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ITERATED BOOTSTRAP PROCEDURE IN INDIVIDUAL
BIOEQUIVALENCE

UFUK BEYAZTAS

Abstract. In this paper, we propose an iterating principle in the bootstrap
method to assess the individual bioequivalence under 2×4 randomized crossover
design. The finite sample properties of the proposed algorithm are illustrated
by an extensive simulation study and a real-world example. Our findings reveal
that the proposed idea have better performance than the classical percentile
bootstrap confidence limits.

1. Introduction

Bioequivalence (BE) studies play an important role in the drug development
process. The goal of such studies is to evaluate the therapeutic equivalence of two
(or more) drugs or to study if two different galenic formulations of the same drug
have a similar bioavailability and therapeutic effect. Let T be a generic drug devel-
oped as an alternative to a reference drug (R). The United States Food and Drug
Administration (FDA) requires BE before marketing formulation T or new formu-
lations of the existing drugs. A formal definition of the BE given by [4] is as follows:
“Bioequivalence is defined as the absence of a significant difference in the rate and
extent to which the active ingredient or active moiety in pharmaceutical equivalents
or pharmaceutical alternatives becomes available at the site of drug action when
administered at the same molar dose under similar conditions in an appropriately
designed study." Usually, the BE studies are carried out by measuring the drug
concentration in the blood by several pharmacokinetic variables. The commonly
used pharmacokinetic variables are the area under the plasma concentration curve
(AUC ), the maximum drug concentration (Cmax) and the time required to reach
the maximum drug concentration (Tmax). Note that the BE studies are performed
with healthy volunteer subjects.
There are three types of BE: (i) The average bioequivalence (ABE), which com-

pares the distance of average pharmacokinetic measures between the formulations
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T and R; (ii) The population bioequivalence (PE), which compares the popula-
tion means under the test and reference formulation as well as the between-subject
variance in bioavailability; (iii) The individual bioequivalence (IBE), which addi-
tionally takes into account the subject-by-formulation interaction for the test and
reference formulation. This paper aims to contribute to the IBE studies by resam-
pling procedures. For more information about the types of BE studies please see
[7].
Generally, a two sequence-four period (2 × 4) randomized crossover design is

recommended to assess the IBE. A crossover design is a repeated measurements
design so that the experimental units cross over from one treatment to another
during the different time periods. Such design has formed the basis of the many
clinical studies, see [15] and [8] for more information about the crossover designs
in medical studies. Note that, as pointed out by referee, this design can be used
properly in drug studies when the drugs under consideration are used only for
symptomatic purposes not for the treatment. For analyzing the IBE, aggregate,
scaled and moment based measures, which are nonlinear functions of the difference
of the means (T - R) and the various variance components, are proposed by [12], [13]
and [14]. [3] proposes using the upper limit of a 90% confidence interval to test the
hypothesis of IBE. However, it is diffi cult to determine the exact distribution of the
estimators calculated for the measures mentioned above since they have a nonlinear
form. To overcome this problem [12] suggests to use the original nonparametric
bootstrap method to build up a confidence interval for the statistics since it does not
require the full knowledge of the underlying data and distributional assumptions.
[16] proposes an improved procedure to assess the IBE and [10] reviews the different
concepts of IBE by concentrating on the bootstrap percentile interval. See also [11]
and references therein for the history of IBE and the role of the bootstrap in this
context.
The theoretical properties such as consistency and accuracy of the recommended

bootstrap percentile intervals to test the IBE hypothesis are discussed by [16]. The
authors conclude that the FDA’s bootstrap procedure using the moment-based ap-
proach yields a consistent test procedure. On the other hand, the iterated bootstrap
method (see, [5]) can be useful in obtaining an arbitrarily high degree of correc-
tion and improving the effi ciency of bootstrap by iterating the bootstrap argument.
[5], [1], [2] and [6] provide theoretical properties of this method and prove that
the iterating principle reduces the bootstrap errors in many statistical problems.
This paper proposes the use of iterated bootstrap algorithm with an aim to reduce
the coverage error of the percentile confidence interval in individual bioequivalence
studies.
The rest of the paper is organized as follows. In Section 2 we provide a detailed

information on the IBE and bootstrap methods examined in this study. An exten-
sive Monte Carlo simulation is conducted to examine the finite sample performance
of the iterated bootstrap method and the results are presented in Section 3. Section
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4 presents the numerical results for the real-world example considered in this study.
Finally, we conclude with some final remarks described in Section 5.

