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A B S T R A C T 

The aim of this study is providing a comprehensive background information related to the roots of both 

Fourier Transform (FT) and Wavelet Transform (WT) along with an experiment related to applications of 

WT techniques. The paper describes several applications of WT and provides background information on 

FT. Fourier Transform (FT) is a concept that has a long history yet several issues related to resolution and 

uncertainty of time –frequency. Even though there are several adapted forms of FT such as Short Time 

Fourier Transform (STFT), which intend to solve the problems, certain limitations remain. Wavelet 

Transform (WT) is an alternative transformation technique emerged in order to fully tackle these diverse 

and complicated issues. In this paper, the background information related to the roots of FT and WT are 

given. Some of the problems that WT addresses are examined. WT is a tool that has many advantages 

among them is noise reduction and compression. We reviewed several studies that use the noise reduction 

capability of WT alone or combined with other signal processing tools. Discrete Wavelet Transform 

(DWT) based algorithm is also examined as a noise reduction technique and carried out in MATLAB 

setting. Analysis on a speech signal which contaminated with keyboard sound also a number spelling 

female voice containing unknown noise are performed. Different types of thresholding and mother 

wavelets were in consideration and it was revealed that Daubechies family along with the soft thresholding 

technique suited our application the most. 

 

© 2017. Turkish Journal Park Academic. All rights reserved.  

1. Introduction 

Even though wavelets have been around for a relatively short 
period, it is worth mentioning what led researches to their 
invention. Thus, a very well-known and understood concept, 
FT is introduced. Transformation (transform) is a 
mathematical operation defined as a change of basis functions. 
In vector space transform is a linear operation (linear 
mapping) that expresses any vector as a set of weighted 
linearly independent vectors. Mathematical transformations 
can be applied to many fields like signal processing aimed at 
obtaining information by transforming raw signal into a 
processed signal. Any signal in time domain can be defined as 
raw signal that has not been transformed by any mathematical 
transformation. On the other hand, a processed signal is a raw 
signal that has been transformed to a different format where it 

is represented by a new set of functions (Polikar, 1994). Raw 
signal can only give the amplitude change over time whereas  

 

processed signal can reveal more information about the 
behaviour of the signal in different domains, i.e. frequency 
domain. Since in practice, most signals exist in time domain 
where they are represented in time-amplitude format, it is not 
easy to extract valuable information, and transforming these 
signals becomes a necessity. There are several common 
mathematical transformations which are used in signal 
processing such as Fourier Transform, Short Time Fourier 
Transform, and Hilbert Transform, Wigner distributions, 
Wavelets, the Radon transform... etc.  Each one of them comes 
with different advantages and disadvantages.  The aim of this 
study is describing some of the most important transformation 
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methods, providing background information related and giving 
several real life applications in the field of signal processing. 

FT was one of the first that emerged in early 19th century as a 
mathematical approach which suggests representation of any 
signal as an infinite sum of sine and cosine waves (Osgood, 
2007). The most significant reason why FT has been used in the 
field of signal processing is its simple yet efficient way of 
representing a signal in frequency domain while being able to 
convert it back to time (Osgood, 2007). Types of FT can be 
applied to periodic, aperiodic and continuous or discrete 
signals (Bouman, 2013). The Fourier Transform is an extended 
version of Fourier series where the original signal is 
represented as the collection of peak values of the signal, which 
is converted to sine and cosine waves in frequency domain. 

Fourier transform is a continuous process letting the 
converted signal last infinite in theory. It is mathematical 
representation is given below: 

 

X(jω)=1∫ x(t)e−jωt+∞

−∞
dt    (1) 

 

x(t)=
1

2π
∫ X(jω)ejωt+∞

−∞
dω    (2) 

 

The first equation is the mathematical representation of FT, 
which shows that is possible to represent a function in time 
(original signal) as a function in frequency (decomposed 
signal). Second equation, on the other hand, shows that 
reversing Fourier Transform makes it possible to compose the 
original function back in time domain without any lost (Huang 
& Macfarlane, 2012). 

As the mathematical aspect of the matter are covered, the 
benefits of using FT in signal processing applications will be 
discussed. For example, the shape of a biological signal such as 
Electrocardiography (ECG) is generally well known to doctors. 
However, it is not always easy to see small deviations occurring 
within the signal (Yadav, 2016). ECG signals are naturally 
available in time-domain that makes it difficult for 
cardiologists to detect pathological conditions. With the help of 
FT new ECG measuring equipment allow doctors to see signal 
in both time and frequency domain. It facilitates diagnoses of 
heart conditions. 

