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DETERMINATION OF A TIME-DEPENDENT POTENTIAL IN A
RAYLEIGH-LOVE EQUATION WITH NON-CLASSICAL
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Abstract. Mathematical model of the longitudinal vibration of bars includes
higher-order derivatives in the equation of motion under considering the e¤ect
of the lateral motion of a relatively thick bar. This paper considers such an
inverse coe¢ cient problem of determining time-dependent potential of a linear
source together with the unknown longitudinal displacement from a Rayleigh-
Love equation (containing the fourth-order space derivative) by using an ad-
ditional measurement. Existence and uniqueness theorem of the considered
inverse coe¢ cient problem is proved for small times by using contraction prin-
ciple.

1. Introduction

Longitudinal vibrations of elastic bars are often regarded as the classical model in
mathematical physics which is described by the second order wave equation under
the consideration that the bar is thin and relatively long. More general theories
have been formulated considering the e¤ect of lateral movement of a relatively thick
rod. If the order is higher than two (pseudo-hyperbolic equation), the equations
of longitudinal vibrations can be obtained by taking into account the e¤ects of the
lateral motion by which cross section of a long and relatively thick bar becomes
variable. Rayleigh [17] and later Love [9] proposed the simplest generalization of
the classical forced free model by including the e¤ects of the lateral motion as
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where u = u(x; t) is the longitudinal displacement of the rod, � is the mass of
density, E is the Young modulus, S is the cross sectional rod area, � is the Poisson�s
coe¢ cient and I is the axial moment of inertia. Since in some papers as [2, 10]
the equation (1) is called Boussinesq-Love equation, we call the equation (1) as
Rayleigh-Love equation [3].
In this paper, we consider the forced Rayleigh-Love equation with the coe¢ cients

in front of the derivatives are equal to 1 for simplicity as

@2u

@t2
� @4u

@t2@x2
� @2u

@x2
= a(t)u+ f(x; t); 0 � x � 1; 0 � t � T; (2)

where a(t) is the time-dependent potential and f(x; t) is is continuously distributed
transverse force.
For a given function a(t), 0 � t � T the problem which consists the Equation

(2) and the initial conditions

u(x; 0) = '(x); ut(x; 0) =  (x); 0 � x � 1; (3)

and the boundary conditions

u(0; t) = 0; ux(1; t) + duxx(1; t) = 0; d > 0; 0 � t � T; (4)

for the unknown function u(x; t) is called direct (forward) problem.
The second part of the equation (4) which contains the term uxx(1; t) is called

non-classical boundary condition.
Existence and uniqueness of a weak solution of the initial-boundary value prob-

lem for a pseudo-hyperbolic equation with non-local boundary conditions is studied
in [13] and with dynamical non-local condition in [14]. Moreover, theory of free and
forced vibrations of a rigid rod based on the Rayleigh model are investigated in [4].
If the function a(t); 0 � t � T is unknown, �nding the pair of solution fa(t); u(x; t)g

of the problem (2)-(4) with an additional condition

u(x0; t) = h(t); x0 2 (0; 1); 0 � t � T; (5)

is called inverse problem. The inverse problems for the second order wave equation
with di¤erent boundary conditions and space dependent coe¢ cients are studied
in [11,15] and more recently in [5,6,12]. The inverse problem for the wave equation
with time dependent coe¢ cient is investigated in [1] and the time-dependent source
function of a time-fractional wave equation with integral condition in a bounded
domain is determined in [16]. Nevertheless the inverse problems for the second or-
der wave equation are examined satisfactorily, studies on inverse problems for the
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pseudo-hyperbolic equations are scarce. The solvability of the problem of deter-
mining an unknown coe¢ cient for the fourth-order pseudo-hyperbolic equation is
theoretically studied in [18] and the sixth-order linear Boussinesq type equation is
theoretically and numerically investigated in [21].
In this paper, we consider an initial boundary value problem for a forced Rayleigh-

Love with non-classical boundary condition. Aim of this work is to determine the
time-dependent potential together with the unknown longitudinal displacement and
prove the existence and uniqueness theorem for small T by using an additional mea-
surement of the displacement at (x0; t).
The paper is organized as follows: In Section 2, we present auxiliary spectral

problem of this problem and its properties. In Section 3, we transform the inverse
problem (2)-(5) to a �xed-point system and prove the existence and uniqueness of a
solution on a su¢ ciently small time interval by means of the contraction principle.

