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ABSTRACT

Keywords: Generative This study examines the security performance of generative artificial intelligence (AI) tools of
Al, ChatGPT, Copilot, ChatGPT, Copilot, and Gemini within software development workflows. Through static and dynamic
Gemini, software . . ere s .. .

security, static code code ana¥y51s, security Vulnerablllltles' in web appl}catlon login code genferlated t.)y these tools were
analysis, dynamic code systematically evaluated. Results indicate that while Al models offer efficiency in code generation,
analysis they also introduce varying levels of security risk. Copilot exhibited the highest cumulative risk with
multiple high-level vulnerabilities, while ChatGPT demonstrated a lower risk profile. Gemini
produced relatively optimized code but contained critical security flaws that require manual review.
The most common vulnerabilities across all models were insecure design and security logging and
monitoring failures, indicating a systemic issue in Al-generated code. The findings emphasize that
generic prompts focusing on security are insufficient and that developers must use specific, security-
oriented prompts, such as applying secure-by-design principles and implementing OWASP Top Ten
protections. This study contributes to the growing body of literature addressing the security
implications of integrating Al into software development, highlighting the importance of human

oversight and carefully crafted prompts to mitigate potential risks.

1. Introduction

Recent advancements in artificial intelligence (Al) have instigated a paradigm shift in computational processing,
transitioning from conventional data-driven, discriminative tasks to sophisticated, creative applications facilitated
by generative Al. This pivotal shift has drastically altered the long-standing belief that artistic and creative tasks
like writing poems, creating software, designing fashion, and composing songs are exclusively human capabilities,
as Al can now generate indistinguishable new content. Generative Al specifically refers to computational
techniques capable of creating seemingly new, meaningful content like text, images, or audio from training data,
serving artistic purposes as well as assisting humans as intelligent question-answering systems [1]. Generative Al
has recently emerged as a novel tool, presenting a wide range of new possibilities across diverse sectors from
education and healthcare to networked businesses [2], while simultaneously ushering in significant changes to
code writing through its integration into software development processes [3]. Large Language Models (LLMs),
such as ChatGPT, GitHub Copilot, and Google Gemini, have become widely used for automating and enhancing
programming tasks. Thanks to their natural language processing (NLP) capabilities, these models can successfully
perform tasks such as suggesting complex code snippets, debugging, and generating explanations [4].

Traditionally, code found online is often considered reliable, well-documented, and easily adaptable with minimal
changes, like renaming variables. However, LLMs offer a valuable initial framework for users, even if the generated
code isn't perfect. This is particularly beneficial for programmers facing challenges or unsure how to begin a task,
making LLMs a popular tool for them [5]. The study by Wang et al. [6] highlights that software developers tend to
place high levels of trust in code generated by generative Al tools, largely based on their prior experiences and the
credibility they associate with online communities like Stack Overflow. However, the proliferation of Al models
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capable of generating code introduces considerable complexities concerning reliability, safety, and security [7].
Unlike simple classification tasks, evaluating the correctness and safety of complex software artifacts requires a
more sophisticated and nuanced assessment framework. Although Al tools such as ChatGPT, GitHub Copilot, and
Google Gemini provide software developers with efficient code suggestions, saving time and effort [8], the security
of the code generated by these models remains a critical concern. Potential issues, including security
vulnerabilities, licensing constraints, and the risk of data leakage, must be carefully considered alongside the
benefits these tools provide. Moreover, Al models based on natural language processing are prone to
"hallucination,” a phenomenon in which the system produces content that seems credible but is actually inaccurate
or misleading [9,10].

Research indicates that a considerable portion of the code produced by these tools contains security
vulnerabilities. For instance, it has been reported that up to 40% of code generated by GitHub Copilot may include
security flaws [11]. Furthermore, LLM-based tools rarely recommend sophisticated security validation
mechanisms, which in turn increases users’ reliance on manual security checks [12]. Another notable challenge
lies in constructing authentic and valid datasets required for training LLMs [4]. The licensing and ethical concerns
arising from the datasets used for training these models also warrant careful attention [13]. Essentially, LLMs are
trained on vast corpora of text, often incorporating extensive amounts of code and related discussions. This
comprehensive exposure enables models to implicitly learn the patterns, structures, and conventions of various
programming languages, rather than explicitly acquiring knowledge of syntax or semantic rules [14]. However,
training LLMs on open-source code repositories exposes users to the risk of licensing violations. Moreover, Al-
assisted tools pose the potential risk of suggesting faulty or malicious code, which may lead to severe
consequences, especially in critical sectors such as finance and healthcare [9].

Developers also handle a wide range of tasks when creating and maintaining software, and they sometimes
inadvertently introduce insecure code patterns. The challenges associated with security bugs involve several key
areas: detecting them, localizing their root causes, understanding these underlying issues, and then creating and
thoroughly testing effective patches [15]. Human limitations in thoroughly appraising software quality have
historically led to the indispensable adoption of practices such as code reviews and the application of static and
dynamic analysis techniques to uphold the integrity of human-authored code. These established methodologies
underscore the heightened challenges in validating Al-generated code [16]. In this context, a comparative security
analysis of code generated by ChatGPT, Copilot, and Gemini is crucial for understanding existing vulnerabilities
and assessing the broader implications of these tools on software security. The primary objective of this study is
to examine the security of Al-generated code. The research begins with a comprehensive evaluation of the
capabilities of LLMs to produce secure code and subsequently investigates the presence of vulnerabilities in the
code generated by the three Al tools mentioned.

The remainder of this study is structured as follows: Section 2 presents background and a review of relevant
literature. Section 3 details the research methods, data collection procedures, analysis techniques, and evaluation
criteria. Section 4 presents and interprets the research findings. Finally, Section 5 provides the study’s conclusions
and discussion.