FT essentially allows engineers to observe sudden changes in 
the signal by altering the domain of signal from time to 
frequency. This way the unexpected changes can be identified, 
interpreted and analyzed. FT is currently in use for analyzing 
the natural signals, transferred data in a network or for 
detecting and filtering signals in case of interference and/or 
distortion.  FT has different forms that are dedicated to solve 
certain problems. Continuous Fourier Transform, Discrete 
Fourier Transform, Fast Fourier Transforms can be considered 
as the most important type of FT techniques (Huang & 
Macfarlane, 2012). 

Theoretically, FT is an infinite process that proposes taking a 
signal existing in continuous time and transforming it into 
frequency domain. Continuous Fourier transform 

fundamentally suggests an infinite approach for 
representation of a signal lengthened and allowed to approach 
infinity. Even if it is possible continuously representing a 
signal, using Fourier series, in real world applications since 
sources are limited, the FT should be rather finite. Discrete 
Time Fourier Transform (DTFT) can allow this under certain 
theoretical conditions described as the sampling theorem that 
suggests the possibility of perfect recovery of original 
continuous function from DTFT and thereby from the original 
discrete samples. The algebraic representation of DTFT is 
given below: 

 

X(k) = ∑ 𝑥(𝑛)𝑒−𝑗𝑤𝑛𝑘𝑁−1
𝑛=0     (3) 

 

x(n) = 
1

𝑁
∑ 𝑋(𝑘)𝑒𝑗𝑤𝑛𝑘𝑁−1

𝑘=0     (4) 

 

, where 𝑤 =  
2𝜋

𝑁
 and k=0 to N-1.  

As it is shown, DTFT’s mathematical expression is very similar 
to the original FT’s (Eq.1 to Eq 3 and Eq.2 to Eq 4).  DTFT itself 
is actually a continuous function of frequency but the discrete 
samples calculated via discrete Fourier transform can make 
the whole transform discrete time. 

Despite the efficiency of FT, there are certain situations where 
it may not provide the best performance. FT works well, when 
it is applied to stationary signals. However, it doesn`t give the 
desired outcome when it is applied to nonstationary signals 
(Hazas & Hall, 1999).  The concepts of stationary and non-
stationary signals define the properties of the process that 
generates the signal. Signals whose frequency content do not 
change in time are called stationary signals whereas signals 
whose frequency content varies in time are called non-
stationary (Polikar, 1994). Take white noise as an example of 
stationary signals, any signal value taken in different time 
instances are equally probable to happen. A commonly given 
example, chirp sound is on the other hand a non-stationary 
process because its frequency components change over time. 
To have a better understanding, we compared the FT results of 
both stationary and non-stationary signals whose frequency 
components are similar. The stationary signal (Figure 1a) is 
represented as: 

x1(t)= cos(2 * pi * f1 * t) + cos(2 * pi * f2 * t)  

 +cos(2 * pi * f3 * t) +cos(2 * pi * f4 * t)          (5) 

Where f1, f2, f3, f4 are given as 5, 10, 25, 50 Hz respectively.  
The non-stationary signal (Figure 1b) also contains same 
frequency components but in different time instances. It can be 
represented as: 

x1(t)= cos(2 * pi * f1 * t1) + cos(2 * pi * f2 * t2)  

 +cos(2 * pi * f3 * t3) +cos(2 * pi * f4 * t4)                        (6) 
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Figure 1. Signals x1 and x2 in time domain 

 

Figure 2. Signals x1 and x2 in frequency domain 

After applying FT to both signals, the frequency domain 
representations of both signals given in Figure 2. As you can 
see in the figure, we observe similar frequency spectrums 
although the corresponding time-domain signals are not the 
same. This happens since FT is a technique that does not 
provide both frequency and time information simultaneously. 
When the signal is stationary it works perfectly fine but when 
the signal is randomly changing, crucial information on when 
certain frequencies appear in time gets lost. 

