
73

e-ISSN: 2564-7954 CUSJE 22(2): 073-089 (2025) Research Article

Development of an Android-Based Malware Detection Model

Ajibola Gbotosho1 , Patrick Ozoh1* , Tosin Oyetayo1

1 Department of Computer Science, Osun State University, Osogbo, Nigeria

Keywords Abstract

Androids,

Malicious Threats,

Machine Learning,

Manifest Analysis.

The study to identify malicious threats in Android mobile phones is presented in this

study. The sample Dataset was from DroidFusion-2018—Jupyter Notebook, together

with Python for implementation. The techniques considered include the classifiers

mentioned in the study. An ensemble of techniques was developed for the study. The

Ensemble model achieved 97% accuracy, compared to 71%, 77%, and 79% attained by

SVM, KNN, and RF. The study designed a model for detecting malicious Android

applications that are integrated into existing malware detection platforms to improve

their usage and acceptance.

1. Introduction

Mobile devices have become increasingly important for contemporary civilization over the last decade, directly

contributing to its growth in establishing mobile information access. Nowadays, smartphones are frequently used

to complete tasks such as making payments, bookings, and so on. The enhancement of the operating system has

also supported the growth of mobile devices. During the market's volatile growth, it became its largest

intelligence. Android and iOS are the dominant operating systems in the industry. Android phones continued to

hold the top spot in the mobile operating system, dominating the market [1]. Google penetrated the mobile

industry and later made it available to the general public.

The cost is another factor dominating the global market for Android [2]. Cost is therefore the first consideration

when choosing a mobile phone. Apple cannot compete with Google in that market. They can be given to several

users worldwide [3]. According to McAfee, any malicious software is malware. Cybercriminals utilize software

against victims to their advantage to profit financially. The term contains malicious software like viruses, Trojans,

worms, bots, backdoors, spam, spyware, ransomware, etc. [4]. Mobile malware controls a mobile device

remotely, disables it, or steals personal information. It targets Android-powered devices.

Malware is disseminated via altered or blatantly harmful applications hosted on third-party mobile app stores [5].

Android malware distribution is not limited to third-party applications but also includes visiting unidentified

websites. In September 2019, 172 fraudulent apps, totaling nearly 330 million installations, were discovered. This

study claims that the malicious components were concealed within the system [6]. Android malware is commonly

deceptive. It is one form of malware that irritates Android phone users by bombarding them with advertisements,

even when using unrelated apps, for which the developers receive payment to display them [7], hence [8]. This

research detects malicious Android applications with several features.

* Corresponding Author: patrick.ozoh@uniosun.edu.ng

Received: June 13, 2025, Accepted: September 9, 2025

Çankaya University

Journal of Science and Engineering

https://dergipark.org.tr/cankujse

mailto:patrick.ozoh@uniosun.edu.ng
https://orcid.org/0009-0004-4264-7299
https://orcid.org/0000-0001-9616-2423
https://orcid.org/0009-0005-2192-0740
https://dergipark.org.tr/cankujse

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

74

The contributions to the knowledge are:

1) This will produce a reliable malware detection mechanism for Android

2) This study will be integrated into existing malware detection platforms to improve usage and acceptance.

2. Past Works

The reviews are relevant and include a brief description of techniques used in illegal transactions made in

mobile applications [9]. The malicious software for Android devices is known as Android malware [10]. The

Various characteristics of malware apps have been apportioned into various families [11].

Various critical elements are measured during analysis for malware's functionality. Vulnerability analysis, source

code analysis, and behavioral analysis are examples of informal analysis [12]. There are three predominant

analysis techniques [13]. These include application binaries, source code, and malicious threats [14]. The

taxonomy of the view is in Fig. 1.

Figure1. Taxonomy of the Review

The dynamic analysis approach was developed to address limitations [15]. This paper enhances the ability to

detect malicious software effectively. Android malware systems have greater features compared to traditional

inflexible phone bugs. [16]. This enables the detection of variants of old malware and wholly novel malware.

[17] measures machine learning classifiers to obtain authorization [18] aimed to improve the foundation of

malware detection. [19] aimed to examine the effect of authorizations in a malware detection system using

established techniques. [20]-[24] proposes static detection methods. [21] aimed to provide a solution that detects

malware from several families efficiently and accurately with minimum time and resources. The aim of [22] is

to utilize the attributes used by Androids. The study performed a manifest analysis for permissions.