2. Auxiliary Spectral Problem

The function a is space independent and the boundary conditions are linear
and homogeneous. Thus the method of separation of variables is suitable for the
problem (2)-(4). The auxiliary spectral problem of the problem (2)-(4) is

X 00(x) + �X(x) = 0; 0 � x � 1;

X(0) = 0; X 0(1)� d�X(1) = 0:
(6)

This spectral problem arises in many boundary value problems of mathematical
modelling. For instance, the problems on vibrations of a homogeneous loaded
string, torsional vibrations of a rod with a pulley at one end, heat propagation
in a rod with lumped heat capacity at one end, and the current in a cable grounded
at one end through a concentrated capacitance or inductance lead to this spectral
problem , see [19], [20].
The problem (6) is considered in [7] and has eigenfunctions

Xn(x) =
p
2 sin

�p
�nx

�
, n = 0; 1; 2; ::: (7)

with positive eigenvalues �n determined from the equation

cot
p
� = d

p
�:

The zero index is assigned to an arbitrary eigenfunction. The remaining eigenfunc-
tions are numbered increasing order of eigenvalues. This characteristic equation
has any roots outside the positive part of the real axis on the complex plane. The
estimate

0 <
p
�n � �n <

1

d�n
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is valid starting from some index N .
The system Xn(x), n = 1; 2; ::: is biorthogonal to the system

Yn(x) =

p
2

1 + d sin2
p
�n

�
sin(

p
�nx)�

sin
p
�n

sin
p
�0
sin(

p
�0x)

�
; n = 1; 2; :::

and the system Xn(x), n = 1; 2; ::: forms a Riesz basis in L2 [0; 1]. Also, the system
Yn(x), n = 1; 2; ::: is a Riesz basis in L2 [0; 1] and is complete.
Let the pair fa(t); u(x; t)g which belongs to the class C[0; T ]�C4(DT ) satis�es

the conditions (3)-(5). Then the pair fa(t); u(x; t)g is called a classical solution
of the inverse problem (2)-(5). The uniformly convergence of the Fourier series
expansion in terms of the system Xn(x), n = 1; 2; ::: is important for the classical
solution of the inverse problem (2)-(5).

Lemma 1 ( [7]). Let the function g(x) 2 C[0; 1] and

g(0) = 0; g(1) +
1

d sin
p
�0

Z 1

0

g(x) sin(
p
�0x)dx = 0

is satis�ed. Then this function can be expanded in a Fourier series in terms of the
system Xn(x), n = 1; 2; ::: and this expansion is uniformly convergent on [0; 1]:

Let us introduce the functional space

B
3=2
2;T =

(
u(x; t) =

1X
n=1

un(t)Xn(x) : un(t) 2 C[0; T ];

JT (u) =

" 1X
n=1

�
�3=2n kun(t)kC[0;T ]

�2#1=2
< +1

9=;
with the norm ku(x; t)k

B
3=2
2;T

� JT (u) which relates the Fourier coe¢ cients of the

function u(x; t) by the eigenfunctions Xn(x); n = 1; 2; :::. It is shown in [8] that
B
3=2
2;T is Banach space. Obviously E

3=2
T = B

3=2
2;T � C[0; T ] with the norm kzk

E
3=2
T

=

ku(x; t)k
B
3=2
2;T

+ ka(t)kC[0;T ] is also Banach space.

3. Solution of the Inverse Problem

Let a(t); t 2 [0; T ] is an unknown function. Since the function a(t) is time de-
pendent, seeking the solution of the problem (2)-(5) in the following form is suitable:

u(x; t) =
1X
n=1

un(t)Xn(x) (7)

where un(t) =
R 1
0
u(x; t)Yn(x)dx, k = 1; 2; :::.
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From the equation (2) and initial condition (3), we obtain8<: (1 + �n)u
00
n(t) + �nun(t) = Fn(t; a; u);

un(0) = 'n; u0n(0) =  n;
n = 1; 2; :: (8)

where Fn(t; a; u) = a(t)un(t)+fn(t); fn(t) =
R 1
0
f(x; t)Yn(x)dx; 'n =

R 1
0
'(x)Yn(x)dx;

 n =
R 1
0
 (x)Yn(x)dx; n = 1; 2; :::.