2. Methodology

A two sequence-four period randomized crossover design TRTR and RTRT is
commonly recommended for assessing IBE. Under this design, four drug treatments
in the order of TRTR are administrated to the first sequence of n1 patients whereas
in the second sequence, the treatments are administrated in the order of RTRT to
n2 patients. Let Yijk represents the log transformed response (i.e., Y = logAUC
or logCmax) for subject i in the jth period of sequence k, where i = 1, · · · , nk,
j = 1, 2, 3, 4 and k = 1, 2. The following mixed-effect model is recommended:

yijk = µ+ Fl + Pj +Qk +Wljk + Sikl + εijk (2.1)

where µ is the overall mean, Pj is the fixed effect of the jth period (j = 1, 2, 3, 4
and P1 + P2 + P3 + P4 = 0), Qk is the fixed effect of the kth sequence (k = 1, 2
and Q1 + Q2 = 0), Fl is the fixed effect of the lth drug formulation (l = T when
(k,j) = (1,1), (1,3), (2,2), (2,4) and l = R otherwise, Ft +Fr = 0), Wljk is the fixed
effect of interaction (sum of Wljk’s over any index is 0), Sikl is the random effect
of the ith subject in the kth sequence under drug formulation l and (SikT , SikR),
i = 1, · · · , nk, k = 1, 2 are independent and identically distributed random vectors
with mean 0 and unknown covariance matrix(

σ2BT ρσBTσBR
ρσBTσBR σ2BR

)
(2.2)

εijk’s are independent random errors with mean 0 and variance σ2Wl, and (SikT ,
SikR)’s and εijk’s are independent (for more information please see [16]). Note that:
(i) σ2BT and σ

2
BR are the between subject variances while σ

2
WT and σ

2
WR are the

within subject variances for the test T and reference R formulations, respectively.
(ii) The correlation between the test and reference formulations responses from
subject i, ρ, is related to the subject-by-formulation interaction variance σ2D =
var(SikT − SikR) = σ2BT + σ2BR − 2ρσBTσBR. Table 1 shows the expected means
and observed data of the crossover design considered in this study.

Table 1. Expected means

S e q u e n c e P e r io d 1 P e r io d 2 P e r io d 3 P e r io d 4
1 (TRTR) µ + FT + P1 + Q1+ µ + FR + P2 + Q1+ µ + FT + P3 + Q1+ µ + FR + P4 + Q1+

WT11 + Si1T + εi11 WR21 + Si1R + εi21 WT31 + Si1T + εi31 WR41 + Si1R + εi41
i = 1, · · · , n1 i = 1, · · · , n1 i = 1, · · · , n1 i = 1, · · · , n1

2 (RTRT ) µ + FR + P1 + Q2+ µ + FT + P2 + Q2+ µ + FR + P3 + Q2+ µ + FT + P4 + Q2+
WR12 + Si2T + εi12 WT22 + Si2R + εi22 WR32 + Si2T + εi32 WT42 + Si2R + εi42

i = 1, · · · , n2 i = 1, · · · , n2 i = 1, · · · , n2 i = 1, · · · , n2

Let YT , YR and Y ′R, respectively, represent the bioavailabilities of the admin-
istrated one test and two reference formulations. Then the two formulations are
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considered individually bioequivalent if the null hypothesis given in Equation 2.3 is
rejected at the α percent significance level.

H0 : θ =
E(YT − YR)2 − E(YR − Y ′R)2

max{σ20, σ2}
< θU (2.3)

H1 : θ < θU

where σ2 = E(YR−Y ′R)2 is the variance calculated under the reference formulation,
θU is the predetermined upper limit for IBE, and σ20 is the within subject variance
for the reference formulation. Note that for all the numerical analyses considered
in this study the values of θU and σ20 are chosen as θU = 2.4948 and σ20 = 0.04 as
proposed by the FDA.
Under model 2.1, the parameter of interest, θ is obtained as in Equation 2.4

given below

θ =
(FT − FR)2 + σ2BT + σ2BR − 2ρσBTσBR + σ2WT − σ2WR

max(σ20, σ
2
WR)