2.1 Related Works

The extensive use of Android applications has made it easier for Cybercriminals to pilfer sensitive information

and execute malicious attacks. The quick advances made in the use of Android-based smartphones have led to

emerging threats from malware devices. As a result, Android malware has become increasingly complicated in

its usage. The Malware detection model characterizes malicious behavior. Traditional techniques lack high-

dimensional feature specifics, which increases computational complexity and reduces the detection accuracy.

Work [25] p roposes a technique to enhance Android malware detection by utilizing a reliable feature

optimization model. The study utilizes the Relief algorithm to reduce the feature space. As a result, eliminates

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

75

redundant and irrelevant features. The ensemble model uses three datasets (Derbin, Malgenome, and Prerna)

across all features. The experimental results show that detection accuracy can improve with an optimal feature

vector. [26] presents a widely used study of current malware detection techniques in Android-based phones.

The paper examines the techniques for developing malware threats and includes a hybrid detection technique,

together with real-time threat intelligence, applicable to the cyber threat landscape.

Work [27] presents a general detection framework for system calls as a privacy-preserving data source. The

method allows preserving user privacy. The study utilizes the accuracy of detection in a secure environment in

the real world. A framework integrating Genetic Algorithms (GA) with its level of accuracy specified at 98%

[28]. The experimental results on the Android malware detection datasets indicate a success rate, increasing

accuracy from 24% to 97%. The results show that current security controls do not sufficiently alleviate the impact

of the proposed framework against attacks. [29] propose a malware detection technique for improved

performance, proposing that the ensemble is more accurate than current techniques in a thorough manner. The

study lays down a basic foundation for future research. The reviewed literature proposes widespread mobile

phone threats over the past decade, specifically in the area of malware. Recent studies have leveraged artificial

intelligence techniques to tackle these challenges.

2.2 Exploratory Texts on Methods

2.2.1 Support Vector Machine

[30] investigate machine learning techniques to select spam in messages using Kaggle. The study employs

supporting vector machine technique, with performance evaluation. The support vector machine using these

features results in better accuracy compared to previous studies.

A parallel between the techniques was carried out by [31]. An evolutionary programming technique was

employed during the testing. [32] Propose a system by evaluating the model. The system shows a high accuracy

in identifying spam messages. The study analyzes language patterns and features within the text and proposes a

robust framework for reducing SMS spam and improving user experiences.

2.2.2 K-Nearest Neighbour (KNN)

This study uses [33]. The study estimates the sample size with the outcome having more accuracy using the

Multinational Naive Bayes Algorithm, when the methods' average performance is compared to identify the more

accurate technique. [34] present a unique technique by combining the K-Nearest Neighbour technique for feature

extraction with the collection of classification characteristics. The outcome shows an accuracy of 98.36% and

precision (99.19%). This indicates a more accurate model performance compared to current measurements. This

method provides a functional SMS spam detection technique, enhancing the classifiers.

[35] proposes a framework for detecting SMS spam by developing robust and efficient spam detection models.

The K-Nearest Neighbour technique oversees feature extraction in representing text data. The model can then

capture important characteristics by differentiating spam from non-spam messages. The results provide a solution

for enhancing SMS spam detection.

2.2.3 Random Forest (RF)

The study utilizes the Random Forest Algorithm to remove irrelevant features and proposes that accuracy can be

improved through optimal feature selection. [36]. The performance of this study is assessed using Random Forest

models. The datasets were evaluated on their level of accuracy. The study was also conducted in a non- English

format. [37] Apply an ensemble to incorporate separate methods for detection. The techniques used indicate that

the ensemble model is more accurate than individual algorithms, providing active protection against malicious

SMS attacks. [38] propose a unique technique for spam detection, achieving improved accuracy than previous

methods. The results present a robust and remarkable improvement in spam detection.

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

76

2.3 Comparison of Techniques

The positive and negative attributes for each technique are considered in this section, summarized in the table

below to identify and discuss the reasons for choosing the methods used in this study.

Table 1. Characteristics of Methods Used in the Study

Method Advantages Disadvantages

Random Forest

(RF)

• The performance evaluation is less complex

• Reduced overfitting

• Takes care of missing data

• Usefull for classification and regression

functions

• Random Forest gives knowledge of the features

that are important for predictions

• Requires much memory and needs many

resources

• Less interpretable than individual decision

trees

K-Nearest

Neighbor

(KNN)