Solving the problem (8), we get

un(t) = 'n cos (�nt) +
1

�n
 n sin (�nt) +

1

�n

Z t

0

Fn(� ; a; u) sin (�n(t� �)) d� (9)

where �n =
q

�n
1+�n

.

Substituting (9) into (7), the second component of the pair fa(t); u(x; t)g is

u(x; t) =
1X
n=1

�
'n cos (�nt) +

1

�n
 n sin (�nt)

(10)

+
1

�n

Z t

0

Fn(� ; a; u) sin (�n(t� �)) d�
�
Xn(x)

Using the additional condition (5), from the equation (2) we get

a(t) =
1

h(t)

"
h00(t)� f(x0; t) +

1X
n=1

(�nu
00
n + �nun) sin

p
�nx0

#
:

Since �nu00n + �nun = Fn(t; a; u)� u00n, we obtain the �rst component of the pair as

a(t) =
1

h(t)

"
h00(t)� f(x0; t) +

1X
n=1

�
Fn(t; a; u) + 'n�

2
n cos (�nt)

(11)

+�n n sin (�nt) + �n

Z t

0

Fn(� ; a; u) sin (�n(t� �)) d�
�
sin
p
�nx0

�
by using the equality (9).
Thus, the solution of the inverse problem (2)-(5) is reduced to the solution of

system (10)-(11) with respect to the unknown functions fa(t); u(x; t)g.
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Let us present z = [a(t); u(x; t)]T and investigate the existence of a unique solu-
tion of the operator equation

z = �(z): (12)

The operator � is determined in the set of functions z and has the form [�1; �2]
T ,

where

�1(z) =
1

h(t)

"
h00(t)� f(x0; t) +

1X
n=1

�
Fn(t; a; u) + 'n�

2
n cos (�nt)

(13)

+�n n sin (�nt) + �n

Z t

0

Fn(� ; a; u) sin (�n(t� �)) d�
�
sin
p
�nx0

�
;

�2(z) =
1X
n=1

�
'n cos (�nt) +

1

�n
 n sin (�nt)

(14)

+
1

�n

Z t

0

Fn(� ; a; u) sin (�n(t� �)) d�
�
Xn(x):

We need to verify that � maps E3=2T onto itself continuously. In other words,

we have to demonstrate �1(z) 2 C[0; T ] and �2(z) 2 B
3=2
2;T for arbitrary z =

[a(t); u(x; t)]T with a(t) 2 C[0; T ], u(x; t) 2 B3=22;T .
We will use the following assumptions on the data of problem (2)-(5):

(A1): '(x) 2 C3[0; 1],

8>><>>:
'(0) = '00(0) = 0; '0(1) + d'00(1) = 0;

'(1) + 1
d sin

p
�0

R 1
0
'(x) sin(

p
�0x)dx = 0;

,

(A2):  (x) 2 C2[0; 1],

8>><>>:
 (0) =  00(0) = 0;  0(1) + d 00(1) = 0;

 (1) + 1
d sin

p
�0

R 1
0
 (x) sin(

p
�0x)dx = 0;

;

(A3):

8>>>><>>>>:
f(x; t) 2 C(DT ); fx; fxx; fxxx 2 C[0; 1];8t 2 [0; T ]

f(0; t) = fxx(0; t) = 0; fx(1; t) + dfxx(1; t) = 0;

f(1; t) + 1
d sin

p
�0

R 1
0
f(x; t) sin(

p
�0x)dx = 0;

;
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(A4): h(t) 2 C2[0; T ], h(0) = '(x0); h
0(0) =  (x0); h(t) 6= 0:

By using integration by parts under the assumptions (A1)-(A4), it easy to see
that

'n =
1

�3=2n

�
p
2

1 + d sin2
p
�n

Z 1

0

'000(x) cos(
p
�nx)dx;

 n =
1

�n

�
p
2

1 + d sin2
p
�n

Z 1

0

'00(x) sin(
p
�nx)dx;

fn(t) =
1

�3=2n

�
p
2

1 + d sin2
p
�n

Z 1

0

fxxx(x; t) cos(
p
�nx)dx:

From these equalities, we haveP1
n=1 j'nj � C2 k'000(x)kL2[0;1] ;P1
n=1 j nj � C1

 00(x)
L2[0;1]

;P1
n=1 jfn(t)j � C2 kfxxx(x; t)kL2(DT )

;

(15)

by using Cauchy-Schwartz inequality and Bessel inequality where C1 =
�P1

n=1
1
�2n

�1=2
and C2 =

�P1
n=1

1
�3n

�1=2
.