2. Background and Related Work

The landscape of Artificial Intelligence (Al) has undergone a significant transformation with the emergence of
LLMs, particularly OpenAl's ChatGPT [17]. ChatGPT is a conversational interface powered by a LLM developed by
OpenAl, based on the Generative Pre-trained Transformer (GPT) architecture. Initially released in November
2022, ChatGPT currently operates using the GPT-4 framework, which has been trained on extensive and diverse
textual data. As an LLM, it is capable of understanding and generating human-like language, and it can effectively
perform various natural language processing tasks, such as text generation, summarization, translation, and
problem-solving across multiple domains. Through advanced deep learning techniques, ChatGPT captures
linguistic structures and semantic contexts to provide coherent and contextually relevant responses. Its expanding
use in academic research, education, and digital communication demonstrates its growing impact as a significant
Al-driven language processing tool [18]. Gemini, developed by Google, is a family of LLMs. Its advanced
architecture enables it to process and comprehend various forms of information, including text, code, audio, image,
and video data. The initial release of Gemini occurred in December 2023, with subsequent updates introducing
expanded capabilities. Its development focuses on achieving high performance across a broad spectrum of
benchmarks, showcasing proficiency in areas such as natural language understanding, code generation,
mathematical reasoning, and creative content creation. As a foundational model, Gemini aims to provide robust
capabilities for diverse applications, thereby contributing to both research and practical implementations within
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advanced Al systems [19]. Microsoft Copilot, introduced in 2023, is a groundbreaking Al tool that acts as an
advanced assistant to boost human productivity, especially in writing and problem-solving. A core feature of
Copilotis its real-time generation of contextually appropriate responses. It understands the conversation and user
intent, which helps speed up chats and lessen the mental effort for users. This is beneficial for both new users
needing guidance and experienced users aiming for more efficient conversations. Beyond just chatting, Copilot
also supports creative endeavors like writing poems, stories, and other text-based content [20].

The integration of generative Al into software development processes has significantly enhanced speed and
efficiency in software production [3]. However, this advancement has concurrently increased security-related
risks. In a user study, Perry et al. [21] investigated the ways in which individuals interact with Al code assistants
when addressing various security-related programming tasks. Their research revealed that participants who
utilized an Al assistant generated code that was notably less secure compared to those who did not have access to
such a tool. Furthermore, the study indicated that users interacting with Al assistants were more inclined to
believe their code was secure, which suggests that these tools may inadvertently foster overconfidence regarding
potential security vulnerabilities within the generated code. Studies evaluating the security and quality of code
generated by Al tools such as ChatGPT, GitHub Copilot, and Google Gemini indicate that these models are assessed
from diverse perspectives.

Kharchenko and Babenko [22] conducted a comparative analysis of LLMs across various application domains,
focusing on the accuracy and reliability of the generated code. Their findings suggest that Copilot achieved higher
scores in terms of data accuracy and security, while ChatGPT demonstrated superior performance in terms of
flexibility. Tihanyi et al. [23] conducted an extensive study evaluating the propensity of state-of-the-art LLMs to
introduce vulnerabilities when generating C programs. Employing a neutral zero-shot prompt, their large-scale
investigation, which involved nine cutting-edge models, revealed that a substantial proportion of the generated
code, at least 62.07%, contained vulnerabilities. While minor variations existed among the models, they generally
exhibited similar types of coding errors. Security-focused studies, including those by the prominent cybersecurity
company TrendMicro [24], emphasize that trusting code generated by ChatGPT could potentially result in the
deployment of insecure code in production environments and may inadvertently introduce security
vulnerabilities. Similarly, a 2021 study reported that GitHub Copilot produced security-related issues in
approximately 40% of its code outputs. A study by Kharma et al. [25], which analyzes the security of code
generated by LLMs across various programming languages, indicates that Gemini models exhibit the highest
tendency to produce vulnerabilities in Java code when compared to other LLMs. Specifically, it is found that Gemini
generated a greater number of code lines, which correlated with a higher incidence of security issues. This suggests
thatin terms of protective measures against unauthorized access and vulnerabilities, Gemini currently lags behind
other LLMs for Java code generation. Tosi [26] noted that Copilot outperformed other tools in producing reusable
and reliable code, while Gemini achieved the lowest error rates. In the context of web development and
cybersecurity, Smutny and Bojko [27] compared the security standards of ChatGPT, Copilot, and Gemini. Their
findings indicated that while Gemini better addressed security-oriented coding requirements, Copilot provided
more flexible integration capabilities. Yigit and Buchanan [28] explored the influence of Al models on
cybersecurity protocols and found that Copilot was more effective in alerting users to potential security risks. In
contrast, ChatGPT was found to be more susceptible to misinterpretations based on user inputs.

Regarding code quality and software updates, Mohsin et al. [29] analyzed the security patterns of ChatGPT, Copilot,
and Gemini, concluding that Copilot was more effective in preventing the emergence of "code smells." Kapitsaki
[30] investigated the reusability of code generated by these tools and found that Gemini provided more security-
optimized code, whereas Copilot offered greater support for developers. A study by Palla and Slaby [31] assessed
prominent generative Al models for their proficiency in Python code generation. The evaluation encompassed
several metrics: syntax accuracy, response time, completeness, reliability, and cost. To gauge both performance
and consistency, ten coding tasks of varying complexity were administered across three iterations for each model.
The findings indicated that Gemini models exhibited limitations when addressing complex coding challenges.
However, it is noted that Gemini proved to be cost-effective and maintained good accuracy on less intricate
problems.

Collectively, existing studies have demonstrated that generative Al models such as ChatGPT, Copilot, and Gemini
display differing levels of security performance within software development workflows. However, prior research
has often been limited to evaluating individual tools in isolation or applying either static or dynamic analysis
methods separately. In contrast, this study provides a systematic comparative assessment of web application code
generated by ChatGPT, Gemini, and Copilot. By integrating both static and dynamic analysis techniques, it identifies
and categorizes security vulnerabilities according to their severity levels. This combined approach offers a more
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comprehensive and novel perspective on the security implications of using large language models.

