
1] 1 ['] 1 1 L a 1 o L]
1 L] L] [1]] a 1 L] L]
1 i 1 L] i i a i 1 L] a
1 o o 1] [0 a q °) 0
1 a 1 a o 1 1 a o 1 1
o L = a o L L] o L] o ']
1 1 1] 1 o L] a o 1] ']
1 1 1 a 1 1 L]] 1] 1
1 a Ll L] L] i L] a L] 1 L]
L] [) t 1 1] 1 a 1 o o
1 1 1 ' 1 o 1 a o o o
[L] o 0 1 1] L] o o o o
1 1 L) L] 1 1]] -] o o
1 @ ' 1 b 1 c ' 1 ! |
L] L] & L] i 1 L] a L] L] 4
[} L] L] q L] 1 a a 1 L] L]
L] a () t 1 1 1 a 1] 1
1] 1] o o a o o o

Figure 5. Snapshot for Data from Kaggle A

79

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

A description of the classifiers is given below.
3.2.1.SVM Technique

The technique separates classes in the classification for identifying spam messages. SVM maximizes the margin
separating the margins. The better the separation, the more accurate it is. It is important and common to search
for solutions by class splitting [23]. The pseudo-code for SVM is displayed in Fig. 6.

Inputs:Determine the various training and test data.
Outputs:Determine the calculated accuracy.
Select the optimal value of cost and gamma for SVM.
while (stopping condition is not met) do
Implement SVM train step for each data point.
Implement SVM classify for testing data points.
end while
Return accuracy

Figure 6. SVM Pseudocode

3.2.2.K-Nearest Neighbour (KNN)

This process includes finding the "k" closest data points to a given input. As a result, the KNN algorithm is discussed
by [24] and the pseudocode is in ig. 7.

Input: the training set D, test object x, category label set C
Output: the category c, of test object x, ¢, belongs to the C

1 begin

2 for each y belongs to D do

3 calculate the distance D(y, x) between y and x
4 end for

5 select the subset N from the data set D,

the N contains £ training samples which are the £
nearest neighbors of the test sample x

6 calculate the category of x:

¢, =argmax Y, I(c = class(y))

ceC yeN

7 end

Figure 7. KNN Pseudocode

3.2.3. Random Forest

This is applicable for a better prediction. Individual techniques have an impact on separate data sets for
classification or regression. This reduces errors and improves accuracy. It is used in research to solve the credibility
problem [25]. Fig 8 illustrates the pseudo-code of the Random Forest algorithm.

80

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

1. Select randomly M features from the feature set.
2. Foreachxin M
a. calculate the Information Gain

Gain(tx) =E (t) - E (tx)
E() =Yi-1— P log; P;
E(tx) = Xcex P(c)E(c)
Where E(t) is the entropy of the two classes, E(t,x) is the entropy of

feature x.
b. select the node d which has the highest information
gain

c. split the node into sub-nodes
d. repeat steps a, b and c to construct the tree until
reach minimum number of samples required to
split
3. Repeat steps 1 and 2 for N times to build forest of N
trees

Figure 8. Random Forest Pseudocode
3.2.4. Ensemble

Ensemble learning is a collection (or ensemble) of basic learners or models to improve the final prediction. The
ensemble technique employed in this study is known as the Stacking Classifier. It is shown in Fig. 9.

Input: Training data D = {x;, y,-}:-"_ | (XieR" yi€7)

Output: An ensemble classifier H

: Step 1t Learn first-level classifiers

cfort+ 1t T do

Learn a base classifier h, based on D

: end for

» Step 2: Construct new data sets from 9

: fori— 1tomdo

Construct a new data set that contains {x.,y;}, where x{ = {h; (x;),h2(x;),..., hr(x;)}
: end for

: Step 3: Learn a second-leve] classifier

: Learn a new classifier &' based on the newly constructed data set
. return H(x) = i (h (x),h2(x),... . hr(x))

Figure 9. Stacking Pseudocode

® N S W o WD =

= S v

3.3 Comparison and Validation of Techniques

This section compares the proposed model with previous models. The results from this study are compared
with results from [40] and [41], using their respective error values. The process of validation of results was
discussed by [42]. The computation of errors was described.