(2.4)

where σ2WR = E(YR − Y ′R)2/2. The model described in Equation 2.1 is fitted by
using general linear models, maximum likelihood or restricted maximum likelihood
(REML) procedures. FDA recommends the use of REML method to estimate the
mean difference and variance components. REML uses an iterative process where
each iteration has two steps. In the first step it uses the initial parameter estimates
to estimate the fixed effects. Then, in the second step, the variance parameters
are re-estimated by using the residuals obtained from the first step. These two
steps are repeated when the parameter estimates do not change from one iteration
to the next. It has two main properties; it is useful to estimate between and
within subject variances, and it may be useful to estimate the mean differences
and variance components when the data set is incomplete. Also, [17] shows that
the bootstrap procedure using REML yields a consistent test procedure. On the
other hand, as described by [16], it may not produce the best estimator of θ and
may not be robust against the violation of the normality assumption. Also, it
requires a large amount of computation time since REML estimators involves an
iteration process. The moment method which is simple and robust against the
normality assumption can be used to estimate the mean difference and variance
components as an alternative to the method of REML. Following [16], let τ =
σ2BT + σ2BR − 2ρσBTσBR + σ2WT + σ2WR,

zi11 = yi11 − yi21
zi21 = yi31 − yi41
zi31 = yi21 − yi41 i = 1, · · · , n1
zi12 = yi12 − yi22
zi22 = yi32 − yi42
zi32 = yi12 − yi32 i = 1, · · · , n2
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and let z̄jk and s2jk be the sample mean and sample variance based on z1jk, · · · , znkjk,
for each fixed (j, k). Then, the unbiased estimators of FT − FR, τ and σ2WR are
obtained as (z̄11 + z̄21 − z̄12 − z̄22)/4, (s211 + s221 + s212 + s222)/4 and (s

2
31 + s232)/4,

respectively. By using these estimators, which are first and second-order moments,
a moment estimator of θ is estimated as in Equation 2.5 given below

θ̂mom =
(F̂T − F̂R)2 + τ − 2σ̂2WR

max{σ20, σ̂
2
WR}

(2.5)

=
[(z̄11 + z̄21 − z̄12 − z̄22)/4]2 + (s211 + s221 + s212 + s222)/4− (s231 + s232)/2

max{σ20, (s231 + s232)/4}

For this study, we restricted our focus to only moment estimator for the reason of
its advantageous. Following is the bootstrap algorithm proposed by FDA to set the
confidence intervals when testing IBE hypothesis.

Step 1. Estimate the IBE parameter θ

θ̂ =
(F̂T − F̂R)2 + τ̂ − 2σ̂2WR

max{σ20, σ̂
2
WR}

Step 2. Let Yi1 = (yiT11, yiR11, yiT12, yiR12) and Yi2 = (yiR21, yiT21, yiR22, yiT22)
denote the four observed pharmacokinetic variables in sequence 1 and 2,
respectively. Let also Y1,2 = {(Y1, · · · , Yn1), (Y1, · · · , Yn2)} represents the
nk vectors of Yi1 and Yi2 for k = 1, 2. Generate nk bootstrap samples
Y ∗1,2 = {(Y ∗11, · · · , Y ∗n11), (Y

∗
12, · · · , Y ∗n22)} with replacement from Y1,2. Note

that, the bootstrap resampling is stratified by sequence.

Step 3. Calculate the bootstrap estimate of θ̂, θ̂
∗
, by using the bootstrap data set

Y ∗1,2.

θ̂
∗

=


(F̂∗
T−F̂

∗
R)

2+τ̂∗−2σ̂∗2WR

σ̂∗2WR
if σ̂2WR ≥ σ20

(F̂∗
T−F̂

∗
R)

2+τ̂∗−2σ̂∗2WR

σ20
if σ̂2WR < σ20

(2.6)

Step 4. Repeat steps 2 and 3 B times.

Step 5. Determine the 95th percentile (θ̂FDA(95)) of this generated bootstrap dis-
tribution.

Step 6. θ̂FDA(95) is then compared to θU to conclude that two formulations are
bioequivalent or not.
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[16] studies the properties of this test procedure and they conclude that the
bootstrap procedure in the FDA’s draft guidance is incorrect. The authors suggest
to use the bootstrap estimate θ̂

∗
as in Equation 2.7 given below.