3. Methodology

This study adopts an experimental research methodology, which is particularly suitable for analyzing the security
and accuracy performance of Al tools in software development processes. Through this experimental approach,

the primary objective is to evaluate the code produced by different Al tools under predefined criteria and to
systematically detect potential security vulnerabilities. The method followed in the study is shown in Figure 1.

Prompt Input prompts
( Stat ) creation 7 to LLM Models o ot

Deployment of
Generated
Codes
Static Code Dynamic Code
Analysis Analysis

Analysis Output Analysis Output

C of Scoring
LLM Models Outputs

Figure 1. The workflow followed in this study
3.1 Data collection and scenario design

In this study, a scenario was developed to compare the security levels of code generated by Al-powered chatbots.
The scenario involved requesting the development of a simple user login interface using PHP. Specifically, the Al
chatbots were asked to create a basic form that allows users to log in with a username and password. For each
task, a specific prompt was developed, and a corresponding set of fundamental guidelines was put in place. These
guidelines acted as a baseline for core functionality, defining the crucial elements an output needed to be deemed
satisfactory. It's worth noting that these rules didn't evaluate optional or advanced functionalities; rather, their
sole purpose was to measure basic usability. The same prompt was provided to three different Al chatbots:
ChatGPT (GPT-40 (“omni”)), GitHub Copilot (Standard), and Google Gemini (2.5 Flash). Each chatbot was tasked
with generating code based on the same set of instructions. The generated code was rigorously tested and analyzed
within a robust environment specifically configured for development and performance evaluation. This setup
involved deploying both an Apache web server and a MySQL database on a dedicated machine running Microsoft
Windows 10 Professional (64-bit). The chosen test system featured an Intel Core i7 processor, 32 GB of RAM. All
subsequent analyses and evaluations of the code's security were conducted on this precisely defined system
configuration, which allowed for consistent and reproducible results.

e Prompt Provided Al Chatbots

o Act as an expert software developer and write a sample PHP code that meets the following
requirements:

oEach user should have a unique string-based username and password, which are assumed to be stored

in a MySQL database.

oDevelop a login interface for a web platform that allows users to log in using their username and
password.

oThe login interface must implement session tracking.

oYou must pay attention to established security standards when creating the code example."

The above prompt was entered into each of the three chatbots in sequence, and the resulting code samples were
collected. The screenshots of the generated code for each chatbot are presented in Figures 2, 3, and 4.
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1 <?php

2 session_start();

3 require ‘config.php’'; // Required file for database connection
4

S5 // Redirect to the main page directly if the user is already logged in
6~ if (isset($_SESSION[ 'username’])) {

7 header(“Location: main.php");

8 exit();

° 1}

10

11~ if ($_SERVER['REQUEST_METHOD'] == "POST") {

12 $username = $_POST['username’];

13 $password = $_POST['password’];

14

15 // Database query

16 $stmt = $conn->prepare("SELECT * FROM users WHERE username = 2");
17 $stmt->bind_param(“s”, $username);

18 $stmt->execute();

19 $result = $stmt->get_result();
20 $user = $result->fetch_assoc();
21 $stmt->close();
22
23 // User verification and password check

24~ if ($user && password_verify($password, $user['password’'])) {
25 $_SESSION[ ‘username'] = $username; // Session started
26 header("“Location: main.php");

27 exit();
28~ } else {
29 $error = "Invalid username or password”;

30 }

358 '}

32

Figure 2. Code generated by ChatGPT

1 <?php

2 session_start();

3

4  // Database connection

5 $servername = "localhost:3306";

& $username = “root";

7 $password = "1234";

2  $dbname = “ai_db";

9
10 $conn = new mysqli($servername, $username, $password, $dbname);
11
12~ if ($conn->connect_error) {
13 die("Connection failed: " . $conn->connect_error);
14}
15

16  // User login control
17+ if ($_SERVER['REQUEST_METHOD'] == "POST") {

18 $userCode = $_POST['user_id'];

19 $password = $_POST['password'];

20

21 // SQL injection prevention

22 $stmt = $conn->prepare("SELECT * FROM users WHERE user_id = ? AND password = 2");
23 $stmt->bind_param(“ss”, $userCode, $password);
24 $stmt->execute();

25 $result = $stmt->get_result();

26

27~ if ($result->num_rows > ©) {

28 $_SESSION["loggedin”] = true;

29 $_SESSION[“"user_id"] = $userCode;

30 echo "Login successful!";

31~ } else {

32 echo "Invalid user ID or password.";

$stmt->close();

Figure 3. Code generated by CoPilot
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<?php

// Database connection information (Example)
$servername = "localhost:3306";

$username = "root";

$password = "1234";

$dbname = "ai_db";

// Establish connection
$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection for errors
2+ if ($conn->connect_error) {
die("Connection failed:

. $conn->connect_error);

~ if ($_SERVER['REQUEST_METHOD'] == "POST") {
$username = $_POST[ 'username’];

$password = $_POST[ 'password'];

// Prepared statement (SQL injection prevention)
$sql = "SELECT * FROM users WHERE username=?";
$stmt = $conn->prepare($sql);
$stmt->bind_param(“s", $username);
$stmt->execute();

$result = $stmt->get_result();