RMSE = 251, - 902 @

Where,

y;: observed (actual)value
¥;: predicted value
n: number of observations

81

Gbotosho et al. CUIJSE 22(2): 073-089 (2025)

4. Results
The implementations performed are presented. It provides detailed findings of the models and metrics employed,
and performance of the results.

4.1. Model Evaluation
F1 would be between 0 and 1. It is calculated using a confusion matrix with the help of;

F1=2*(precision*recall)/(precision + recall) 3)

Fig 10 to Fig 13 indicate the evaluation metrics performed on each classifier. The figures show the respective
performance evaluation against the metrics for the SVM, KNN, RF, and Ensemble models.

B e D Evaluating Support Vector Machine (SVM) ---------------mmmmmmmm oo >>>

Accuracy = 78.93%
FL Score = 71.84%

Confusiton Matrix:
[[1818 &59]

[15 1115]]
Classification Report:
precision recall fl-score support
a .99 e.54 8.7a 1677
1 @.56 @.99 8.72 113a@
accuracy 8.71 387
macro &g a.78 8.76 8.71 s@a7
weighted avg @.83 2.71 8.71 3ga7

00

b

-0

a 1

Figure 10. Result for SVM

{Lgmmmmmmm e e Evaluating K Nearest Neighbours (KNN) --------------cmoommmmmmmooaaaaao o >

Accuracy = 76.82%
F1 Score = 72.42%

Confusiton Matrix:
[[1395 482]
[215 915]]

Classification Report:
precision recall fl-score support

@ .87 0.74 0.80 1877

1 .65 0.81 0.72 1130

accuracy 0.77 3007
macro avg .76 0.78 9.76 3007
weighted avg 0.79 0.77 0.77 3007

1200

0

- 600

Figure 11. Result for KNN

82

Gbotosho et al. CUIJSE 22(2): 073-089 (2025)

Accuracy = 79.17999999999999%
F1 Score = 75.83%

Confusiton Matrix:
[[1399 478]
[148 982]]

Classification Report:
precision recall fl-score support

2] 2.90 .75 0.82 1877

1 .67 .87 .76 1130

accuracy 0.72 3007
macro avg e.79 .81 0.72 3007
weighted avg .82 e.79 0.80 3007

Accuracy = 97.41%
F1 Score = 96.50999999999999%

Confusiton Matrix:
[[1852 25]
[53 1077]]

Classification Report:
precision recall fl-score support

@ ©.97 2.99 0.98 1877

1 8.98 9.95 0.97 1130

accuracy 0.97 3007
macro avg ©.97 0.97 0.87 3007
weighted avg 0.97 2.97 0.97 3007

750

1250

000

- 200

-0

0 1

Figure 13. Ensemble Result

Table 3 presents the performance evaluation of the Ensemble model with SVM, KNN, RF, and Ensemble models.
The performance metric chart is given in Fig. 14.

83

Gbotosho et al. CUIJSE 22(2): 073-089 (2025)

Table 3. Performance Evaluation Result

Classifiers Accuracy Precision Recall F1-Score | Time(sec)
Support Vector Machine (SVM) 70.93 56.48 98.67 71.84 48.37
K-Nearest Neighbor (KNN) 76.82 65.50 80.97 72.42 34.91
Random Forest (RF) 79.18 67.26 86.90 75.83 31.29
Ensemble 97.41 97.73 95.31 96.51 46.64
120
100
80 . &
ol o W
> WLt
e || } | | II{
. 10 IR IR e o

Accuracy Precision Recall Fl-Score Time
B SvMm B KNN @ RF B Ensemble

Figure 14. Performance Evaluation Chart

4.2.Model Deployment

The Python software, Streamlit, and Heroku are used for the model. After creating the back-end with Python
and Streamlit, Heroku was used to deploy the model to be accessed via the web. This is shown in Fig. 15.