• Develops training instances

 for a general model

• Approximations are made to

 the target function

• These algorithms can easily

 adapt to new data collected

 over time

• A form of lazy learning

• Relies on storing data

• The complexity of the hypothesis can

grow with the data

• Each query consists of beginning

the new model from scratch, leading to high

classification costs

• A huge memory is required to store data

Support Vector

Machine

• SVM is adequate for high-

 dimensional spaces and

 image classification analysis

• Handles nonlinear

 Relationships

• Improves accuracy

• SVM is adequate for text

Classification

• Overfitting of models

• Slow for big datasets,

 impacting performance

• Adjusting parameters needs

 careful tuning

• SVM is difficult with noisy

 datasets, reducing its

 effectiveness

This study compared techniques reviewed in literature with a dataset from Kaggle, an online data repository. The

study compares the methods to investigate the most accurate technique. The results from the study indicate that the

Random model was the most widely used technique. An Ensemble model of the three techniques will enhance the

accuracy of the results. The four variables used in [39] improve the study by using a combination

of these four parameters. This study proposes an ensemble model to detect malicious Android mobile applications,

as the decision-making of a bigger group is superior to that of a single expert.

2.4 Description of Practical Applications

For use in real-world apps, there is a need to describe the following:

2.4.1 Real-Time Processing

Real-time performance of a system encompasses every component, including hardware, BIOS, operating system,

network, and application. Real-time applications execute within a certain period, across several iterations. Real-

time applications conventionally perform the following tasks: 1. Process new input. 2. Compute a computation.

3. Submit a result. These functions must be completed within a period.

[40]-[43] presents an evaluation of different models, providing insights into malware characteristics. The study

outcome includes result visualization, with results displayed in real-time, presenting their prevalence for

preventing related cyber threats. In [44], a hybrid mobile malware detection model that enhances detection

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

77

accuracy and makes the model more resilient to new malware is proposed. The proposed model is more accurate

than classical machine learning algorithms. However, there is a need to build real-time detection components to

tackle mobile malware in new connected ecosystems.

2.4.2 Memory Usage and Latency

Memory is a vital component of a computer system, focusing on the CPU and the storage system for the fast

processing of data. Computer users often examine the relationship between memory speed and system performance.

Work [45] presents a model that introduces data splitting as Testing and Training data, enhancing the classification

process. A major challenge of this paper is its inability to deal with the prediction of noise. [46] presents the

performance of machine learning classifiers using representations learned by an encoder from malware datasets.

Results from the study indicate the Ensemble model performs better than the others. A drawback to the study is

that the study outcome cannot provide insight into features impacting the latent space.

3. Methodology

This section discusses the methodology for developing a malware detection model for Android mobile phones. The

section gives details of data collection, model design, and implementation.

3.1. Data Collection

The first module is data collection. The data was sourced from the Kaggle repository and includes both malicious

(S) and benign (B) categories extracted from various applications. It contains 5560 malicious applications and

9476 benign applications. Fig. 2 shows that the features represented in Table 1 have no class imbalance in the

dataset. Fig 3 shows the Android malware.

Figure 2. Dataset Features

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

78

Table 2. Dataset Features Distribution

S/N Category Feature

1 Manifest Permissions 113

2 API Call Signatures 73

3 Command Signatures 6

4 Intents 23

TOTAL 215

Figure 3. Android Malware and Benign Data Set

3.2 Methods Used in the Study

This research utilizes Pearson's Correlation Coefficient for feature selection to select relevant variables from the

original dataset. Pearson's correlation coefficient is the association between the variables of interest and selects

features for a machine-learning model associated with two variables. The correlation coefficient 'r' is given by

(1)

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

79

Where, 𝑟: correlation coefficient

𝑥𝑖 : 𝑟: values of the x − variable in a sample

 𝑥̅ ∶ mean of the values of the x − variable

𝑦𝑖 : 𝑟: values of the y − variable in a sample

𝑦̅ ∶ mean of the values of the x − variable

The data set, which contains 15036 instances, was later reduced to 15031 instances because five (5) out of the

entire data set contained null values, which were removed after prepossessing, and 55 attributes out of its 215

attributes were selected by the Pearson correlation coefficient for training the model. This is given in Fig. 4.

Figure 4. Pearson Correlation Coefficient Pseudocode

The input process of the data set retrieved from Kaggle.

Figure 5. Snapshot for Data from Kaggle A

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

80

A description of the classifiers is given below.

 3.2.1.SVM Technique

The technique separates classes in the classification for identifying spam messages. SVM maximizes the margin

separating the margins. The better the separation, the more accurate it is. It is important and common to search

for solutions by class splitting [23]. The pseudo-code for SVM is displayed in Fig. 6.

Figure 6. SVM Pseudocode

 3.2.2.K-Nearest Neighbour (KNN)

This process includes finding the "k" closest data points to a given input. As a result, the KNN algorithm is discussed

by [24] and the pseudocode is in ig. 7.