To tackle the aforementioned issue a modified FT technique 
named Short Time Fourier Transform (STFT) was proposed. 
STFT is a process that can be defined as FT of the original signal 
multiplied by a window function (Federico & Kaufmann, 2009). 
This function allows us to divide the non-stationary signal into 
smaller segments, which have higher chance being stationary. 
It is mathematical representation is given below: 

STFT x(ω)( t′, f)= ∫ [x(t) ∗ ω∗(t − t′)] ∗ e−j2πft
1

dt     (7) 

By giving different values to 𝑡′, we are changing the width of 

the window function allowing us to examine longer or shorter 

portions of the signal.  There is a correlation between the width 

of a window and the certainty of frequency. Wider window 

provides better frequency resolution. In this case, we 

compromise, the certainty of time. When the window is 

narrower, the fewer frequency components fall into it 

compromising frequency resolution (Liu, 2010). These 

phenomena root back to the Heisenberg Uncertainty Principle. 

The Heisenberg Uncertainty Principle states that it is 

impossible to know the exact time-frequency information 

(called as time-frequency resolution) (Figure3). In order to 

have better time-frequency resolution, Wavelet emerged later 

in 1960’s allowing to represent signal both in time and 

frequency domain simultaneously. This way, not only both 

time and frequency information is available, it is also possible 

to store signal efficiently. 

 

Figure 3. Plane of uncertainty (Liu, 2010) 

Mathematically, Wavelets are nothing but functions that divide 
the original signal into different frequency components and 
study each component. The basis functions of Wavelet 
Transform (WT) are scaled according to the frequency. There 
are different small waves (also known as mother wavelets) 
that can be used for the implementation of WT (Cengiz & Arıöz, 
2016). The mother wavelet is actually a window function that 
moves forward in time. Unlike STFT, it is possible to use 
different types of window functions by using these mother 
wavelets and performing the decomposition of the signal x(t) 
into weighted set of scaled wavelet functions y(t).  
 
Dubachies, Haar, Symlet, Coiflet, Mexican Hat, Morlet wavelets 
can be given as some of the different types of wavelets (Figure 
4). Each of them comes from different wavelet families and 
includes different properties (Cengiz et al., 2016). When we are 
applying these wavelets, we decide which one to use 
depending on the requirements of the application. 
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Figure 4. Some of the Wavelet families. 

The main idea behind the WT is decomposing a signal into 
different frequency level of coefficients. Fundamental 
capability of analyzing signal in different frequency bands and 
scales can be helpful determining signals behaviors’ in 
different sections of frequency. Thus, detecting the corruption 
within the signal and eliminating it becomes a relatively easy 
process.  
 
There are two types of WT defined as Continues Wavelet 
Transform (CWT) and Discrete Wavelet Transform (DWT). 
CWT’s mathematical representation is given as: 
 
CWT ( a, b;  x(t), ψ(t))= ∫ [x(t)

1

a
ψ∗(

t−b

a
)]

∞

−∞
dt                                   (8)  

, where x(t) is the original signal, ψ(t) is the analysing function 
(wavelet), a is a scale parameter and b is a position in time. 

CWT uses inner products of analyzing function and the original 
CWT signal and measures the similarity between these two 
functions by integration (Federico & Kaufmann, 2009). 
Changing scale parameter and position parameter, CWT allows 
us to shift and compress or stretch the mother wavelet in order 
to capture multiple frequency components at different 
locations (Figure 5). 

 

Figure 5. Scaling and positioning by CWT. 

Considering ψ(𝑡)  as the bandpass impulse response, scaling 
the wavelet varies the bandwidth of the bandpass. Contrary to 
STFT, CWT allows changing the support of the wavelet to get 
better resolution in frequency domain. In Figure 6, we can 
observe the resolution difference between CWT and STFT.  As 
we see there are overlaps in the magnitude scalogram of STFT 
while there is a clear separation between frequency 

components that exist in different time intervals (Misiti, Misiti, 
Oppenheim, & Poggi, 2009). 
 

 

Figure 6. Magnitude scalograms of CWT and STFT. 

As it is mentioned previously, another type of WT exists in 

literature called DWT which is an implementation of WT using 

mutually orthogonal set of wavelets defined by carefully 

chosen scaling and translation parameters (a and b). This leads 

to a very simple and efficient iterative scheme for doing the 

transformation (Misiti et al., 2009). The scaling function should 

meet several requirements such as orthogonality, the 

normalized area between the functions etc… The translation 

equation is given as: 

DWT [n, aj]=∑ x[m]. ψj
∗[m − n] N−1

m=0 ,        ψj[n] =
1

√aj
 ψ (

n

aj
) (9) 

where n is delay parameter, N is the length of signal, ψ is the 
discretized mother wavelet. 