(F̂ ∗T − F̂ ∗R)2 + τ̂∗ − 2σ̂∗2WR

max{σ20, σ̂
∗2
WR}

(2.7)

The 95th percentile calculated by using this bootstrap estimate is called the boot-
strap percentile (BP) upper confidence bound for θ, θ̂BP (95).
The use of iterated bootstrap procedure mentioned in Section 1 may provide

better upper confidence bounds since it improves the coverage accuracy of bootstrap
percentile confidence intervals. Let X1, X2, · · · be a sequence of i.i.d. random
variables from an unknown distribution F ≡ Fθ, where the parameter θ is of our
primary interest. Let χn = (X1, · · · , Xn) be an i.i.d. random sample from F , and
let Rn(χn, θ) be the pivotal quantity whose distribution is given by Gn = Gn(·, F ).
Suppose Θ is the set of all possible values of θ. Then, a level α confidence set for
the parameter θ can be obtained as

Sn = {t ∈ Θ : Rn(χn, t) ≤ G−1n (α)} (2.8)

for any given α ∈ (0, 1), where G−1n (α) describes the largest α-th quantile of Gn.
For any sequence {Fn} which converges to F , Gn(·, Fn) is supposed to converge
weakly to a continuous distribution function G = G(·, F ). Then, Gn(Rn(χn, θ))
is distributed as uniform U(0, 1). In classical theory, Gn is approximated by its
limit. However, in most cases, it is not easy to obtain its limit when the estimate of
the parameter is a complicated statistic. But bootstrap method makes it possible
since it does not require the full knowledge of the underlying distribution. Let
χ∗n = (X∗1 , · · · , X∗n) be the bootstrap sample from Fn, where Fn is the empirical
distribution function which puts mass 1/n to each data point. Let also θ̂ be the
estimate of θ based on χn. Then, the bootstrap analogue of Rn(χn, θ) with the
bootstrap distribution conditional on χn are given as R

∗
n = Rn(χ∗n, θ̂) and G

∗
n =

G∗n(·, Fn), respectively. Similar to the Equation 2.8, the bootstrap estimate of Sn
is obtained as

S∗n = {t ∈ Θ : Rn(χn, t) ≤ G∗−1n (α)}
Since Fn is a consistent estimate for F , the bootstrap estimate G∗n converges in
probability to G as n increases. Moreover, G∗n(Rn(χ∗n, θ̂)) converges to a uniform
U(0, 1) distribution.
For the finite samples, the level of the confidence set given above tends to be

inaccurate. One way of improving it is to use the iterating principle which is based
on [1]’s prepivoting idea such that it transforms the original root Rn(χn, θ) into
a new root Rn,1(χn, θ) = G∗n{Rn(χn, θ)} whose distribution is less dependent to
F compared to Rn. In other words, mapping Rn into Rn,1 is called prepivoting.
Note that Rn,1(χn, θ) is exactly distributed U(0, 1) if Rn(χn, θ) is the pivot. Let
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Gn,1(x) = P(Rn,1(χn, θ) ≤ x) be the distribution of Rn,1(χn, θ), and let G
∗
n,1(x) =

P(Rn,1(χ
∗
n, θ̂) ≤ x|χn) be its bootstrap estimate. Then

S∗n,1 = {t ∈ Θ : Rn,1(χn, θ) ≤ G∗−1n,1 (α)} = {θ : Rn(χn, θ) ≤ G∗−1n [G∗−1n,1 (α)]}

defines α level iterated bootstrap confidence set for θ. Generally, the error in S∗n,1
is smaller than the error in S∗n and Sn. The iteration can be repeated continuously
to reduce the coverage error of a confidence interval to a desired level. On the other
hand, each iteration increases the computation burden drastically. [9] shows that
each iteration reduces the coverage error by an order of n−1/2 and n−1 for one-sided
and two-sided intervals, respectively. By considering the computational burden of
this iterative procedure, to make our proposed method more practical and widely
applicable we only recommend of doing the double bootstrap where iteration is only
being done once.
The iterated bootstrap algorithm used in this study works as follows: First,

drawn a simple random sample of size nk with replacement from Y1,2. For the second
level bootstrap, drawn another simple random sample of size nk with replacement
from Y ∗1,2. Let Y

∗∗
1,2 be the generic bootstrap resample from Y ∗1,2. Also let θ̂

∗
and

θ̂
∗∗
be the bootstrap estimators of θ̂, and R∗n = R(Y ∗1,2, θ̂) and R

∗∗
n = R(Y ∗∗1,2, θ̂

∗
) be

the bootstrap pivotal quantities obtained from Y ∗1,2 and Y
∗∗
1,2, respectively with B1

and B2 being the number of first and second level bootstrap replications. Then the
Monte Carlo algorithm for the iterated bootstrap for the construction of confidence
sets is as follows.

