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Abstract: Accurate and robust detection of imbalance in rotating machinery is critical for ensuring operational reliability in industrial 

environments. This study experimentally investigates the impact of common-mode noise (CN) on feature-based classification 

performance in quadrature radar systems, estimating the imbalance level in a rotating disk. The proposed methodology utilizes a 

homodyne radar architecture to acquire in-phase (I) and quadrature (Q) baseband signals, from which time-domain features are 

extracted. A Hilbert transform-based denoising approach is implemented to address the detrimental effects of CN caused by 

electromagnetic interference and hardware imperfections. The extracted features, both from raw and denoised signals, are evaluated 

using various machine learning classifiers, including Decision Trees, Support Vector Machines, k-nearest Neighbors, Artificial Neural 

Networks, and ensemble methods. Experimental results demonstrate that CN significantly degrades classification accuracy, particularly 

for features derived from the amplitude and phase of complex-valued signals. The application of the proposed denoising technique yields 

a substantial improvement in classification metrics, with k-nearest Neighbors and Support Vector Machines achieving over 97% 

accuracy on the denoised data. The findings highlight the importance of effective noise mitigation in radar-based condition monitoring 

pipelines and establish the practical viability of quadrature radar systems for non-contact, high-precision imbalance detection in rotating 

machinery. 
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1. Introduction 
Fault diagnosis and monitoring of rotating machinery are 

crucial for maintaining production efficiency and 

extending equipment lifespan within industrial settings 

(Li et al., 2023; Zhao et al., 2025). The imbalance, among 

the prevalent faults, is a significant concern, potentially 

leading to detrimental outcomes such as bearing damage, 

excessive vibration, energy wastage, and catastrophic 

machinery failures if not identified promptly (Cho et al., 

2018). This issue substantially contributes to increased 

maintenance expenditures and unforeseen operational 

downtimes in rotating machinery. 

While traditionally identified through contact-based 

vibration sensors, this approach faces several practical 

limitations, including susceptibility to sensor wear and 

degradation, challenges in sensor installation and 

maintenance in confined or inaccessible locations, signal 

interference from mechanical couplings, and reduced 

reliability in environments characterized by high 

temperatures, excessive contamination, or hazardous 

operating conditions. Consequently, non-contact 

measurement techniques have garnered considerable 

attention promptly (Goyal et al., 2020; Liu et al., 2025; Xu 

et al., 2025). In this regard, radar systems present a 

compelling alternative for industrial applications, owing 

to their inherent capabilities in target detection, tracking, 

and identification (Hansen et al., 2022; Acar, 2024). 

Radar-based non-contact measurement methodologies 

promise reliable imbalance detection, even within 

demanding industrial environments. Contemporary radar 

systems frequently employ signals derived from 

quadrature demodulation for classification tasks. The 

cooperative use of in-phase (I) and quadrature (Q) signals, 

which exhibit a 90-degree phase difference, ensures the 

preservation of both amplitude and phase information 

integral to their complex-valued representation. This 

complex signal structure offers a rich dataset for 

applications such as discerning varying levels of 

imbalance in rotating machinery. 

Nevertheless, common-mode noise (CN) presents a 

substantial challenge in such radar systems (Du et al., 

2022). CN concurrently affects both I and Q signals 

acquired through IQ demodulation, degrading overall 

system performance. Key sources of this noise, 

particularly prevalent in industrial contexts, include 

electromagnetic interference, power supply fluctuations, 

and hardware imperfections. The presence of CN can 

introduce distortions in complex-valued signal 

parameters, complicating the accurate classification of 

different imbalance severities. 
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Although the existing literature describes various noise 

mitigation techniques (Ge et al., 2025; Park et al., 2025), 

there is a lack of studies on the specific impact of CN on 

imbalance detection within industrial radar applications. 

This study systematically handles the effect of CN in 

quadrature radar signals on the performance of classifiers 

using features derived from complex-valued radar data 

and evaluates the impact of CN reduction. Although 

various noise reduction methods are available in the 

literature, the study examines a practical Hilbert 

transform-based CN elimination approach. It contributes 

by demonstrating the negative effect of CN on 

classification accuracy and determining to what extent the 

selected methods successfully reduce this impact, 

especially in the complex feature framework. This analysis 

highlights the importance of CN removal in radar 

processing chains. 