Since in DWT, computation performed on discrete set of 
wavelets, it provides a significant yield in terms of 
computational time.  Therefore, DWT is useful when 
compression of the signal is needed. However, this property 
comes at a price, especially when the main purpose is to 
analyze data to discover hidden information. 

2. The applications of WT 

WT is a powerful tool among researchers in different fields. WT 

is implemented in various fields in order to accomplish several 

tasks such as data and image compression, partial differential 

equation solving, transient detection, texture analysis, 

noise/trend reduction. In next section, several case studies 

related to the de-noising applications of WT will be examined 

and in the end of the case studies, the implementations of de-

noising algorithm to eliminate common office environment 

noises will be presented. Before giving the case studies, it 

should be noted that DWT stands for Discrete Wavelet 

Transform while IDWT stands for inverse DWT that is the 

process of reconstructing the original signal.  
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2.1. Case Study I 

Electrodes attached to the surface of the scalp can measure 
electroencephalogram (EEG) signals that are electrical 
impulses produced by nerves in the brain.  EEG signals are 
useful for doing deductions about the mental state of a person 
and diagnosing a number of diseases such as epilepsy, brain 
tumors, and trauma caused problems.  EEG signal is random 
and non-stationary signal that is very weak to identify. Due to 
its nature, it is also almost impossible to capture EEG signals 
without any introduction of unwanted signals generated by 
body, electrode or power line movement. Considering how 
delicate the health matters are, appropriate analysis of EEG 
signals can be only possible by the reduction of noise within 
the signal before any further analysis (S. S. Patil & Pawar, 
2012).  De-noising EEG data is a quite complicated process due 
to variety of possible noise involved in the process of capturing 
the EEG signal. Another matter with EEG signal recording and 
analysing is the weak EEG signals (1-100 Hz) brings the 
requirement of amplification of the EEG signals in order to do 
any synthesis. The amplification of EEG signals also is the 
source of amplified noise, which requires an efficient signal 
deduction method. 
 
In reference study (S. S. Patil & Pawar, 2012), a method for de-
noising of the EEG signal is introduced by applying discrete 
wavelet transform. As a consequence of the continues nature 
of the CWT, it is not possible to process a real signal on a digital 
computer that is why another form of wavelets named DWT is 
used.  

 

Figure 7. The diagram of the proposed method (reference study). 

The de-noising process generally involves three steps which 
are given as decomposition of the signal at a certain level, 
zeroing or thresholding the detail coefficients, reconstructing 
the signal using the original approximation coefficients and 
modified detail coefficients at certain level in order to verify 
the outcome (Figure 7 and 8). 

 

Figure 8. Frequency domain representation of decomposed signal 
(reference study). 

In order to illustrate how the Wavelet de-noising works, the 
researchers of the study used the EEG database available that 
is referred within the study. Before the wavelet de-noising 
start, the EEG signals were amplified. After this stage, there 
were several filtering applications completed meant for 
removing low and high frequency interference. Five different 
types of wavelets named as Haar, Daubechies, Symlets, Coiflets 
and Dmey were applied to the data set; the performance of 

each wavelet was evaluated.  The evaluation criteria were 
defined as the signal noise ratio (SNR) and mean square error 
(MSE). The results of this study, shows that hard thresholding 
produces better results than soft thresholding in terms of noise 
reduction. It is also seen that global threshold works much 
better than local threshold. Removing all the details of the 
original signal and moving forward with the approximation 
coefficients has an outcome of increasing the efficiency of de-
noising process. The reader is referred to ‘Wavelet Transform 
to Advance the Quality of EEG Signals in Biomedical Analysis’  
for more information (S. S. Patil & Pawar, 2012) 

2.2. Case Study II 

Electrocardiography (ECG) is a technique using electrodes 
attached on the skin in order to record the electrical activities 
of the heart over an episode of time. ECG is in use for medical 
purposes such as monitoring the health of heart, detecting any 
usual activity that can indicate cardiac diseases, monitoring the 
effects of a medicine (Guo, Li, Suo, & Liang, 2017). However, 
ECG signals may be corrupted by baseline wander or some 
kinds of high frequency noise.  It is also possible have multiple 
distortions on an ECG signal cause by different noise sources. 
It is known that removing noise from an ECG signal is a 
complicated process that can cause severe R-wave attenuation 
and thus result in wrong diagnoses. 
 