27 ~ if ($result->num_rows == 1) {
3 $row = $result->fetch_assoc();
: // Password verification
)~ if (password_verify($password, $row[ 'password'])) {
session_start();
$_SESSION["user_id"] = $row["id"]; // Example session variable
header("Location: main.php");
1 exit();
5 v } else {
echo "Invalid password.";

g } else {
echo "User not found.”;
}

Figure 4. Code generated by Gemini

3.2 Analysis

Software security plays a crucial role in identifying and mitigating potential risks. A highly effective method for
uncovering software vulnerabilities involves analyzing the underlying code. This code analysis process is
instrumental in detecting prevalent coding errors such as buffer overflows, unused variables, memory leaks, and
various race conditions. By addressing these issues, computer programs can be optimized in terms of both storage
efficiency and computational performance [32]. Code analysis allows for the detection of potential errors by
evaluating both the static and dynamic properties of software. Static and dynamic analysis represent
complementary approaches to vulnerability detection. Static analysis, which scans source or binary code without
execution, is fast and incurs no runtime overhead. However, it sometimes suffers from imprecision. Conversely,
dynamic analysis involves executing the software, thereby reducing false positives and negatives due to its reliance
on actual test case execution [33]. These types of analyses play a significant role, especially for security-critical
software.

3.2.1 Static code analysis

Programming languages empower developers with extensive control over computer applications, including
capabilities like memory management, multiprocess control, and direct access to operating system functionalities.
However, the improper utilization of these powerful mechanisms can inadvertently introduce security
vulnerabilities, which can then be exploited by both typical users and malicious attackers. Static security analysis
tools are designed to identify these potential issues proactively, preventing them from escalating into genuine
problems for end-users, thereby providing valuable insights for project development [34]. Static analysis of source
code is a fault-detection technique that does not require program execution. The method aims to evaluate code
compliance with specific quality standards in the early stages of the software development life cycle [35]. The
process begins with a program that, having successfully compiled, offers an initial, albeit unverified, indication of
correctness. The aim is to proactively address common programming errors and design flaws before the program
undergoes rigorous testing to validate its adherence to specifications [36]. Static code analysis can be used during
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the development and testing phases to enhance software security. This method is less time-consuming than
manual code review. Automated static code analysis, when integrated into the software development lifecycle,
plays a significant role in reducing the sources of security issues [37]. Tools like SonarQube and Checkmarx offer
comprehensive static analysis features. Static code analysis allows for early-stage software optimization and
reduces development costs [38].

3.2.2 Dynamic code analysis

By carefully observing a software system's behavior during execution, developers and analysts can gain a
comprehensive understanding of its operational Dynamics [39]. Dynamic analysis is an active methodology that
involves executing code within a controlled environment to capture and observe its runtime behavior and features
[40]. Software that features runtime code loading and execution capabilities poses a challenge for static analysis,
as its complete behavior cannot be determined before execution. Dynamic analysis addresses this by running the
program within a monitored environment to gather runtime data, such as memory and file access patterns,
network traffic, or system call traces. This collected data is then analyzed for various purposes [41]. Dynamic code
analysis is an important tool for evaluating how an application responds in real-world scenarios [42].

3.2.3 Comparing static and dynamic code analysis

Static and dynamic code analysis methods are complementary processes. Static analysis enables the early
detection of errors, while dynamic analysis makes it possible to understand issues that may arise when the code
is running in real-world conditions. When used together, these methods offer a powerful toolkit for enhancing
software reliability, performance, and security [43].

3.3 Evaluation Criteria

The code samples generated by the Al chatbots were subjected to both static and dynamic code analysis to identify
potential security vulnerabilities. Dynamic code analysis was conducted using the open-source OWASP ZAP tool
(Version 2.16.1), presented in Figure 5, while static code analysis was performed in accordance with the OWASP
Top 10:2021 security standards [44].

.
Q File Edit View Analyse Report Tools Import Export Online Help Untitled Session - ZAP 2.16.1 = (m] X
SandardMode v/ [ B W @ @IS A2 E D E @ DE 4 8 7 O % @ E o e
@ sites = § 4 QuickStat #* <> Request  ¢= Response  ( Requester ==
o o

(= Contexts = AUtOI I Iated S aee ZAPby
[ Default Context Checkmarx
@ sites
This screen allows you to launch an automated scan against an application - just enter its
URL below and press ‘Aftack’.
Please be aware that you should only attack applications that you have been specifically been
given permission to test.
URL to attack: http:/localhostkodlarogin_gpthtm! v | @ Select...

Use traditional spider: [/]

Use ajax spider: IfModern ~  with Chrome v
& Attack Stop
B Histoy S search  [UAlerts @ ] Output % Spider ) ActiveScan <=
® /@ Full details of any selected alert will be displayed here.
= {\Ierls (15) You can manually add alerts by right clicking on the relevant line in the history and selecti

|4 Absence of Anti-CSRF Tokens (3) ng'Add alert.
F-’J Content Security Policy (CSP) Header Not Set (8)
Y Directory Browsing You can also edit existing alerts by double clicking on them.
"4 Hidden File Found (2)
HJ Missing Anti-clickjacking Header (5)
HJ Parameter Tampering (6)
|- Cookie No HttpOnly Flag (2)
L Pankia withnut @amaQita Attrihita (2)

Alerts [0 U6 (U5 [W4 Main Proxy: localhost8080 CurrentStatus @0 &0 ) 0 @0 /0 %0 K0 @0 D0 %0

Figure 5. User interface of ZAP 2.16.1

To quantify the security performance of each platform, a reliability scoring system was developed based on the
results of both static and dynamic analyses. These scores provided an overall assessment of the security level of
the code produced by each Al tool. Additionally, the proportion of code segments identified as faulty or posing
security risks was considered in the evaluation. Security vulnerabilities were classified into five distinct categories
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based on their severity: Informational, Low, Medium, High, and Critical. Each finding was assigned a specific score
to represent its associated risk level, as detailed below:

. Informational (1 Point): Minor issues that do not directly compromise code security, typically
serving as advisory notifications to developers.

. Low-Level (2 Points): Minor vulnerabilities that do not significantly impact the software's core
functionality but indicate areas for improvement.