Our methodological approach begins with experimentally 

acquired radar signals known to contain CN. We then 

subject these signals to a CN denoising process. Following 

the noise reduction step, we extract discriminative 

features from the complex-valued 𝐼 + 𝑗𝑄 signals, for both 

the original noisy signals (as a baseline) and the 

processed, denoised signals. These features are chosen 

based on their effectiveness in classification literature 

(Nayana and Geethanjali, 2017). In the final stage, these 

feature sets become the input for training and rigorously 

testing standard machine learning classifiers, such as 

Decision Tree (DT), Support Vector Machine (SVM), Kth 

Nearest Neighbors (KNN), Artificial Neural Network 

(ANN), and some ensemble ones. The core of our analysis 

involves quantitatively evaluating and comparing the 

resulting classification performance and assessing the 

impact of each denoising technique.  

The rest of the study is structured as follows. Section 2 

provides detailed information on the experimental setup, 

dataset, mathematical background, feature extraction, 

classification, and evaluation criteria. Section 3 presents 

the experimental findings and a comprehensive 

assessment. Finally, the last section concludes the study. 

 

2. Materials and Methods 
2.1. The experimental Setup 

This section details the experimental apparatus used for 

this investigation. A versatile test rig designed by PiriTech 

was employed. This setup enables the simulation of 

common industrial faults such as winding defects, bearing 

failures, rotor bar damage, shaft misalignment (horizontal 

and vertical), and mechanical imbalance. Our research 

utilizes this platform to focus on imbalance faults 

intentionally introduced at different severity levels. 

A 1.1 kV three-phase asynchronous motor rotated a metal 

disc at different speeds and loads. Imbalance levels were 

systematically created by attaching weights to threaded 

mounting points on the disc: 0 g (normal), 10 g (slight 

imbalance), 20 g (moderate imbalance), and 30 g (severe 

imbalance). Figure 1 illustrates the experimental 

configuration, and Table 1 lists the key components.  

 

 
 

Figure 1. The experimental setup. 

 
Table 1. Key components of the experimental test rig 

Component Specifications Explanation 
Volt VM 90S-4 
Induction motor 

1.1 kW, 1500 
rpm, 3-phase 

the monitored 
motor 

ABB ACS150-
01E-07A5-2 
motor driver 

50/60 Hz, 
220V, 1.5 kW 

controls the motor 
speed 

EMF ABTF02 
mag. powd. 
brake 

15 Nm, 24 W, 
24 Vin 

load for the motor 

EMF TFD-02 
mag. powd. 
brake driver 

12-48 VDC, 
operation 

options (4-20 
mA, 0-10V) 

drives the load 

A radar system based on the RFBEAM KLC5 transceiver 

module was employed. The module features a Homodyne 

receiver architecture, which directly provides baseband I 

and Q signals. Following the manufacturer's 

recommended circuit design, I/Q signal outputs were 

amplified by approximately 40 dB. Subsequently, the 

amplified signals were digitized using a Measurement 

Computing MCC118 Data Acquisition (DAQ) card. The 

Raspberry Pi 4 managed the data logging process, saving 

the acquired digital data into a CSV file format. Figure 2 
illustrates this compact, Raspberry Pi-based data 

acquisition setup. 
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Figure 2. The radar hardware for data acquisition. 

 
2.2. The Dataset 

For this four-class classification problem, encompassing 

the normal operating condition and three distinct levels of 

imbalance fault, a total of 1802 experimental trials were 

conducted. Each trial resulted in a 30-second data 

recording. The radar module, directed towards the motor  

from a distance of 30 cm, sampled the I/Q signals at a rate 

of 10 kSPS. The raw acquired data and a version processed 

to remove CN have been made publicly accessible to the 

research community via the KAGGLE platform 

(Acar,2025). Table 2 provides a detailed breakdown of the 

amount of data recordings obtained for each of the four 

classes. 

 

Table 2. Class distribution in the dataset 

Class Name # of data 

normal 462 

slight imbalance 464 

moderate imbalance 413 

severe imbalance 463 

 

In constructing the dataset for each classification 

category, we systematically varied the operational 

parameters of the motor. The rotational speed was 

incrementally adjusted across a comprehensive range 

from 500 to 1500 rpm, with precise 100 rpm intervals 

between test conditions. We implemented a methodical 

variation in mechanical loading conditions for each speed 

level. The load modulation was precisely controlled via a 

magnetic powder brake mechanism, varying from 

minimal loading (0%) to quarter-capacity loading (25% of 

the maximum 15 Nm torque capacity). We conducted 

repeated measurement sessions at different intervals to 

enhance statistical robustness and monitor temporal 

variations in system response. 

2.3. IQ Demodulation  

Homodyne, or Direct-Conversion (Zero-IF), receiver 

architectures offer significant advantages in radar system 

design primarily because they simplify the overall 

structure. By eliminating the need for an Intermediate 

Frequency (IF) stage, these architectures reduce 

component count, lower power consumption, decrease 

cost, and readily support monolithic integration onto a 

single chip. These factors make homodyne designs 

attractive for cost-sensitive, low-power, or highly 

integrated radar applications, such as automotive sensors 

or short-range presence detection. 