In reference study (Guo et al., 2017); a new technique proposed 
that is capable of removing mixed noises using Discrete 
Wavelet Transform (DWT) in unconventional approach where 
separate noise estimators calculated by the use of multilevel 
DWT (Figure 9).  What is new about the technique is a set of 
detail and approximation coefficients is used to do estimations 
for different types of noise. In fact, DWT gives two singular 
coefficient sets as approximation and detailed coefficients. This 
method uses approximation coefficients in order to estimate 
low frequency noise where detailed coefficients used to 
estimate high frequency noise by reconstructing waveforms 
out of the coefficients. Conventionally the DWT method 
eliminates the noise with adaptive thresholding. Although this 
method provides good performance, it requires great amount 
of computations.  The new approach on the other hand, 
achieves the same performance as the conventional DWT de-
noising technique but spares us from the high computational 
complexity (Figure 10). 

For the simulation section of the study, MIT-BIH arrhythmia 
database was used. The ECG was corrupted with a simulated 
baseline wander and a Gaussian noise (μ=0 and σ= 0.0625). In 
the part of the simulation where the new method was 
introduced, the approximation coefficients were used to 
estimate the baseline wander and the threshold applied detail 
coefficients to estimate high frequency noise. In order to have 
a good comparison, the conventional DWT and another method 
called empirical mode decomposition (EMD) were applied to 
the noisy signal.  As a wavelet form Daubechies 4 was used and 
in the case of EMD the first three and last four instruct mode 
functions were subtracting from the noisy ECG. For the case of 
both DWT, the first five levels of detail coefficients were 
thresholded. 
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Figure 9. The proposed structure based on the reference study. 

 
Figure 10. The comparison of different approaches applied to noisy 
ECG (reference study). 

Based on the results of experiment, it can be said that EMD 
performs poorer than the other two methods where the new 
method performs the same as the method using adaptive 
thresholding technique (Aggarwal et al., 2011). However, a 
significant reduction of computation complexity is possible 
with the new approach compared to the other two methods 
using adaptive thresholding techniques (Figure 10). The 
performance of the new approach is significantly good in terms 
of both de-noising signal and lowering the process complexity. 

2.3. Case Study III 

Detecting any signal that is not artificial, without noise is 
almost impossible to do so. Researchers working the field of 
signal processing very often may encounter the problem of 
eliminating the noise within the signal. This fact results 
different attempts and trials in order to find the best method to 
do noise reduction. There are several methods used for de-
noising such as Fourier Transform (FT), Wavelet Transform 
(WT) and Singular Vector Decomposition (SVD). FT is a method 
that gives a beneficial result only when it is applied to 
stationary signals where WT, SVD are the methods that give a 
good result both for stationary and non-stationary signals. In 

this study, both WT and SVD are used to create a combined new 
method for eliminating noise(R. Patil, 2015). 
 
Studies that aim to target the noise mixed into signal and 
eliminate it, generally solves the problem in two fundamental 
ways. The first one is de-noising signal while it is in the original 
signal domain where FT is generally the transformation 
method for it; the second way is de-noising signal while it is 
transformed into another domain where WT is the suitable 
method to do the transformation (R. Patil, 2015). For many 
fields like signal, image processing and pattern recognition, WT 
is a powerful tool, which gives reliable and detailed time-scale 
information of the signal helping to eliminate the noise.  SVD is 
also another mathematical method that can identify and order 
the dimensions along the data points exhibit the most 
variations. By applied the SDV to a signal, it is possible to find 
the best approximation of the original signal with less 
dimensions. So that applying SVD can reduce the noise, also 
compress the signal itself. The reference study [3] introduces a 
new method where SVD and WT are used together in order to 
reduce the noise. Matlab was used as an experimental setup 
and an artificial signal (Figure 11) was created as: 

x(t) = 0.1 ∗ sin (2 ∗ π ∗ 100 ∗ (
t1

1000
)) + sin (2 ∗ π ∗ 50 ∗ (

t2

1000
)) 

       + sin (2 ∗ π ∗ 25 ∗ (
t3

1000
)) + 0.1 ∗ sin (2 ∗ π ∗ 10 ∗ (

t4

1000
))   (10) 

 

Figure 11. Artificially created signal x(t) (reference study) 