Figure 7. KNN Pseudocode

 3.2.3. Random Forest

This is applicable for a better prediction. Individual techniques have an impact on separate data sets for

classification or regression. This reduces errors and improves accuracy. It is used in research to solve the credibility

problem [25]. Fig 8 illustrates the pseudo-code of the Random Forest algorithm.

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

81

Figure 8. Random Forest Pseudocode

3.2.4. Ensemble

Ensemble learning is a collection (or ensemble) of basic learners or models to improve the final prediction. The

ensemble technique employed in this study is known as the Stacking Classifier. It is shown in Fig. 9.

Figure 9. Stacking Pseudocode

3.3 Comparison and Validation of Techniques

This section compares the proposed model with previous models. The results from this study are compared

with results from [40] and [41], using their respective error values. The process of validation of results was

discussed by [42]. The computation of errors was described.

 RMSE = √
1

n
∑ (yi − ŷi)2n

i=1 (2)

 Where,
 yi: observed (actual)value

 ŷi: predicted value

 n: number of observations

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

82

4. Results

The implementations performed are presented. It provides detailed findings of the models and metrics employed,

and performance of the results.

 4.1. Model Evaluation

F1 would be between 0 and 1. It is calculated using a confusion matrix with the help of;

 F1= 2*(precision*recall)/(precision + recall) (3)

Fig 10 to Fig 13 indicate the evaluation metrics performed on each classifier. The figures show the respective

performance evaluation against the metrics for the SVM, KNN, RF, and Ensemble models.

Figure 10. Result for SVM

Figure 11. Result for KNN

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

83

Figure 12. Result for Random Forest

Figure 13. Ensemble Result

Table 3 presents the performance evaluation of the Ensemble model with SVM, KNN, RF, and Ensemble models.

The performance metric chart is given in Fig. 14.

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

84

Table 3. Performance Evaluation Result

Classifiers Accuracy Precision Recall F1-Score Time(sec)

Support Vector Machine (SVM) 70.93 56.48 98.67 71.84 48.37

K-Nearest Neighbor (KNN) 76.82 65.50 80.97 72.42 34.91

Random Forest (RF) 79.18 67.26 86.90 75.83 31.29

Ensemble 97.41 97.73 95.31 96.51 46.64

Figure 14. Performance Evaluation Chart

 4.2.Model Deployment

The Python software, Streamlit, and Heroku are used for the model. After creating the back-end with Python

and Streamlit, Heroku was used to deploy the model to be accessed via the web. This is shown in Fig. 15.

Figure 15. Heroku’s View when Deploying the Web Application

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

85

4.3. Results for Comparison of Techniques

The results are computed based on models described in Section 3.3. From Table 4, the most accurate technique

is seen as the Ensemble model. This is compared with previous studies [40] and [41].

Table 4. Comparisons

Ahmadi et al. (2025) Shen et al. (2025) EnsembleModel

Actual data Estimates Actual data Estimates Actual data Estimates

41.59 48.11 41.59 45.56 41.59 46.18

45.60 50.43 45.60 48.77 45.60 49.91

42.74 46.67 42.74 45.14 42.74 45.94

44.75 50.95 44.75 48.32 44.75 49.01

41.18 88.21 41.18 45.34 41.18 46.22

36.79 42.66 36.79 39.21 36.79 40.54

41.68 47.79 41.68 45.11 41.68 46.32

42.84 46.41 42.84 44.32 42.84 44.99

44.03 47.76 44.03 45.01 44.03 45.87

43.78 49.46 43.78 45.32 43.78 46.58

44.94 48.42 44.94 45.11 44.94 46.36

42.12 47.68 42.12 43.92 42.12 44.93

37.91 42.43 37.91 39.88 37.91 40.03

42.95 47.74 42.95 44.43 42.95 45.46

43.56 49.32 43.56 46.47 43.56 47.84

44.34 47.46 44.34 45.13 44.34 45.79

44.64 48.34 44.64 45.73 44.64 46.74

44.15 48.85 44.15 45.58 44.15 46.36

38.90 42.85 38.90 39.41 38.90 40.58

37.76 41.47 37.76 38.74 37.76 39.74

43.58 47.27 43.58 44.82 43.58 45.43

45.15 48.11 44.15 45.15 44.15 46.85

The values for results are indicated in Table 5. The results show RMSE and MAPE given by [40] and [41].