(a) Resample Y ∗1,2 from Y1,2 as explained above, and compute R∗n,i for i =
1, · · ·B1.

(b) For each i, resample a second level bootstrap sample Y ∗∗1,2 from Y ∗1,2 and
compute R∗∗n,j for j = 1, · · · , B2.

(c) Calculate Zi = 1
B2

∑B2

j=1 I(R∗∗n,j ≤ R∗n,i) for i = 1, · · · , B1.

(d) Then, the empirical cumulative distribution of Zi’s, G∗∗n is asymptotically
U(0, 1), and approximate the distribution of R∗n, G

∗
n = P(R(Y ∗1,2, θ̂)).

(e) Define the level α confidence set of iterated bootstrap for Rn as S∗∗n = {θ :
Rn(Y1,2, θ) ≤ G∗−1n [G∗∗−1n (α)]}.

Then the iterated versions of the bootstrap upper confidence limits, θ̂
∗
FDA(95)

and θ̂
∗
BP (95), for assessing IBE hypothesis can easily be obtained by using the

algorithm given above.
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3. Numerical Results

To investigate the performances of the iterated bootstrap confidence limits we
carried out a simulation study under different parameter settings and sample sizes,
and we compared our results with classical percentile bootstrap confidence limits by
means of estimated test size (α) and power of the test (β). The parameter settings
(where H0 in Equation 2.3 hold) presented in Table 2 were considered to calculate
the α values, and the parameter settings (where H1 in 2.3 is actually true) in Table
3 were considered to calculate the β values. 2× 4 randomized crossover design was
considered to assess the IBE. For each simulated experiment, four drug treatments
were arranged in the order of TRTR in sequence 1 whereas the treatment order was
arranged as RTRT in sequence 2. For each parameter setting, 100 experiments
were simulated, and for each case, a sample of size n was generated, and B1 =
B2 = 2000 bootstrap resamples were generated in each resampling operation. The
boundary of the null hypothesis of individual bioequivalence (θU ) and the within
subject variances for the reference formulation (σ2WR) where chosen as θU = 2.4948
and σ2WR = 0.04 as is proposed by the FDA. All simulations were done at the
nominal α = 0.05. The calculations were carried out using R 3.3.2. on and Intel
Core i7 6700HQ 2.6 GHz PC. (The codes can be obtained from the author upon
request.) The results are presented in Table 4.
Our findings show that, for all sample sizes and parameter settings under con-

sidered, iterated bootstrap methods outperform their conventional counterparts
in terms of power values. The estimated test sizes of the conventional bootstrap
methods (θ̂FDA(95) and θ̂BP (95)) are smaller than the nominal size α = 0.05, in
general. For the iterated bootstrap methods (θ̂

∗
FDA(95) and θ̂

∗
BP (95)), the test

sizes are larger than the nominal size under first parameter setting. On the other
hand, for the other parameter settings, they tend to have a reasonable test sizes,
which are close to the nominal size α = 0.05, but still larger than the ones obtained
by the conventional methods. It is not a surprising result since a large test size
corresponds to a large power of the test.

Table 2. Parameter settings under the null hypothesis for type I
error simulation

Parameter setting FT − FR σ2WR σ2WT σ2BR σ2BT ρ θ
1 0.3 0.01 0.04 0.01 0.04 0.9 3.350
2 0.3 0.01 0.06 0.01 0.04 0.9 3.850
3 0.4 0.03 0.04 0.01 0.07 0.9 5.059
4 0.4 0.01 0.02 0.02 0.03 0.9 4.397
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Table 3. Parameter settings under the alternative hypothesis for
power simulation

Parameter setting FT − FR σ2WR σ2WT σ2BR σ2BT ρ θ
1 0.1 0.02 0.06 0.02 0.03 0.9 1.397
2 0.3 0.02 0.06 0.02 0.05 0.9 1.576
3 0.1 0.01 0.03 0.01 0.03 0.9 1.720
4 0.2 0.02 0.05 0.02 0.03 0.9 1.897