Later on Gaussian (White) noise was introduced to the signal 
in the ratio of 1, 5 and 10 db. Morelet wavelet was picked for 
the wavelet transform. In an order, coefficients of the original 
signal targeted to be de-noised were transformed using 
Morelet wavelets and later coefficients were further processed 
using SVD. The process was repeated 100 times in order to see 
the difference between the original signal and noisy signal 
processed with only WT and also between original signal and 
processed noisy signal with both SVD and WT. The results of 
this study show that applying both SVD and WT eliminates the 
signal better compared to only WT applied one.  SNR which can 
be interpreted as a success rate of the method shows 4-5 times 
higher  SNR when SVD and WT applied together (R. Patil, 
2015). 
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3. Wavelet denoising experiment 

In order to illustrate how the Wavelet de-noising works, we 
conducted two different experiments. For the first experiment, 
a male speech using the given different forms of audio samples 
were analyzed: desired (original) signal, signal containing 
keyboard sound as a noise and noise sound itself.  For the 
second experiment, a sample female sound was investigated. 
For this experiment, only noisy signal form was available and 
no other information. For the experiments the sampling 
frequency is defined as Fs=1600 Hz.  DWT method is used in 
order to eliminate the noise with adaptive thresholding. By 
running the algorithm steps iteratively, we established the 
ideal threshold technique, type and mother wavelets for each 
experimental samples. It should be noted that even though this 
method provides good performance, it requires great amount 
of computations.  

3.1. Algorithm 

The algorithm that is used for the purpose of de-noising our 
sample signals consist of three different fundamental 
iterations (Yadav, 2016).  The scheme of the Wavelet de-
noising algorithm is given in the Figure 11.  

 

Figure 12. The algorithm steps. 

In order to de-noise any signal, we need to put the noisy signal 
into the decomposition process by applying wavelet transform. 
Wavelet transform allows us to decompose signal into groups 
of coefficients at different frequency levels. After successfully 
applying the first stage, it is possible to obtain relevant 
information related to the signal characteristic.  Understanding 
how signal behaves in different frequency segments will allow 
us to select the most suitable threshold in the next stage. The 
next step is determining the best threshold values and applying 
threshold values to these set of coefficients so it is possible to 
eliminate unwanted data. The thresholding technique will be 
covered in the next section. Final step of the algorithm is where 
we use these filtered coefficient sets to recompose our signal.  

For this to be possible an inverse discrete Wavelet transform is 
done. 

3.2. Thresholding 

The most important thing in applications of thresholding is the 
determination of threshold value.  There are four different 
estimator of threshold value given as heasure, minimax, 
rigsure and sqtwolog. Minimax and SURE threshold selection 
rules are more convenient when small details of the signal lie 
near the noise range (Aggarwal et al., 2011). For the other 
cases the rest two give more efficient outcomes.  
 
Thresholding can be also applied in two different methods: 
hard and soft thresholding. Hard threshold can be explained as 
setting elements to zero where their absolute values are lower 
than the threshold (Eq. 11).  Hard threshold gives sharper 
results. On the other hand, soft thresholding softens the 
coefficients exceeding the threshold by lowering them as much 
as threshold value (Eq. 12).  Soft thresholding requires more 
computations but gives better denoising performance 
(Aggarwal et al., 2011). An example is given in Figure 13 about 
how hard and soft thresholding works on a line space Z=(-1 
1,100) signal sample. 
 

 

Figure 13. Soft and hard thresholding. 

 

Thard ={
𝑥      |𝑥| ≥ 𝑡ℎ𝑟
0      |𝑥| < 𝑡ℎ𝑟

                                            (11) 

 

Tsoft ={
𝑆𝑖𝑔𝑛(𝑥). (𝑥 − 𝑡ℎ𝑟)       𝑥 ≥ 𝑡ℎ𝑟
0                      − 𝑡ℎ𝑟 ≤  𝑥 < 𝑡ℎ𝑟
𝑆𝑖𝑔𝑛(𝑥). (𝑥 + 𝑡ℎ𝑟)     𝑥 < −𝑡ℎ𝑟

                       (12) 

4. Matlab experiments 

4.1. Experiment I: A male subject typing on the keyboard 
and reading 

In the first experiment, a sample male speech record where the 

subject reads and types on the computer keyboard is used. The 



Bitlis Eren University Journal of Science and Technology 8(1) (2018) 1–10 

 

8 

 

desired output of the first analysis and de-noising process is 

also known as record with no keyboard sound. The keyboard 

sound itself is determined as the noise.  The first thing we want 

to examine is plotting all the records defined as desired, noisy 

signal (x) and noise (Figure 14 and 15).  