Table 5. Evaluation of Results

 Ahmadi et al. (2025) Ensemble model Shen et al. (2025)

RMSE 0.873 0.596 0.704

MAPE (%) 1.957 0.921 1.199

The results show the Ensemble to be the best technique. A study of past literature presented in Section 2 indicates

that the techniques combined to form the Ensemble are efficient machine learning techniques. The strengths and

weaknesses of these techniques are listed. The combination of the three techniques considered will improve the

accuracy of the results. This study proposes an Ensemble model to detect malicious Android mobile applications,

as the results from a set are more accurate than those of a single model.

4.4. Results for Split Validation

The split validation technique is applied to methods, ensuring a robust performance estimation (k = 5) for malware

detection and malware category classification. The validation procedure divides the dataset into five folds. For each

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

86

iteration, the training technique validates the model.

The results in Table 5 clearly show the validity of the Ensemble model.

Table 6. Results for 5-Fold Cross Validation

 Ensemble model RF KNN SVM

Malware detection 96.41 78.19 71.21 70.23

Malware category classification 86.10 84.28 83.22 83.15

5. Conclusion

This study proposed an ensemble for identifying bugs compared with the individual results of the aforementioned

machine learning. The research was evaluated using a collection comprising 15036 instances (benign and

malware) from the Kaggle repository. The dataset was preprocessed, and 55 features were identified in the model.

During the experiment, the ensemble model achieved 97% accuracy compared with 71%, 77%, and 79% in SVM,

KNN, and RF, respectively.

Heroku is a natural language processing-based model that is quick and easy to use when the spam detection model

is deployed. The application takes natural text from users and predicts if it's legitimate text. The model works by

inputting the message and checking whether it's legitimate text. The limitations of Heroku in real- world use

include cost constraints, inability to adapt and grow, and handling a growing amount of work. These limitations

have led users to turn to alternatives. In the deployment of a Heroku application, trust is an issue because it

involves critical and sensitive data about businesses' customers.

The Ensemble model will analyze any form of data, including complex, cutting-edge data, adaptable in detecting

diverse malware types, next-generation malware, and identifying malicious applications. It can perform a

comprehensive analysis with real-time detection capabilities. The model is designed for detecting malicious

applications that are integrated into existing malware detection platforms. As a result, enhancing their usage and

acceptance. The model will perform similarly on different datasets.

There are several machine learning techniques; it is impossible to exhaust all of these methods. This study

investigates these techniques because they were widely used in previous studies. Furthermore, this study is limited

to static analysis. This technique enables understanding of the application and ensures it is compliant and safe. This

work is far-reaching for Android users in detecting malware. The result shows that the ensemble has better

accuracy. Future research will involve the impact of failure cases and misclassifications on the spam detection

model.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could

have appeared to influence the work reported in this paper.

Authorship Contribution Statement

Gbotosho Ajibola: Data Preparation, Editing

Ozoh Patrick: Writing, Methodology

Oyetayo Tosin: Data Preparation, Editing

 References

[1] J. Hightower, W. B. Glisson, R. Benton, and J. T. McDonald, “Classifying Android Applications Via System Stats,”

in IEEE International Conference on Big Data (Big Data), virtual, 2021 pp. 5388-5394,

doi:10.1109/BigData52589.2021.9671999.

https://doi.org/10.1109/BigData52589.2021.9671999

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

87

[2] J. Wallen, "Why is Android more popular globally, while iOS rules the US," 2021, www.

techrepublic.com/article/why-is-android-more-popular-globally-while-ios-rules-the-us.

[3] D. O. Sahin, S. Akleylek, and E. Kilic, “LinRegDroid: Detection of Android Malware Using Multiple Linear

Regression Models-Based Classifiers,” IEEE Access, vol. 10, pp. 14246–14259, Jan.2022,

doi:10.1109/ACCESS.2022.3146363.

[4] D. Gibert, M. Carles, and P., "The rise of machine learning for detection and classification of malware: Research

developments, trends and challenges," J. Netw. Comput. Appl., vol. 153, pp. 102526, Mar. 2020,

doi:10.1016/j.jnca.2019.102526.

[5] J. Vijayan, “Android Malware Hijacks Phone Shutdown Routine,” Security Intelligence, 2021,

securityintelligence.com/news/android-malware-hijacks-phone-shutdown-routine/.

[6] R. Jusoh, A. Firdaus, S. Anwar, M. Z. Osman, M. F. Darmawan, and M. F. A. Razak, “Malware Detection Using

Static Analysis in Android: a review of FeCO (Features, Classification, and Obfuscation),” PeerJ Comput. Sci., vol.