Table 4. Simulation results: Estimated test sizes and power of the tests

Parameter setting Method Sample size
16 24 32 48

α β α β α β α β

θ̂FDA(95) 0.06 0.64 0.01 0.75 0.02 0.85 0.02 0.99
1 θ̂BP (95) 0.06 0.82 0.01 0.92 0.02 0.92 0.02 1.00

θ̂
∗
FDA(95) 0.20 0.76 0.20 0.81 0.14 0.91 0.22 0.98
θ̂
∗
BP (95) 0.21 0.99 0.20 1.00 0.14 1.00 0.22 1.00
θ̂FDA(95) 0.04 0.61 0.00 0.62 0.00 0.80 0.00 0.95

2 θ̂BP (95) 0.04 0.77 0.00 0.77 0.00 0.91 0.00 0.98
θ̂
∗
FDA(95) 0.11 0.74 0.08 0.74 0.06 0.90 0.06 0.96
θ̂
∗
BP (95) 0.13 0.94 0.08 1.00 0.06 1.00 0.06 1.00
θ̂FDA(95) 0.00 0.64 0.00 0.83 0.00 0.85 0.00 0.95

3 θ̂BP (95) 0.00 0.64 0.00 0.83 0.00 0.85 0.00 0.95
θ̂
∗
FDA(95) 0.04 0.93 0.03 1.00 0.01 0.99 0.00 1.00
θ̂
∗
BP (95) 0.07 0.93 0.06 1.00 0.06 1.00 0.02 1.00
θ̂FDA(95) 0.00 0.46 0.00 0.53 0.00 0.60 0.00 0.78

4 θ̂BP (95) 0.00 0.63 0.00 0.63 0.00 0.74 0.00 0.90
θ̂
∗
FDA(95) 0.04 0.64 0.04 0.71 0.01 0.82 0.02 0.89
θ̂
∗
BP (95) 0.10 0.92 0.07 0.93 0.08 0.99 0.05 1.00

4. A real-world example

In this section, we studied the performances of the iterated and traditional boot-
strap methods for assessing IBE by a real-world example. For this purpose, we
used a dataset given by the FDA: The antihypertensive patch dataset (see Table 5)
which is consisted of a total of 37 subjects. For this dataset, an antihypertensive
patch were administered to the first sequence of 18 patients in the order of TRRT,
and in the second sequence, the treatments were administrated in the order of
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RTTR to 19 patients. This dataset have a large subject-by-formulation interac-
tion (σD > 0.15), and hence it is necessary to test the IBE. We used logarithmically
transformed AUC and Cmax datasets to test the IBE. Both classical and iterated
bootstrap methods were used to constructed upper limit of 95% confidence interval
for IBE and the results are presented in Table 6.
The dataset given in Table 5 is analyzed using the REML method by [7] and

based on their results they state that: (i) ABE can be concluded based on the
values obtained for AUC, but the Cmax data fail, (ii) PBE can be concluded in
either case, i.e., based on the AUC and on the Cmax data, and (iii) IBE cannot
be concluded in either case. This may be due to a high subject-by-formulation
interaction that seems to be present in this dataset, as pointed out by the FDA.
According to our results (see Table 6) IBE can be concluded for Cmax dataset
but the IBE test is rejected for AUC dataset (since the upper limits of 95% CI
calculated for this dataset are greater than the boundary of the null hypothesis
specified by the FDA) when θ̂FDA(95) and θ̂BP (95) are used. On the other hand,
IBE can be concluded in either case when the iterated bootstrap upper confidence
limits (θ̂

∗
FDA(95) and θ̂

∗
BP (95)) are used.