H HEROKU ‘ Jump to Favorites, Apps, Pipelines, Spaces... ‘

O Personal ¢)| @ androidmalwaredetection bad

Overview Resources Deploy ~ Metrics Activity — Access Settings

Add this app to a pipeline Add this app to a stage in a pipeline to enable additional features
Creataainew pxPeIine or choose an existing @~ | Pipelines let you connect multiple apps 1= @ Pipelines connected to GitHub can enable review
ong and addthis app'to a stage it v together and promote code between them. ', apps,and create apps for new pull requests.
[B Learn more. @ 0 Llearnmore
1@ Choose a pipeline ¢
Deployment method 0 Heroku Git GitHub oo Container Registry
Use Heroku CLI Connect to GitHub @8 |jse Heroku CUI

Figure 15. Heroku’s View when Deploying the Web Application

84

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

4.3. Results for Comparison of Techniques

The results are computed based on models described in Section 3.3. From Table 4, the most accurate technique
is seen as the Ensemble model. This is compared with previous studies [40] and [41].

Table 4. Comparisons

Ahmadi et al. (2025) Shen et al. (2025) EnsembleModel
Actual data Estimates Actual data Estimates Actual data Estimates
41.59 48.11 41.59 45.56 41.59 46.18
45.60 50.43 45.60 48.77 45.60 4991
42.74 46.67 42.74 45.14 42.74 45.94
44.75 50.95 44.75 48.32 44.75 49.01
41.18 88.21 41.18 45.34 41.18 46.22
36.79 42.66 36.79 39.21 36.79 40.54
41.68 47.79 41.68 45.11 41.68 46.32
42.84 46.41 42.84 44.32 42.84 44.99
44.03 47.76 44.03 45.01 44.03 45.87
43.78 49.46 43.78 45.32 43.78 46.58
44.94 48.42 44.94 45.11 44.94 46.36
42.12 47.68 42.12 43.92 42.12 44.93
3791 42.43 3791 39.88 3791 40.03
42.95 47.74 42.95 44.43 42.95 45.46
43.56 49.32 43.56 46.47 43.56 47.84
44.34 47.46 44.34 45.13 44.34 45.79
44.64 48.34 44.64 45.73 44.64 46.74
44.15 48.85 44.15 45.58 44.15 46.36
38.90 42.85 38.90 39.41 38.90 40.58
37.76 41.47 37.76 38.74 37.76 39.74
43.58 47.27 43.58 44.82 43.58 4543
45.15 48.11 44.15 45.15 44.15 46.85

The values for results are indicated in Table 5. The results show RMSE and MAPE given by [40] and [41].

Table 5. Evaluation of Results

Ahmadi et al. (2025) Ensemble model Shen et al. (2025)
RMSE 0.873 0.596 0.704
MAPE (%) 1.957 0.921 1.199

The results show the Ensemble to be the best technique. A study of past literature presented in Section 2 indicates
that the techniques combined to form the Ensemble are efficient machine learning techniques. The strengths and
weaknesses of these techniques are listed. The combination of the three techniques considered will improve the
accuracy of the results. This study proposes an Ensemble model to detect malicious Android mobile applications,
as the results from a set are more accurate than those of a single model.

4.4. Results for Split Validation

The split validation technique is applied to methods, ensuring a robust performance estimation (k = 5) for malware
detection and malware category classification. The validation procedure divides the dataset into five folds. For each

85

Gbotosho et al. CUJSE 22(2): 073-089 (2025)
iteration, the training technique validates the model.

The results in Table 5 clearly show the validity of the Ensemble model.

Table 6. Results for 5-Fold Cross Validation

Ensemble model RF KNN SVM
Malware detection 96.41 78.19 71.21 70.23
Malware category classification 86.10 84.28 83.22 83.15

5. Conclusion

This study proposed an ensemble for identifying bugs compared with the individual results of the aforementioned
machine learning. The research was evaluated using a collection comprising 15036 instances (benign and
malware) from the Kaggle repository. The dataset was preprocessed, and 55 features were identified in the model.
During the experiment, the ensemble model achieved 97% accuracy compared with 71%, 77%, and 79% in SVM,
KNN, and RF, respectively.