7, pp. 1–54, Jun. 2021, doi:10.7717/peerj-cs.522.

[7] J. Senanayake, H. Kalutarage, and M. O. Al-Kadri. “Android mobile malware detection using machine learning: A

systematic review”, Electronics, vol. 10, no. 13, 1606, 2021, doi:10.3390/electronics10131606.

[8] O. Yildiz, and I. A. Doǧru, “Permission-based Android Malware Detection System Using Feature Selection with

Genetic Algorithm,” Int. J. Softw. Eng. Knowl. Eng., vol. 29, no. 2, pp. 245–262, 2019,

doi:10.1142/S0218194019500116.

[9] H. A. Alatwi, “Android Malware Detection Using Category-Based Machine Learning Classifiers,” 2016, www.

scholarworks.rit.edu/theses.

[10] F. Tchakounte, “A Malware Detection System for Android Malware Detection based on Android Permissions View

project IoT security,” 2016, www.researchgate.net/publication/282866516.

[11] M. S. Alhebsi, “Android Malware Detection using Machine Learning Techniques,” 2022,

www.scholarworks.rit.edu/theses.

[12] E. Masabo, “A Feature Engineering Approach for Classification and Detection of Polymorphic Malware using

Machine Learning,” Ph.D. dissertation, Depart. Comp. Networks, Sch. Computing and Inform. Tech., Makerere

Uni., Kampala, 2019.

[13] V. Kouliaridis, and G. Kambourakis, “A comprehensive survey on machine learning techniques for android malware

detection,” Information 2021, vol. 12, 185, Apr. 2021, doi:10.3390/info12050185.

[14] F. Akbar, M. Hussain, R. Mumtaz, Q. Riaz, A. Wahab, and K. H. Jung, “Permissions-Based Detection of Android

Malware Using Machine Learning,” Symmetry, vol. 14, no. 4, pp. 718, Apr. 2022, doi:10.3390/sym14040718.

[15] Y. Kamalrul Bin Mohamed Yunus, and S. bin Ngah, “Review of Hybrid Analysis Technique for Malware

Detection,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 769, no. 1, 012075, Jun. 2020, doi:10.1088/1757-

899X/769/1/012075.

[16] A. Muzaffar, H. Ragab Hassen, M. A. Lones, and H. Zantout, “An in-depth review of machine learning based

Android malware detection,” Comput. Secur., vol. 121, 102833,Jul. 2022, doi:10.1016/j.cose.2022.102833.

[17] E. Amer, S. E. Mohamed, M. Ashaf, A. Ehab, O. Shereef, H. Metwaie, and A. Mohammed, “Using Machine

Learning to Identify Android Malware Relying on API calling sequences and Permissions,” J. Comput. Commun.,

vol. 1, no. 1, pp. 38-47, Feb. 2022, doi: 10.21608/jocc.2022.218454.

[18] A. S. Shatnawi, Q. Yassen, and A. Yateem, “An Android Malware Detection Approach Based on Static Feature

Analysis Using Machine Learning Algorithms,” Procedia Comput. Sci., vol. 201, pp. 653–658, Nov. 2022,

doi:10.1016/j.procs.2022.03.086.

[19] D. O. Sahin, S. Akleylek, and E. Kilic, “LinRegDroid: Detection of Android Malware Using Multiple Linear

Regression Models-Based Classifiers,” IEEE Access, vol. 10, pp. 14246–14259, Jan. 2022,

doi:10.1109/ACCESS.2022.3146363.

[20] H. Li, H. Zhang, X. Chen, D. Liao, and M. Zhang, “Android Malware Detection Based on Sensitive Patterns,”

Research Square, 2022, doi : 10.21203/rs.3.rs-1592245/v1.

[21] N. Sarah, F. Y. Rifat, M. S. Hossain, and H. S. Narman, “An Efficient Android Malware Prediction Using Ensemble

machine learning algorithm,” Procedia Comput. Sci., vol. 191, no.1, pp. 184–191, Jan. 2021,

doi:10.1016/j.procs.2021.07.023.

[22] D. O. Şahin, O. E. Kural, S. Akleylek, and E. Kılıç, “A novel permission-based Android malware detection system

using feature selection based on linear regression,” Neural Comput. Appl., vol.35, no.5, pp. 1-16, Mar. 2021,

doi:10.1007/s00521-021- 05875-1.