. Medium-Level (3 Points): Security weaknesses that pose potential risks but do not immediately
lead to system compromise.

. High-Level (4 Points): Serious vulnerabilities that could be exploited by attackers, potentially
causing significant harm.

. Critical (5 Points): Severe vulnerabilities that could entirely compromise system security and

require urgent remediation.
4. Results and Discussion

4.1 Dynamic code analysis results

To conduct dynamic analyses, a simple HTML-based login interface was developed as a testing environment. The
code snippets generated by the large language models were first evaluated to verify that they executed correctly.
Subsequently, while ZAP was operating in its standard mode, attacks were carried out against each locally hosted
system. Following these attacks, the relevant sections of the resulting reports were summarized and are presented
below. For all three systems, the following four alerts were generated: Directory Browsing, Hidden File Found,
Server Leaks Information via the "X-Powered-By" HTTP response header field(s), and Server Leaks Version
Information via the "Server" HTTP response header field. However, since the generated code was executed in a
localhost environment and these alerts pertain to server configurations rather than the code itself, they were
excluded from the analysis results.

The Risk and Confidence matrix for Gemini is presented in Figure 6. Table 1 displays the types of alerts and their
severity levels identified during the dynamic analysis of the code generated by Gemini.

User

Confirmed High Medium Low Total

High 0 0 0 0 0

(0.0%) (0.0%) (0.0%) (0.0%) (0.0%)

Medium 0 2 2 2 6

(0.0%) (18.2%) (18.2%) (18.2%) (54.5%)

Low 0 1 2 0 3

Risk (0.0%) (9.1%) (18.2%) (0.0%) (27.3%)
Informational 0 0 1 1 2
(0.0%) (0.0%) (9.1%) (9.1%) (18.2%)

Total 0 3 5 3 14

(0.0%) (27.3%) (45.5%) (27.3%) (100%)

Figure 6. The Risk and Confidence matrix for Gemini

Table 1. Dynamic code analysis results for Gemini

Alert Type Risk

Absence of Anti-CSRF Tokens Medium
Content Security Policy (CSP) Header Not Set Medium
Missing Anti-clickjacking Header Medium
Parameter Tampering Medium
X-Content-Type-Options Header Missing Low
Authentication Request Identified Informational
User Agent Fuzzer Informational
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The Risk and Confidence matrix for CoPilot is presented in Figure 7. Table 2 displays the types of alerts, and their
severity levels identified during the dynamic analysis of the code generated by Gemini.

User

Confirmed High Medium Low Total

High 0 0 0 0 0

(0.0%) (0.0%) (0.0%) (0.0%) (0.0%)

Medium 0 2 2 2 6

(0.0%) (14.3%) (14.3%) (14.3%) (42.9%)

Low 0 1 4 0 5

Risk (0.0%) (7.1%) (28.6%) (0.0%) (35.7%)
Informational 0 0 2 1 3
(0.0%) (0.0%) (14.3%) (7.1%) (21.4%)

Total 0 3 8 3 14

(0.0%) (21.4%) (57.1%) (21.4%) (100%)

Figure 7. The risk and confidence matrix for CoPilot

Table 2. Dynamic code analysis results for CoPilot

Alert Type Risk

Absence of Anti-CSRF Tokens Medium
Content Security Policy (CSP) Header Not Set Medium
Missing Anti-clickjacking Header Medium
Parameter Tampering Medium
Cookie No HttpOnly Flag Low

Cookie without SameSite Attribute Low
X-Content-Type-Options Header Missing Low
Authentication Request Identified Informational
Session Management Response Identified Informational
User Agent Fuzzer Informational

The Risk and Confidence matrix for CoPilot is presented in Figure 8. Table 3 displays the types of alerts, and their
severity levels identified during the dynamic analysis of the code generated by ChatGPT.

User

Confirmed High Medium Low Total

High 0 0 0 0 0

(0.0%) (0.0%) (0.0%) (0.0%) (0.0%)

Medium 0 2 2 2, 6

(0.0%) (13.3%) (13.3%) (13.3%) (40.0%)

Low 0 i | 4 0 b

Risk (0.0%) (6.7%) (26.7%) (0.0%) (33.3%)
Informational 0 1 2 1 4
(0.0%) (6.7%) (13.3%) (6.7%) (26.7%)

Total 0 4 8 3 15

(0.0%) (26.7%) (53.3%) (20.0%) (100%)

Figure 8. The risk and confidence matrix for ChatGPT

Table 3. Dynamic code analysis results for ChatGPT

Alert Type Risk
Absence of Anti-CSRF Tokens Medium
Content Security Policy (CSP) Header Not Set Medium
Missing Anti-clickjacking Header Medium
Parameter Tampering Medium
Cookie No HttpOnly Flag Low
Cookie without SameSite Attribute Low
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X-Content-Type-Options Header Missing Low

Authentication Request Identified Informational
GET for POST Informational
Session Management Response Identified Informational
User Agent Fuzzer Informational

The results obtained from the dynamic code analyses conducted within the scope of this study are summarized
below. As shown in Table 4, the codes generated by ChatGPT and Copilot exhibited similar security vulnerabilities.
In contrast, the code produced by Gemini contained fewer findings in the informational and low categories and
showed comparable results to the other platforms in the medium category. The reduced number of informational
and low-severity findings in the Gemini-generated code may indicate a potentially more optimized code
generation capability. However, it is important to note that findings in the Informational and Low categories are
generally not considered to pose serious security threats.

Table 4. Dynamic code analysis Results

Informational Low  Medium  High Critical
ChatGPT 4 3 4 - -
Copilot 3 3 4 - -
Gemini 2 1 4 - -

4.2 Static code analysis results

The static code analysis of the samples generated by the Al chatbots was conducted based on the OWASP Top
10:2021 security vulnerabilities framework. The OWASP Top Ten 2021 identifies the most critical web application
security risks. This list is developed by a community of security experts and serves as a foundational resource for
developers and security professionals to build more secure applications [45].