Heroku is a natural language processing-based model that is quick and easy to use when the spam detection model
is deployed. The application takes natural text from users and predicts if it's legitimate text. The model works by
inputting the message and checking whether it's legitimate text. The limitations of Heroku in real- world use
include cost constraints, inability to adapt and grow, and handling a growing amount of work. These limitations
have led users to turn to alternatives. In the deployment of a Heroku application, trust is an issue because it
involves critical and sensitive data about businesses' customers.

The Ensemble model will analyze any form of data, including complex, cutting-edge data, adaptable in detecting
diverse malware types, next-generation malware, and identifying malicious applications. It can perform a
comprehensive analysis with real-time detection capabilities. The model is designed for detecting malicious
applications that are integrated into existing malware detection platforms. As a result, enhancing their usage and
acceptance. The model will perform similarly on different datasets.

There are several machine learning techniques; it is impossible to exhaust all of these methods. This study
investigates these techniques because they were widely used in previous studies. Furthermore, this study is limited
to static analysis. This technique enables understanding of the application and ensures it is compliant and safe. This
work is far-reaching for Android users in detecting malware. The result shows that the ensemble has better
accuracy. Future research will involve the impact of failure cases and misclassifications on the spam detection
model.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Authorship Contribution Statement

Gbotosho Ajibola: Data Preparation, Editing
Ozoh Patrick: Writing, Methodology
Oyetayo Tosin: Data Preparation, Editing

References

[1] J. Hightower, W. B. Glisson, R. Benton, and J. T. McDonald, “Classifying Android Applications Via System Stats,”
in IEEE International Conference on Big Data (Big Data), virtual, 2021 pp. 5388-5394,
doi:10.1109/BigData52589.2021.9671999.

86

https://doi.org/10.1109/BigData52589.2021.9671999

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

(2]

(3]

(6]

(8]

[9]

[10]

[11]

[12]

[19]

[20]

[21]

[22]

(23]