[23] E. H. Houssein, M. E. Hosney, M. Elhoseny, D. Oliva, W. M. Mohamed, and M. Hassaballah, “Hybrid Harris hawks

optimization with cuckoo search for drug design and discovery in chemoinformatics,” Scientific Reports, vol. 10,

no. 1, 14439, Sept. 2020, doi:10.1038/s41598-020-71502-z.

https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.21608/jocc.2022.218454

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

88

[24] Q. Cao, L. La, H. Liu and S. Han, “Mixed weighted KNN for imbalanced datasets,” Int. J. Performability Eng., vol.

14, no. 7, pp. 1391-1400, 2018. doi: 10.23940/ijpe.18.07.p2.13911400.

[25] H. K. Almulla, H. J. Mohammed, N. Clarke, A. A. Hadi,and M. A. Mohammed, “An Effective Feature Optimization

Model for Android Malware Detection,’’ Mesop. J. CyberSecur., vol. 5, no. 2, pp. 563-576, 2025.doi:

10.58496/MJCS/2025/034.

[26] R.Verma, “Review of Malware Detection from Android based Smart Mobile for Cyber Security”, 2025.

[27] A. K. Nair, and D. Gupta, “AndroIDS: Android-based Intrusion Detection System using Federated Learning,” arXiv

preprint arXiv:2506.17349. Accessed: June 2025. [Online] Available: https://www.arxiv.org/pdf/2506.17349.

[28] F. Nawshin, D. Unal, M. Hammoudeh, and P. N. Suganthan, “A Novel Genetic Algorithm Optimized Adversarial

Attack in Federated Learning for Android-Based Mobile Systems”, IEEE Trans. Consum. Electron., vol. 99, pp.1-

1, Jun. 2025, doi: 10.1109/TCE.2025.3577905.

[29] S. Nethala, P. Chopra, K. Kamaluddin, S. Alam, S. Alharbi, and M. Alsaffar, “A Deep Learning-Based ensemble

framework for robust Android malware detection”, IEEE Access, vol. 13, pp. 46673-46696, Mar. 2025, doi:

10.1109/ACCESS.2025.3551152.

[30] I. Nawaz, S. N. Khosa, R. Fatima, M. Saeed, and M. S. A. Hashmi, “Smart Filters For Sms Spam: A Machine

Learning Approach to Sms Classification,” Spectr. Eng. Sci. , vol. 3, no. 5, pp. 71-98, May 2025, doi:

10.5281/zenodo.15333801.

[31] N. Hafidi, Z. Khoudi, M. Nachaoui, and S. Lyaqini, “Enhanced SMS spam classification using machine learning

with optimized hyperparameters,” Indonesian J. Electr. Eng. Comput. Sci, vol. 37, no. 1, pp. 356- 364, Jan. 2025.

doi: 10.11591/ijeecs.v37.i1.pp356-364.

[32] N. Durshatti, and O. Sraani, “Spam Message Detection with Multiple Algorithms,” SSRN. Accessed: 16 May.

[Online] Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5183187.

[33] J. K. Prasad, and S. Christy, “SMS spam detection using multinational Naive Bayes algorithm compared with K-

nearest neighbor algorithm,” in AIP Conference Proceedings, vol. 3270, no. 1, pp. 020090, AIP Publishing LLC,

2025.

[34] A. B. Ahmed, and K. Haruna, “Enhanced Sms Spam Detection Using Bernoulli Naive Bayes With Tf-Idf,’’

FUDJSE, vol. 9, no. 1, pp. 393-399, Apr. 2025, doi:10.33003/fjs-2025-0901-3226.

[35] P. Ozoh, M. Ibrahim, R. Ojo, A. Sunmade, and T. Oyetayo, “SMS Spam Detection Using Machine Learning

Approach,” International STEM Journal, vol. 6, no. 1, pp. 10-27, Jun. 2025.

[36] M. F. Johari, K. L. Chiew, A. R. Hosen, K. S. Yong, A. S. Khan, I. A. Abbasi,D. Grzonka, “Key insights into

recommended SMS spam detection datasets,” Sci. Rep., vol. 15, 8162, Mar. 2025, doi:10.1038/s41598-025-92223-

1.

[37] H. Xu, A. Qadir, and S. Sadiq, “Malicious SMS detection using ensemble learning and SMOTE to improve mobile

cybersecurity,” Comput. Secur., vol. 154, 104443, Mar. 2025, doi:10.1016/j.cose.2025.104443.

[38] M. A. Bouke, O. I. Alramli, and A. Abdullah, “XAIRF-WFP: a novel XAI-based random forest classifier for

advanced email spam detection”, Int. J. Inf. Secur., vol. 24, no. 1, pp.1-5, Oct. 2025, doi:10.1007/s10207-024-

00920-1.