First, let us show that �1(z) 2 C[0; T ]. Under the assumptions (A1)-(A4), con-
sidering the estimates (15) and 1p

2
< �n < 1, we obtain from (13)

max
0�t�T

j�1(t)j � R1(T ) +R2(T ) ka(t)kC[0;T ] ku(x; t)kB3=2
2;T

(16)

where R1(T ) = 1
kh(t)kC[0;T ]

(kh00(t)kC[0;T ] + kf(x0; t)kC[0;T ] + C2 k'000(x)kL2[0;1] +

C1
 00(x)

L2[0;1]
+ C2(1 + T ) kfxxx(x; t)kL2(DT )

)), R2(T ) =
C2(1+T )

kh(t)kC[0;T ]
. Since the

right hand side is bounded, �1(z) is continuous in [0; T ].
Now, let us show that �2(z) 2 B

3=2
2;T , i.e. we need to show

JT (�2) =

" 1X
n=1

�
�3=2n k�2n(t)kC[0;T ]

�2#1=2
< +1;

where

�2n(t) = 'n cos (�nt) +
1

�n
 n sin (�nt) +

1

�n

Z t

0

Fn(� ; a; u) sin (�n(t� �)) d� :

After some manipulations under the assumptions (A1)-(A4), we get
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" 1X
n=1

�
�3=2n k�2n(t)kC[0;T ]

�2#1=2
� eR1(T ) + eR2(T ) ka(t)kC[0;T ] ku(x; t)kB3

2;T
(17)

where eR1(T ) = 4 k'000(x)kL2[0;1] + 4
p
2
 00(x)

L2[0;1]
+ 4

p
2T kfxxx(x; t)kL2(DT )

,eR2(T ) = 4p2TC2.
Thus JT (�2) < +1 and �2 is belongs to the space B

3=2
2;T .

Now, let z1 and z2 be any two elements of E
3=2
T . We know that k�(z1)� �(z2)kE3=2

T

=

k�1(z1)� �1(z2)kC[0;T ]+k�2(z1)� �2(z2)kB3=2
2;T

. Here zi = [ai(t); ui(x; t)]T , i = 1; 2.

Under the assumptions (A1)-(A4) and considering (16)-(17), we obtain

k�(z1)� �(z2)kE3=2
T

� A(T )C(a1; u2) kz1 � z2kE3=2
T

where A(T ) = C2

�
(1+T )

kh(t)kC[0;T ]
+ 4
p
2T
�
and C(a1; u2) is the constant includes the

norms of
a1(t)

C[0;T ]
and

u2(x; t)
B
3=2
2;T

.

A(T ) has limit zero as T tends to zero. Thus the operator � is contraction
mapping which maps E3=2T onto itself continuously for su¢ cient small T . According
to the Banach �xed point theorem the solution of the operator equation (12) exists
and unique.
Thus, we proved the following theorem:

Theorem 2 (Existence and uniqueness). Let the assumptions (A1)-(A4) be satis-
�ed. Then, the inverse problem (2)-(5) has unique solution for small T .

4. Conclusion

The inverse problems for pseudo-hyperbolic equations connected with recovery
of the coe¢ cient are scarce. The paper considers the problem of determining the
time-dependent coe¢ cient for the pseudo-hyperbolic equation with homogeneous
boundary conditions and an additional measurement. The existence and unique-
ness of a solution on a su¢ ciently small time interval are proved by means of the
contraction principle. The �xed-point system is presented via Fourier series. Such
a form of the system brings along computations that are technically simpler than
the system in the case of the usual variational approach. The numerical method
of the inverse problem (2)-(5) will be considered with a suitable �nite di¤erence
scheme discretization as a future work.
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