J. Wallen, "Why is Android more popular globally, while iOS rules the US," 2021, www.
techrepublic.com/article/why-is-android-more-popular-globally-while-ios-rules-the-us.
D. O. Sahin, S. Akleylek, and E. Kilic, “LinRegDroid: Detection of Android Malware Using Multiple Linear
Regression Models-Based Classifiers,” IEEE Access, vol. 10, pp. 14246-14259, Jan.2022,
doi:10.1109/ACCESS.2022.3146363.
D. Gibert, M. Carles, and P., "The rise of machine learning for detection and classification of malware: Research
developments, trends and challenges," J. Netw. Comput. Appl., vol. 153, pp. 102526, Mar. 2020,
doi:10.1016/j.jnca.2019.102526.
J. Vijayan, “Android Malware Hijacks Phone Shutdown Routine,” Security Intelligence, 2021,
securityintelligence.com/news/android-malware-hijacks-phone-shutdown-routine/.
R. Jusoh, A. Firdaus, S. Anwar, M. Z. Osman, M. F. Darmawan, and M. F. A. Razak, “Malware Detection Using
Static Analysis in Android: a review of FeCO (Features, Classification, and Obfuscation),” Peer] Comput. Sci., vol.
7, pp- 1-54, Jun. 2021, doi:10.7717/peerj-cs.522.
J. Senanayake, H. Kalutarage, and M. O. Al-Kadri. “Android mobile malware detection using machine learning: A
systematic review”, Electronics, vol. 10, no. 13, 1606, 2021, doi:10.3390/electronics10131606.
0. Yildiz, and I. A. Dogru, “Permission-based Android Malware Detection System Using Feature Selection with
Genetic ~ Algorithm,” Int. J. Softw. Eng. Knowl. Eng., vol. 29, no. 2, pp. 245-262, 2019,
doi:10.1142/S0218194019500116.
H. A. Alatwi, “Android Malware Detection Using Category-Based Machine Learning Classifiers,” 2016, www.
scholarworks.rit.edu/theses.
F. Tchakounte, “A Malware Detection System for Android Malware Detection based on Android Permissions View
project IoT security,” 2016, www.researchgate.net/publication/282866516.
M. S. Alhebsi, “Android Malware Detection using Machine Learning Techniques,” 2022,
www.scholarworks.rit.edu/theses.
E. Masabo, “A Feature Engineering Approach for Classification and Detection of Polymorphic Malware using
Machine Learning,” Ph.D. dissertation, Depart. Comp. Networks, Sch. Computing and Inform. Tech., Makerere
Uni., Kampala, 2019.
V. Kouliaridis, and G. Kambourakis, “A comprehensive survey on machine learning techniques for android malware
detection,” Information 2021, vol. 12, 185, Apr. 2021, doi:10.3390/info12050185.
F. Akbar, M. Hussain, R. Mumtaz, Q. Riaz, A. Wahab, and K. H. Jung, “Permissions-Based Detection of Android
Malware Using Machine Learning,” Symmetry, vol. 14, no. 4, pp. 718, Apr. 2022, doi:10.3390/sym14040718.
Y. Kamalrul Bin Mohamed Yunus, and S. bin Ngah, “Review of Hybrid Analysis Technique for Malware
Detection,” IOP Conf. Ser.. Mater. Sci. Eng., vol. 769, no. 1, 012075, Jun. 2020, doi:10.1088/1757-
899X/769/1/012075.
A. Muzaffar, H. Ragab Hassen, M. A. Lones, and H. Zantout, “An in-depth review of machine learning based
Android malware detection,” Comput. Secur., vol. 121, 102833 ,Jul. 2022, doi:10.1016/j.cose.2022.102833.
E. Amer, S. E. Mohamed, M. Ashaf, A. Ehab, O. Shereef, H. Metwaie, and A. Mohammed, “Using Machine
Learning to Identify Android Malware Relying on API calling sequences and Permissions,” J. Comput. Commun.,
vol. 1, no. 1, pp. 38-47, Feb. 2022, doi: 10.21608/jocc.2022.218454.
A. S. Shatnawi, Q. Yassen, and A. Yateem, “An Android Malware Detection Approach Based on Static Feature
Analysis Using Machine Learning Algorithms,” Procedia Comput. Sci., vol. 201, pp. 653—658, Nov. 2022,
doi:10.1016/j.procs.2022.03.086.
D. O. Sahin, S. Akleylek, and E. Kilic, “LinRegDroid: Detection of Android Malware Using Multiple Linear
Regression Models-Based Classifiers,” IEEE Access, vol. 10, pp. 14246-14259, Jan. 2022,
doi:10.1109/ACCESS.2022.3146363.
H. Li, H. Zhang, X. Chen, D. Liao, and M. Zhang, “Android Malware Detection Based on Sensitive Patterns,”
Research Square, 2022, doi : 10.21203/rs.3.1rs-1592245/v1.
N. Sarah, F. Y. Rifat, M. S. Hossain, and H. S. Narman, “An Efficient Android Malware Prediction Using Ensemble
machine learning algorithm,” Procedia Comput. Sci.,, vol. 191, no.l, pp. 184-191, Jan. 2021,
doi:10.1016/j.procs.2021.07.023.
D. O. Sahin, O. E. Kural, S. Akleylek, and E. Kilig, “A novel permission-based Android malware detection system
using feature selection based on linear regression,” Neural Comput. Appl., vol.35, no.5, pp. 1-16, Mar. 2021,
doi:10.1007/s00521-021- 05875-1.
E. H. Houssein, M. E. Hosney, M. Elhoseny, D. Oliva, W. M. Mohamed, and M. Hassaballah, “Hybrid Harris hawks
optimization with cuckoo search for drug design and discovery in chemoinformatics,” Scientific Reports, vol. 10,
no. 1, 14439, Sept. 2020, doi:10.1038/s41598-020-71502-z.