5. Conclusion

In this study, we propose to use iterated bootstrap algorithm to test the in-
dividual bioequivalence hypothesis under 2 × 4 randomized crossover design, and
we compare their performances with the conventional bootstrap methods both by
simulations and a case study. The important result produced by iterated bootstrap
algorithm is that the power of the test obtained by this method are significantly
better than those obtained by classical bootstrap methods. Hence, this paper shows
that more reliable results can be obtained by using iterated bootstrap method to
assess the individual bioequivalence. On the other hand, the proposed iteration
inflates the type I error rate to approximately 20% (but have more power than the
traditional bootstrap) when the parameter θ is close to the boundary of the null
hypothesis of individual bioequivalence θU (as in the first parameter setting (see
2)) and the sample size is small. Such high type I error rate may not be acceptable
in drug studies since high type I error increases the chance of rejecting the null
hypothesis when it is actually true. In this case, the number of iterations and/or
bootstrap replicates B can be increased to decrease the type I error rate. As a
final comment, it should be noted that the iterated bootstrap requires much more
computational cost than the traditional bootstrap. For example, while the boot-
strap runs only for B resamples in a simulation iterated bootstrap requires B2 +B
resamples in the first iteration (double bootstrap), B3 + B2 + B resamples in the
second iteration, and so on. However, it is worth trying iteration considering its
performance and the increasing technology.
Acknowledgement. The author thanks the anonymous referees for their valuable
suggestions and comments, which helped to improve the manuscript significantly.
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Table 5. The antihypertensive patch dataset

Subject Sequence Period
Period (AUC) Period (Cmax)

1 2 3 4 1 2 3 4
1 RTTR 1020.65 1321.31 900.42 1173.61 109 145 106 146
2 TRTR 950.59 1637.71 2076.75 1485.93 96.3 194 341 316
3 RTTR 1188.82 1440.99 1501.20 1481.27 128 155 138 192
4 TRTR 774.44 585.89 801.26 773.51 87.6 56.2 89.1 84
5 TRTR 1563.08 1571.75 1917.37 1886.05 161 145 194 178
6 RTTR 1119.22 781.20 800.85 942.50 119 66.9 82 117
7 RTTR 1876.81 1726.01 1653.70 1111.10 232 170 194 135
8 TRTR 2549.54 3738.21 3800.33 5408.38 229 393 395 677
9 TRTR 2291.93 1223.74 1949.10 3184.15 204 126 202 365
10 RTTR 1392.92 826.36 1220 1607.52 222 68.6 112 200
11 RTTR 5239.22 8894.11 7726.47 7451.66 871 1710 1090 1450
12 TRTR 1044.18 1023 1178.20 1155.25 91.1 111 196 104
13 TRTR 744.57 985.58 1721.01 4217.64 80.2 127 215 413
14 RTTR 1629.67 2081.88 1302.65 2805.07 168 263 134 355
15 RTTR 3054.97 3370.78 2644.44 5941.36 323 502 401 630
16 TRTR 3469 1712.59 1680.07 3285.23 449 284 141 405
17 TRTR 3006.95 3063.28 1764.34 2055.51 289 277 162 203
18 RTTR 2323.41 1063.45 960.10 2629.35 344 131 101 718
19 TRTR 4989.43 6439.82 4945.42 2321.03 744 1150 769 263
20 RTTR 2673.38 1686.63 2260.34 4632.96 361 226 538 691
21 TRTR 2081.19 1028.75 758.83 1168.12 295 108 73.2 140
22 RTTR 10843.61 13162.65 13505.79 13575.90 1530 1330 1520 1650
23 TRTR 736.50 947.58 1426.96 681.66 87.4 124 151 75.5
24 RTTR 2747.09 3651.63 2543.63 1056.48 353 480 300 110
25 TRTR 2064.25 2251.24 2228.06 2633.27 253 414 314 470
26 TRTR 1092.48 1141.68 1550.98 996.55 138 118 163 95.5
27 RTTR 2011.28 2109.67 2902.35 2283.60 467 444 512 495
28 RTTR 3793.47 4165.73 4666.95 3274.41 727 454 471 473
29 RTTR 1427.53 1591.38 1909.97 1911.43 139 183 167 164
30 TRTR 2333.74 2878.94 1698.30 1142.33 308 355 156 98.9
31 RTTR 1932.80 1620.69 2279.44 3251.14 334 228 289 528
32 TRTR 1835.61 2760.92 3188.04 2480.39 167 232 321 236
33 TRTR 8330.61 6064.54 8737.60 8353.62 954 873 857 930
34 RTTR 3612.64 2494.45 3153.79 6386.19 491 417 527 1010
35 RTTR 1061.92 987.86 1422.71 1220.58 97.4 94.1 186 103
36 TRTR 2212.39 1438.48 1984.76 2640.43 226 137 237 237
37 RTTR 2252.76 2262.88 1957.66 3084.05 304 255 301 685
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