The vulnerabilities are given in sequential order below [44]:

. A01:2021-Broken Access Control: This category addresses failures in implementing proper
restrictions on authenticated users. Such flaws can allow attackers to bypass authorization and access
unauthorized functionality or data, often leading to sensitive information disclosure or modification.

. A02:2021-Cryptographic Failures: This risk encompasses failures related to cryptography, which
can expose sensitive data or systems to attack. These failures often involve inadequate protection of data at
rest and in transit, stemming from weak algorithms, improper key management, or insufficient encryption
practices.

. A03:2021-Injection: Injection flaws occur when untrusted data is sent to an interpreter as part of
a command or query. This can lead to the interpreter executing unintended commands or accessing data
without proper authorization, with SQL Injection being a classic example.

. A04:2021-Insecure Design: This new category focuses on design-related flaws, emphasizing the
need for threat modeling and secure design patterns. It highlights risks stemming from missing or
ineffective control designs, which can only be mitigated through improvements in the architecture itself.

. A05:2021-Security Misconfiguration: This category broadly covers misconfigured security
settings across various components of an application or its environment. Common issues include insecure
default configurations, incomplete or unpatched systems, open cloud storage, and improper file
permissions, all of which can expose vulnerabilities.

. A06:2021-Vulnerable and Outdated Components: This risk involves the use of components with
known vulnerabilities, whether they are libraries, frameworks, or other software modules. Attackers can
exploit these known weaknesses to gain control of the system, underscoring the importance of regular
patching and dependency management.

. A07:2021-Identification and Authentication Failures: Formerly known as Broken Authentication,
this category addresses issues related to correctly verifying a user's identity. Weaknesses in authentication
or session management can allow attackers to compromise passwords, session tokens, or other credentials,
impersonating legitimate users.

. A08:2021-Software and Data Integrity Failures: This new category focuses on risks related to
code and infrastructure integrity. It addresses vulnerabilities that arise from insecure updates, critical data
processing, and CI/CD pipelines, which can lead to unauthorized access, malicious code injection, or system
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compromises.

. A09:2021-Security Logging and Monitoring Failures: This category highlights the importance of
adequate logging and monitoring to detect and respond to security incidents. Insufficient logging, lack of
proper alerting, and inadequate monitoring can hinder incident response, allowing attacks to persist
undetected for extended periods.

. A10:2021-Server-Side Request Forgery (SSRF): SSRF wvulnerabilities occur when a web
application fetches a remote resource without validating the user-supplied URL. This allows an attacker to
coerce the application into sending a crafted request to an unintended destination, potentially accessing
internal resources or performing port scans.

4.2.1 Static analysis results of Copilot

The code generated by Copilot contains critical security vulnerabilities due to hardcoded database credentials and
the highly insecure handling of user passwords, which are stored in plaintext and compared without proper
hashing. While SQL Injection is prevented, these significant flaws make the system very vulnerable to unauthorized
access and data breaches.

. A01:2021- Broken Access Control: In the code, there is no session-based protection for pages after
login. Even if a user is not authenticated, there is no enforcement to prevent access to protected resources.

. A02:2021-Cryptographic Failures: The code takes the user-supplied password and directly
includes it in the SQL query for authentication. This strongly implies that passwords are either stored in
plain text in the database or hashed using an insecure method (e.g., MD5 or SHA1 without proper salting
and stretching), and then compared directly.

. A04:2021-Insecure Design: There are no measures, such as rate limiting, CAPTCHA, or multi-
factor authentication (MFA), in place.

. A05:2021-Security Misconfiguration: Error handling is not clearly separated from user-facing
output. Database connection errors are displayed directly to the users in the code.

. A07:2021- Identification and Authentication Failures: The database connection credentials
($servername, $username, $password, $dbname) are hardcoded directly into the code. The system does not
regenerate session IDs after login.

. A09:2021-Security Logging and Monitoring Failures: The code lacks any form of security logging.

4.2.2 Static analysis results of Gemini

The code generated by Gemini implements secure password verification and prevents SQL Injection effectively.
However, the critical vulnerability in this snippet is the hardcoded database credentials, including the database
user's password.

. A04:2021-Insecure Design: There are no measures, such as rate limiting, CAPTCHA, or multi-
factor authentication (MFA), in place.

. A05:2021-Security Misconfiguration: Error handling is not clearly separated from user-facing
output. Database connection errors are displayed directly to the users in the code.

. A07:2021- Identification and Authentication Failures: The database connection credentials
($servername, $username, $password, $dbname) are hardcoded directly into the code. Session fixation
protection is not present.

. A09:2021-Security Logging and Monitoring Failures: The code lacks any form of security logging.

4.2.3 Static analysis results of ChatGPT

The code generated by ChatGPT demonstrates better practices compared to the other two LLMs.
. A04:2021-Insecure Design: There are no measures, such as rate limiting, CAPTCHA, or multi-
factor authentication (MFA), in place.
. A09:2021-Security Logging and Monitoring Failures: The code lacks any form of security logging.