87

https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.21608/jocc.2022.218454

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[37]

[38]

[41]

[42]

[43]

[44]

Q. Cao, L. La, H. Liu and S. Han, “Mixed weighted KNN for imbalanced datasets,” Int. J. Performability Eng., vol.
14, no. 7, pp. 1391-1400, 2018. doi: 10.23940/ijpe.18.07.p2.13911400.
H. K. Almulla, H. J. Mohammed, N. Clarke, A. A. Hadi,and M. A. Mohammed, “An Effective Feature Optimization
Model for Android Malware Detection,”” Mesop. J. CyberSecur., vol. 5, no. 2, pp. 563-576, 2025.doi:
10.58496/MJCS/2025/034.
R.Verma, “Review of Malware Detection from Android based Smart Mobile for Cyber Security”, 2025.
A. K. Nair, and D. Gupta, “AndrolDS: Android-based Intrusion Detection System using Federated Learning,” arXiv
preprint arXiv:2506.17349. Accessed: June 2025. [Online] Available: https://www.arxiv.org/pdf/2506.17349.
F. Nawshin, D. Unal, M. Hammoudeh, and P. N. Suganthan, “A Novel Genetic Algorithm Optimized Adversarial
Attack in Federated Learning for Android-Based Mobile Systems”, IEEE Trans. Consum. Electron., vol. 99, pp.1-
1, Jun. 2025, doi: 10.1109/TCE.2025.3577905.
S. Nethala, P. Chopra, K. Kamaluddin, S. Alam, S. Alharbi, and M. Alsaffar, “A Deep Learning-Based ensemble
framework for robust Android malware detection”, IEEE Access, vol. 13, pp. 46673-46696, Mar. 2025, doi:
10.1109/ACCESS.2025.3551152.
I. Nawaz, S. N. Khosa, R. Fatima, M. Saeed, and M. S. A. Hashmi, “Smart Filters For Sms Spam: A Machine
Learning Approach to Sms Classification,” Spectr. Eng. Sci., vol. 3, no. 5, pp. 71-98, May 2025, doi:
10.5281/zenodo.15333801.
N. Hafidi, Z. Khoudi, M. Nachaoui, and S. Lyaqini, “Enhanced SMS spam classification using machine learning
with optimized hyperparameters,” Indonesian J. Electr. Eng. Comput. Sci, vol. 37, no. 1, pp. 356- 364, Jan. 2025.
doi: 10.11591/ijeecs.v37.il.pp356-364.
N. Durshatti, and O. Sraani, “Spam Message Detection with Multiple Algorithms,” SSRN. Accessed: 16 May.
[Online] Available: https://papers.ssrn.com/sol3/papers.cfm?abstract id=5183187.
J. K. Prasad, and S. Christy, “SMS spam detection using multinational Naive Bayes algorithm compared with K-
nearest neighbor algorithm,” in AIP Conference Proceedings, vol. 3270, no. 1, pp. 020090, AIP Publishing LLC,
2025.
A. B. Ahmed, and K. Haruna, “Enhanced Sms Spam Detection Using Bernoulli Naive Bayes With Tf-Idf,”’
FUDISE, vol. 9, no. 1, pp. 393-399, Apr. 2025, doi:10.33003/fjs-2025-0901-3226.
P. Ozoh, M. Ibrahim, R. Ojo, A. Sunmade, and T. Oyetayo, “SMS Spam Detection Using Machine Learning
Approach,” International STEM Journal, vol. 6, no. 1, pp. 10-27, Jun. 2025.
M. F. Johari, K. L. Chiew, A. R. Hosen, K. S. Yong, A. S. Khan, I. A. Abbasi,D. Grzonka, “Key insights into
recommended SMS spam detection datasets,” Sci. Rep., vol. 15, 8162, Mar. 2025, doi:10.1038/s41598-025-92223-
1.
H. Xu, A. Qadir, and S. Sadiq, “Malicious SMS detection using ensemble learning and SMOTE to improve mobile
cybersecurity,” Comput. Secur., vol. 154, 104443, Mar. 2025, doi:10.1016/j.cose.2025.104443.
M. A. Bouke, O. I. Alramli, and A. Abdullah, “XAIRF-WFP: a novel XAl-based random forest classifier for
advanced email spam detection”, Int. J. Inf. Secur., vol. 24, no. 1, pp.1-5, Oct. 2025, do0i:10.1007/s10207-024-
00920-1.
A. Madhulatha, A. K. Das, S. C. Bhan, M. Mohapatra, D.S. Pai, D. R. Pattanaik, and P. Mukhopadhyay, “Feasibility
of model output statistics (MOS) for improving the quantitative precipitation forecasts of IMD GFS model,”
J. Hydrol., vol. 649, 132454, Mar. 2025, doi: 10.1016/j.jhydrol.2024.132454.
M. Ahmadi, M. Khajavi, A.Varmaghani, A. Ala, K., Danesh, and D. Javaheri, "Leveraging large language models
for cybersecurity: enhancing sms spam detection with robust and context-aware text classification,” arXiv preprint
arXiv:2502.11014, 2025.
L. Shen, Y. Wang, Z. Li, and W. Ma, “SMS Spam Detection Using BERT and Multi-Graph Convolutional
Networks,” Int. J. Intell. Netw.., vol.6, pp. 79-88, 2025, doi: 10.1016/].1jin.2025.06.002.
A. Langenbucher, N. Szentmary, J. Wendelstein, A. Cayless, P. Hoffmann, and D. Gatinel, “Performance evaluation
of a simple strategy to optimize formula constants for zero mean or minimal standard deviation or root-mean-
squared prediction error in intraocular lens power calculation,” Am. J. Ophthalmol., vol. 269, pp. 282-292, Jan.
2025, doi: 10.1016/j.2j0.2024.08.043.
A. R. Elkilany and Y. B. Chu, “Elucidation on the performance of various machine learning models for real- time
malware detection, malware classification and network packet screening,” ML Comput. Sci. Eng., vol 1, 9, Jan.
2025, doi: 10.1007/s44379-024-00010-y.
R. N. Al Ogaili, O. A. Raheem, M. H. G. Abdkhaleq, Z. A. A. Alyasseri, S. A. A. A Alsaidi, A. H. Alsaeedi and S.
Manickam, “AntDroidNet Cybersecurity Model: A Hybrid Integration of Ant Colony Optimization and Deep Neural
Networks for Android Malware Detection,” Mesop. J. CyberSecur., vol. 5, no. 1, pp. 104-120, Feb. 2025, doi:
10.58496/MJCS/2025/008.