Within this simplified framework, quadrature (IQ) 

demodulation, performed directly at the baseband, 

provides a key technique for extracting crucial target 

information, particularly velocity direction. Modern radar 

systems employing these homodyne architectures utilize 

IQ demodulation to directly convert the received Radio 

Frequency (RF) echo signal into its baseband I and Q 

components. The demodulation process maintains these 

components in phase quadrature (a 90-degree phase 

separation). 

In this architecture, the Local Oscillator (LO) signal 

operates at the same frequency (𝑓𝑐) as the transmitted 

carrier signal . The system derives this LO signal directly 

from the transmitter's frequency source for phase 

coherence. A power splitter then divides the LO signal to 

generate the two reference signals in phase quadrature as 

in equation 1 and equation 2. 
 

𝐼𝑟𝑒𝑓 = cos 2𝜋𝑓𝑐𝑡  (1) 

𝑄𝑟𝑒𝑓 = 𝑠𝑖𝑛2𝜋𝑓𝑐𝑡 (2) 

 

The antenna captures the RF echo signal reflected from 

the vibrating target. This received signal, 𝑆𝑟(𝑡), carries the 

phase modulation imparted by the target's time-varying 

displacement 𝑥(𝑡). Its phase relative to the transmitted 

signal can be expressed as equation 3 
 

𝜙(𝑡) = 𝜙0 +
4𝜋𝑥(𝑡)

𝜆
 (3) 

 

where 𝜆 is the carrier wavelength (𝑐 𝑓𝑐⁄ ) and 𝜙0 

represents the static phase shift due to the average target 

distance and system delays. The received signal is thus 

(equation 4): 
 

𝑆𝑟(𝑡) ≈ 𝐴𝑅𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡 + 𝜙0 +
4𝜋𝑥(𝑡)

𝜆
) (4) 

 

where 𝐴𝑅 is the received signal amplitude. 

The receiver front-end directly mixes this incoming RF 

signal 𝑆𝑟(𝑡) independently with both the I and Q reference 

signals. Two parallel low-pass filters then reject the high-

frequency mixing, yielding the baseband 𝐼 and 𝑄 signals 

(equation 5.1 and 5.2): 
 

𝐼(𝑡) = 𝐾 𝑐𝑜𝑠(𝜙0 +
4𝜋𝑥(𝑡)

𝜆
) (5.1) 

𝑄(𝑡) = 𝐾 𝑠𝑖𝑛(𝜙0 +
4𝜋𝑥(𝑡)

𝜆
) (5.2) 

 

Here, 𝐾 represents the overall gain and amplitude factors. 

These I/Q signals encode the target's vibration 

information within their relative phase. By treating the 

outputs as a complex baseband signal 𝐶(𝑡) = 𝐼(𝑡) + 𝑗𝑄(𝑡), 
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one can robustly extract the instantaneous phase angle 

(equation 6): 
 

𝑎𝑟𝑐𝑡𝑎𝑛2(𝑄(𝑡), 𝐼(𝑡)) = 𝜙0 +
4𝜋𝑥(𝑡)

𝜆
 (6) 

 

The 𝑎𝑟𝑐𝑡𝑎𝑛2 function resolves phase ambiguities across 

the 360-degree range. Subsequent processing involves 

unwrapping this phase angle (if necessary) and removing 

the static phase offset 𝜙0 (often achieved through high-

pass filtering or baseline subtraction). Finally, we recover 

the target's vibration displacement waveform 𝑥(𝑡) by 

scaling the dynamic phase component (equation 7): 
 

𝑥(𝑡) =
𝜆

4𝜋
× (𝑎𝑟𝑐𝑡𝑎𝑛2(𝐶(𝑡)) − 𝜙0) (7) 

 

This homodyne IQ demodulation scheme allows direct 

conversion of the target's micro-scale motion 𝑥(𝑡) into 

measurable baseband phase variations, forming the basis 

for our vibration analysis. Figure 3 illustrates the 

described receiver architecture. 
 

 
 

Figure 3. Block scheme of an IQ demodulated CW radar. 
 

2.4. CN Removal 

CN can be expressed for IQ demodulated receivers as 

noise that affects both quadrature signals equally, as 

shown in equations 8.a and 8.b. 
 