The findings are presented in Table 5. The analysis reveals how resilient these three tools are against specific
security vulnerabilities. Average weighted impact score and other factors about vulnerabilities are accessible at
[44].
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Table 5. Static code analysis results

Average Weighted Impact

Vulnerability / Vulnerability Level ChatGPT Gemini Copilot

A01:2021 5,93 / Medium X X
A02:2021 6,81 / High X X
A03:2021 7,15 / Critical X X X
A04:2021 6,78 / High
A05:2021 6,56 / High X
A06:2021 5,0 / Medium X X X
A07:2021 6,5 / High X
A08:2021 7,94 / Critical X X X
A09:2021 4,99 / Low
A10:2021 6,72 / High X X X

A high-risk security vulnerability categorized under A04:2021-Insecure Design was identified in the code
generated by all three Al chatbots: Gemini, ChatGPT, and Copilot. This indicates that the produced systems are
particularly vulnerable to brute-force attacks. The login forms can easily be targeted by automated tools
attempting to guess valid credentials. In these implementations, attackers can repeatedly try various username
and password combinations without facing increasing resistance or any blocking mechanisms. Similarly, all three
LLM models also exhibited A09:2021-Security Logging and Monitoring Failures in their generated codes, with no
preventive measures in place. According to OWASP, this vulnerability has an average weight impact of 4.99, which
categorizes it as a low-risk issue. Nevertheless, the absence of logging mechanisms severely limits the ability to
detect brute-force attacks, credential stuffing, or other malicious login behaviors. Although this omission does not
represent a direct vulnerability in the coding itself, without proper logging, system administrators cannot observe
attack patterns, detect compromised accounts, or conduct forensic investigations after a security incident.

The codes generated by Gemini and Copilot were found to contain security misconfigurations, classified under
A05:2021-Security Misconfiguration, which OWASP rates as a high-risk vulnerability with an average weight
impact of 6.56. In both code samples, detailed system error messages are displayed to the user upon connection
failures. This practice can leak sensitive system information (such as database type, server structure, or
configuration details), thereby assisting attackers in crafting more precise, targeted attacks. Displaying such errors
unintentionally exposes technical details that may be exploited by malicious actors. Another high-risk
vulnerability, A07:2021-Identification and Authentication Failures (average weight impact: 6.5), was also present
in both Gemini’s and Copilot’s code. This category encompasses flaws in authentication and session management
implementations. Notably, session fixation prevention is missing in both cases, leaving the systems vulnerable to
session fixation attacks, where an attacker can force a user to utilize a predetermined session ID and hijack the
session after login.

The code generated by Copilot contained two additional vulnerabilities that are not present in the other platforms’
outputs: A01:2021-Broken Access Control (average weight impact: 5.93, medium risk); Copilot’s code lacks
verification mechanisms on protected pages. If an attacker bypasses the login page, such as by directly entering
the URL of a protected resource like main.php, they can gain unauthorized access without further credential
checks. A02:2021-Cryptographic Failures (average weight impact: 6.81, high risk); Copilot’s code handles and
compares passwords in plain text. Consequently, if the database is compromised, attackers would immediately
have access to all user credentials. Furthermore, plain-text passwords could potentially be exposed in system
memory or logs, increasing the security risk.

The critical vulnerability A03:2021 - Injection was not detected in the codes generated by any of the LLM models.
All three implementations correctly utilize prepared statements with parameterized queries (e.g., $stmt = $conn-
>prepare($sql); $stmt->bind_param("s", $username);), which is a strong defense against SQL Injection attacks. No
vulnerabilities classified under A06:2021-Vulnerable and Outdated Components were identified in any of the
three codes. All implementations utilize mysqli, which is a modern replacement for the deprecated mysql
extension, and none of the code directly incorporates third-party libraries, reducing the immediate risk associated
with outdated components in these simple codebases. Security categories such as A08:2021-Software and Data
Integrity Failures and A10:2021-Server-Side Request Forgery (SSRF), which are particularly relevant to server-
side infrastructure security, were not evaluated in this study.
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4.3 Combined evaluation of static and dynamic code analysis results
Based on the results of both static and dynamic code analyses and the corresponding scoring methodology
previously described, the security performance of each Al code generation platform was assessed. The

summarized security scores are presented in Table 6.

Table 6. Total security scores of code generators

Informational Low Medium High Critical Total
ChatGPT 4 4 4 1 - 28
Copilot 3 4 5 4 - 47
Gemini 2 1 4 3 - 28

Among the evaluated platforms, Copilot exhibited the highest cumulative risk score with a total of 47 points. The
identification of four high-risk vulnerabilities in Copilot’s generated code indicates that these outputs carry
significant security risks. Moreover, the detection of six medium-level findings further suggests that the code
should undergo thorough security reviews before deployment.

ChatGPT, with a total of 28 points, presented the lowest overall security risk. The identification of only one high-
risk vulnerability is a relatively positive outcome, although the presence of four medium-level findings indicates
that certain security aspects still require attention. Importantly, no critical vulnerabilities were found, which
positively contributes to ChatGPT's reliability from a security perspective.

Gemini ranked the same with ChatGPT with 28 points, demonstrating a security profile similar to ChatGPT. Its
lower number of informational and low-level findings suggest that it may pose fewer minor security risks.
However, the identification of three high-risk vulnerabilities highlights the need for manual security reviews to
ensure protection against critical threats.

5. Conclusion

This study presents a comprehensive examination of the security performance offered by generative artificial
intelligence (AI) tools, specifically ChatGPT, Copilot, and Gemini, within the context of software development
processes. Through the application of static and dynamic code analysis, our findings indicate that while these tools
provide distinct advantages in code generation, they also introduce varying levels of risk concerning security
vulnerabilities. Our observations align with previous research, such as that by Tosi [26], which demonstrated the
capacity of LLMs like GPT-3, GPT-4, and Bard to generate functionally and qualitatively similar code for established
coding problems. This reinforces the critical importance of human oversight in guiding LLMs toward adherence to
standard coding practices during source code generation.

A notable finding from our analysis is that code generated by Copilot exhibited a higher frequency of medium and
high-level security vulnerabilities compared to outputs from the other tools. Conversely, ChatGPT presented a
generally more secure profile, particularly with respect to critical vulnerabilities. Gemini, while demonstrating
superior performance in generating optimized code, was also observed to occasionally produce code containing
critical security flaws. This research underscores the nuanced security implications of integrating generative Al
into software development workflows. While these tools offer efficiency benefits, their varying propensities for
introducing vulnerabilities necessitate careful evaluation and human intervention to ensure the development of
robust and secure software.