88

https://www.ijpe-online.com/
https://doi.org/10.23940/ijpe.18.07.p2.13911400
https://doi.org/10.1109/TCE.2025.3577905
https://doi.org/10.11591/ijeecs.v37.i1.pp356-364
https://doi.org/10.33003/fjs-2025-0901-3226
https://doi.org/10.1016/j.cose.2025.104443
https://doi.org/10.1007/s10207-024-00920-1
https://doi.org/10.1007/s10207-024-00920-1
https://doi.org/10.1016/j.jhydrol.2024.132454
https://doi.org/10.1016/j.ijin.2025.06.002
https://doi.org/10.1016/j.ajo.2024.08.043
https://link.springer.com/10.1007/s44379-024-00010-y
https://doi.org/10.58496/MJCS/2025/008

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

[45]

[46]

C. Devika, C. C. Chowdary, D. Ramji, B. Tharun, and C. Nalini, “A framework to detect malware using a mobile
edge computing system with minimal latency,” in Hybrid and Advanced Technologies, S. Prasad Jones
Christydass, Nurhayati Nurhayati, S. Kannadhasan, Eds., CRC Press, vol.2, 2025, pp. 473-478.

B. Ajayi, B. Barakat, and K. McGarry, “Leveraging VAE-Derived Latent Spaces for Enhanced Malware Detection
with Machine Learning Classifiers,” arXiv preprint arXiv:2503.20803. Accessed: 30 April 2025. [Online]
Available: https://arxiv.org/pdf/2503.20803.

&9

https://www.taylorfrancis.com/search?contributorName=S.%20Prasad%20Jones%20Christydass&contributorRole=editor&redirectFromPDP=true&context=ubx
https://www.taylorfrancis.com/search?contributorName=S.%20Prasad%20Jones%20Christydass&contributorRole=editor&redirectFromPDP=true&context=ubx
https://www.taylorfrancis.com/search?contributorName=Nurhayati%20Nurhayati&contributorRole=editor&redirectFromPDP=true&context=ubx
https://www.taylorfrancis.com/search?contributorName=S.%20Kannadhasan&contributorRole=editor&redirectFromPDP=true&context=ubx
https://arxiv.org/pdf/2503.20803