 

Figure 14. Original and noisy signals in time domain. 

 

Figure 15. Noise in time domain. 

In order to eliminate the noise in the signal the first step is 

decomposition of signal into approximation and detail 

coefficients. In this stage even though it was possible to apply 

one level wavelet transform, a three (level=3) level WT was 

implemented.  As a form of Wavelet, we used db8 since it is one 

of the most suitable wavelets in this case. As an outcome of the 

process, the last approximation coefficients and detailed 

coefficients at level one, two and three were plotted as an 

illustration (Figure 16). 

Next step will be de-noising the signal by using threshold 

technique. The most important thing we should focus on is 

selecting the right threshold method and calculation. We move 

forward with soft thresholding because the signal and noise 

exist in similar frequency levels and similar amplitudes. For 

not losing much of an information, soft thresholding is applied.  

The threshold calculation method is picked as hearsure for the 

same reasoning.  In order to represent the data after 

thresholding, we also need to move forward and finish the last 

stage where we reconstruct our signal as a denoised version of 

the original signal. In the last step, the results of the de-noising 

function were represented as original, noisy and de-noised 

signal given in Figure 17.  

Figure 17. Comparison of original, noise and denoised signals. 

4.2. Experiment II: A female speech with unknown noise 

In the second experiment, a sample female speech record 

where the subject spells several digits is used. The desired 

output of the first analysis and de-noising process is unknown. 

The first thing we want to do is plotting the record, the noisy 

signal (x) (Figure 18).  

Figure 16. Approximation, detail D1, detail D2, detail D3 coefficients 
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Figure 18. Noisy signal in time domain. 
 

In next step, db4 is chosen as wavelet type since it is one of the 

most suitable Wavelets. In this experiment different from the 

previous one, a manual multiple level threshlding was not 

needed. Since the built-in auto denoising function was enough 

to calculate and remove the noise from the signal, this function 

was implemented to denoise the signal at level 5. The threshold 

technique used by the auto denoising function is defined as 

modwtsqtwolog. The result of denoising is given in Figure 19.   

 

 

 

 

 

 

 

 

 

 

Figure 19. Original signal and noise added versions combined in time 
domain. 

Due to necessity of evaluation of the results, SNR is used as a 
metric for assessing the outcomes.  For that, a prior pre SNR 
value knowledge was needed.  The SNR values gathered after 
the applications of different wavelets families are given in 
Table 1. As we can observe, the best SNR outcome is provided 
by the Daubachies Wavelets. 

 

 

 

 

 

 

Table 1. Output SNR values of several wavelets. 

Wavelet family Wavelet name Output SNR 

Daubechies db20 13.8179 

Daubechies db8 13.8286 

Coif coif2 13.7116 

Coif coif5 13.7416 

Bior    bior3.1 11.5034 

Bior bior3.2 11.5732 

   

5. Conclusions 

Within this work, a detailed introduction to Wavelets, 

continuous and discrete Wavelet Transform was given in a 

structured manner. An explanation about how they compare to 

commonly used Fourier Transform and Short-Time Fourier 

Transform was provided and showed on multiple examples 

that Wavelet Transform is able to provide better time-

frequency resolution. In the next part, we reviewed several 

research studies where various versions of WT along or in 

combination with other techniques are used for denoising the 

signal of interest. This reinforced the fact that noise reduction 

is one of the most utilized application of WT in multiple 

different fields of science and engineering.  At the end, we 

carried out our own set of experiments where WT denoising 

with various underlying wavelet functions and thresholding 

techniques were applied in two different settings; first with a 

male subject reading a book out loud and simultaneously 

typing on a keyboard where keyboard stroke sound was 

treated as noise. In another one, female was saying digits with 

additive white noise in the background. In both cases it was 

shown that WT was successful in eliminating the noise. 

However, each case required its unique treatment due to 

nature of the noise being different. For the second case, the 

simplest universal soft thresholding technique under db4 of 

level 3 was sufficient to get adequate results. At the same time, 

this method did not work well for the first case. We found that 

db8 of level 3 with adaptive thresholding gave the best results 

in reducing keyboard strokes sound in the background. 
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