Two critical vulnerabilities across three of the LLMs is consistently identified: insecure design and security logging
and monitoring failures. Insecure design refers to risks stemming from missing or ineffective control designs.
These issues can only be truly mitigated by making fundamental improvements to the LLMs' core architecture.
This suggests a need for a "security-by-design" approach, where robust controls are integrated from the very
beginning of the development process, rather than being an afterthought. Equally concerning are security logging
and monitoring failures. These deficiencies significantly hinder incident response, allowing attacks to persist
undetected for extended periods within the LLMs. Without comprehensive and effective logging and monitoring,
organizations are essentially operating in the dark, which makes it extremely difficult to detect, investigate, and
remediate security breaches in a timely manner. The prompt used in this study, “You should pay attention to
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known security standards when creating code samples”, is deemed insufficient in this regard. Instead, it is
recommended to provide more specific and security-oriented commands, such as “apply a secure-by-design
approach” or “implement necessary protections against OWASP Top Ten vulnerabilities,” to guide the code
generation process more effectively. In a relevant study, Khoury et al. [46] attempted to assess the security of code
generated by ChatGPT. Out of the 21 code samples they analyzed, only five were found to be secure. The study also
revealed that when ChatGPT was prompted for self-referential code modification, it responded: “I apologize, but
as an Al language model, I cannot rewrite entire codebases or applications from scratch, as it requires a deep
understanding of the requirements and architecture of the system.” Similarly, Nair et al. [47] investigated methods
to enable ChatGPT to produce secure hardware code. Their findings demonstrated that without detailed and
carefully structured prompts, ChatGPT frequently generates code with security vulnerabilities. To address this,
the authors proposed a comprehensive set of guidelines linked to 10 Common Weakness Enumeration (CWE)
categories. These guidelines aim to instruct developers on how to craft prompts that will lead ChatGPT to generate
hardware code that aligns with security best practices. Both studies collectively emphasize that users must be
aware of security frameworks such as “secure-by-design” and “OWASP Top Ten” to effectively prompt Al models
for secure code generation.

Back in the 2000s, from a security standpoint, static code analysis tools were not sophisticated enough to
definitively classify identified code issues as genuine security vulnerabilities. This critical determination instead
falls to human developers, who must interpret the output of these tools and leverage their expertise to distinguish
between mere code anomalies and actual security flaws [48]. Although specialized static analysis tools have
significantly evolved, as utilized in this study, recent research also integrates Generative Al into security-focused
analysis workflows. For instance, Sun et al. [49] introduced GPTScan, a pioneering methodology that integrates
Generative Pre-trained Transformer (GPT) models with static analysis techniques for the automated detection of
logic vulnerabilities within smart contracts. The operational workflow of GPTScan involves an initial phase where
the GPT component is leveraged to identify candidate vulnerable functions based on their inherent code-level
scenarios and structural properties. Subsequently, the system further directs the GPT model to intelligently
discern and extract critical variables and statements pertinent to these identified functions. The findings derived
from the GPT analysis are then subjected to a rigorous static confirmation process, serving as a validation
mechanism to ensure the accuracy and reliability of the detected vulnerabilities. Li et al. [50] developed IRIS, a
novel neuro-symbolic approach that significantly improves vulnerability detection by combining LLM with static
analysis. This method, evaluated on a curated dataset of 120 real-world security vulnerabilities across four classes,
substantially surpasses traditional static analysis alone, leading to both a higher number of detected bugs and a
reduced burden on developers. Kavian et al. [51] developed LLMSecGuard, an open-source framework designed
to boost code security by integrating static code analyzers with LLMs. LLMSecGuard's primary goal is to provide
developers with code solutions that are inherently more secure than the initial outputs of LLMs. Additionally, the
framework incorporates a benchmarking feature to offer continuous insights into the evolving security
characteristics of these models. Zhang et al. [52] leveraged ChatGPT-4.0 to create security tests, illustrating how
vulnerable library dependencies can enable supply chain attacks on various applications. Through experimenting
with different prompt styles, they found that ChatGPT successfully generated tests for all 55 applications, leading
to 24 successful attacks. Its performance was especially strong when the prompts provided detailed information
about the vulnerabilities, potential exploits, and relevant code context.

While these studies explore various dimensions of Al-assisted code generation from both security and efficiency
perspectives, there remain significant gaps in the current literature. There is still a need for further research on
the long-term impacts of Al on code security and quality, the degree to which developers can effectively adapt to
and rely on these tools, and the dynamics of human-machine collaboration in secure software development.
Addressing these gaps will be crucial in shaping the future of Al-driven software development processes towards
more secure and reliable outcomes.

One notable limitation of this study stems from the inherently non-deterministic nature of large language models
(LLMs). Specifically, due to their stochastic sampling mechanisms and continuous updates to training data and
model parameters, LLMs may generate different outputs in response to the same prompt when executed at
different times or across different sessions. As a result, it is possible that the PHP login code samples analyzed in
this study may not be reproduced identically in subsequent interactions with the same models. Moreover, LLMs
are continually refined and improved, leading them to offer alternative, potentially more secure implementations
for similar prompts over time. This variability constrains the replicability of the exact outputs examined here and
may limit the generalizability of observations about their security characteristics. However, this very dynamism
also underscores the practical value of the study: researchers and practitioners can still derive meaningful insights
from the evaluation presented, as it illustrates representative examples of LLM-generated code and highlights
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recurrent security pitfalls. Even if the exact code samples differ in future interactions, the patterns identified in
this work can serve as a reference point and an informative indicator for those considering the use of LLM-
generated code in their own projects or empirical investigations.
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