[39] A. Madhulatha, A. K. Das, S. C. Bhan, M. Mohapatra, D.S. Pai, D. R. Pattanaik, and P. Mukhopadhyay, “Feasibility

of model output statistics (MOS) for improving the quantitative precipitation forecasts of IMD GFS model,”

J. Hydrol., vol. 649, 132454, Mar. 2025, doi: 10.1016/j.jhydrol.2024.132454.

[40] M. Ahmadi, M. Khajavi, A.Varmaghani, A. Ala, K., Danesh, and D. Javaheri, ”Leveraging large language models

for cybersecurity: enhancing sms spam detection with robust and context-aware text classification,” arXiv preprint

arXiv:2502.11014, 2025.

[41] L. Shen, Y. Wang, Z. Li, and W. Ma, “SMS Spam Detection Using BERT and Multi-Graph Convolutional

Networks,” Int. J. Intell. Netw.., vol.6, pp. 79-88, 2025, doi: 10.1016/j.ijin.2025.06.002.

[42] A. Langenbucher, N. Szentmáry, J. Wendelstein, A. Cayless, P. Hoffmann, and D. Gatinel, “Performance evaluation

of a simple strategy to optimize formula constants for zero mean or minimal standard deviation or root-mean-

squared prediction error in intraocular lens power calculation,” Am. J. Ophthalmol., vol. 269, pp. 282-292, Jan.

2025, doi: 10.1016/j.ajo.2024.08.043.

[43] A. R. Elkilany and Y. B. Chu, “Elucidation on the performance of various machine learning models for real- time

malware detection, malware classification and network packet screening,” ML Comput. Sci. Eng., vol 1, 9, Jan.

2025, doi: 10.1007/s44379-024-00010-y.

[44] R. N. Al Ogaili, O. A. Raheem, M. H. G. Abdkhaleq, Z. A. A. Alyasseri, S. A. A. A Alsaidi, A. H. Alsaeedi and S.

Manickam, “AntDroidNet Cybersecurity Model: A Hybrid Integration of Ant Colony Optimization and Deep Neural

Networks for Android Malware Detection,” Mesop. J. CyberSecur., vol. 5, no. 1, pp. 104-120, Feb. 2025, doi:

10.58496/MJCS/2025/008.

https://www.ijpe-online.com/
https://doi.org/10.23940/ijpe.18.07.p2.13911400
https://doi.org/10.1109/TCE.2025.3577905
https://doi.org/10.11591/ijeecs.v37.i1.pp356-364
https://doi.org/10.33003/fjs-2025-0901-3226
https://doi.org/10.1016/j.cose.2025.104443
https://doi.org/10.1007/s10207-024-00920-1
https://doi.org/10.1007/s10207-024-00920-1
https://doi.org/10.1016/j.jhydrol.2024.132454
https://doi.org/10.1016/j.ijin.2025.06.002
https://doi.org/10.1016/j.ajo.2024.08.043
https://link.springer.com/10.1007/s44379-024-00010-y
https://doi.org/10.58496/MJCS/2025/008

Gbotosho et al. CUJSE 22(2): 073-089 (2025)

89

[45] C. Devika, C. C. Chowdary, D. Ramji, B. Tharun, and C. Nalini, “A framework to detect malware using a mobile

edge computing system with minimal latency,” in Hybrid and Advanced Technologies, S. Prasad Jones

Christydass, Nurhayati Nurhayati, S. Kannadhasan, Eds., CRC Press, vol.2, 2025, pp. 473-478.

[46] B. Ajayi, B. Barakat, and K. McGarry, “Leveraging VAE-Derived Latent Spaces for Enhanced Malware Detection

with Machine Learning Classifiers,” arXiv preprint arXiv:2503.20803. Accessed: 30 April 2025. [Online]

Available: https://arxiv.org/pdf/2503.20803.

https://www.taylorfrancis.com/search?contributorName=S.%20Prasad%20Jones%20Christydass&contributorRole=editor&redirectFromPDP=true&context=ubx
https://www.taylorfrancis.com/search?contributorName=S.%20Prasad%20Jones%20Christydass&contributorRole=editor&redirectFromPDP=true&context=ubx
https://www.taylorfrancis.com/search?contributorName=Nurhayati%20Nurhayati&contributorRole=editor&redirectFromPDP=true&context=ubx
https://www.taylorfrancis.com/search?contributorName=S.%20Kannadhasan&contributorRole=editor&redirectFromPDP=true&context=ubx
https://arxiv.org/pdf/2503.20803