𝐼𝑛(𝑡) = 𝐾 𝑐𝑜𝑠 (𝜙0 +
4𝜋𝑥(𝑡)

𝜆
) + 𝑛𝑜𝑖𝑠𝑒 (8.a) 

𝑄𝑛(𝑡) = 𝐾 𝑠𝑖𝑛 (𝜙0 +
4𝜋𝑥(𝑡)

𝜆
) + 𝑛𝑜𝑖𝑠𝑒 (8.b) 

 

System performance can be considerably compromised by 

CN in hardware configurations where dedicated CN 

elimination mechanisms are absent or in architectures 

with simplified complexity. 

This research employs a methodology centered on Hilbert 

transformation techniques to extract CN-removed I and Q 

signals. The Hilbert transform represents a mathematical 

operation that generates a phase-quadrature version of 

the original signal, shifted by precisely 90 degrees. In 

formal mathematical terms, when applied to a signal 𝑓(𝑡), 

the Hilbert transform 𝐻{𝑓(𝑡)} is characterized as the 

convolution integral of the signal with the function 1/(𝜋𝑡). 

In this approach, the difference between the noisy signals, 

𝐷(𝑡), is initially obtained as expressed in equation 9. 
 

𝐷(𝑡) = 𝐼𝑛(𝑡) − 𝑄𝑛(𝑡) 

     = 𝐾[𝑐𝑜𝑠(𝜙(𝑡)) − 𝑠𝑖𝑛(𝜙(𝑡))] 
(9) 

 

When the Hilbert transform is applied to this difference 

signal, the 𝐷𝑞(𝑡) signal is obtained as presented in 

equation 10.  
 

𝐷𝑞(𝑡) = 𝐻{𝐷(𝑡)} 

     = 𝐾[𝑠𝑖𝑛(𝜙(𝑡)) + 𝑐𝑜𝑠(𝜙(𝑡))] 
(10) 

 

The noise-free baseband signals 𝐼(𝑡) and 𝑄(𝑡) are 

recovered through the combined utilization of these 

signals as formulated in equation 11 and equation 12. 
 

𝐼(𝑡) =
𝐷(𝑡) + 𝐷𝑞(𝑡)

2
= 𝐾𝑐𝑜𝑠(𝜙(𝑡)) (11) 

𝑄(𝑡) =
𝐷𝑞(𝑡) − 𝐷(𝑡)

2
= 𝐾𝑠𝑖𝑛(𝜙(𝑡)) (12) 

 

2.5. Feature Extraction 

Feature extraction is a critical stage in machine learning-

based classification applications. Numerous studies have 

demonstrated effective feature extraction methods in 

both time and frequency domains for applications like 

vibration-based machine health monitoring and fault 

diagnosis (Zhao et al., 2023; Jiao et al., 2025). While 

frequency domain features obtained through time-

frequency transformations often improve classification 

performance (Kilic and Acar, 2024), time domain feature 

extraction offers simplicity and superior capability in 

capturing transient events. Direct usage of time domain 

signals reduces complexity across many applications 

(Wang et al., 2022). 

This study focuses on time domain features with proven 

classification efficacy from windowed signals. We 

constructed the complex signal 𝐶(𝑡) from 30-second 

recordings and divided its amplitude and phase 

components into 1-second windows with 50% overlap. 

For each signals, we calculated 12 features by averaging 

the values extracted from individual windows. We applied 

this extraction methodology to raw signals and those 

processed with the CN reduction approach. Equations 13-

24 present the mathematical formulations of these 

extracted features. 

Mean Absolute Value (MAV): Equation 13 demonstrates 

the calculation method for this particular feature, which 

represents the arithmetic average of absolute sample 

magnitudes within the analyzed segment. 
 

𝑀𝐴𝑉 =
1

𝐿
∑ |𝑥[𝑛]|

𝐿

𝑛=1

 (13) 

 

Energy (E): The segment's power content is quantified by 

this feature, with its mathematical computation presented 

in equation 14. 
 

𝐸 = ∑ 𝑥[𝑛]2

𝐿

𝑛=1

 (14) 

 

Waveform Length (WL): This feature corresponds to the 

sum of absolute differences between consecutive samples. 

It represents the sum of absolute first-order derivatives, 
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providing information about the signal's roughness, rate 

of change, and frequency characteristics for discrete 

signals. WL is calculated as shown in equation 15. 
 

𝑊𝐿 = ∑ |𝑥[𝑛] − 𝑥[𝑛 − 1]|

𝐿

𝑛=1

 
 

(15) 

 

Willison Amplitude (WA): This metric evaluates 

sequential sample variations against a predetermined 

threshold, tallying occurrences where the differential 

surpasses this boundary value. The quantification process 

utilizes the mathematical framework outlined in 

equations 16.a and 16.b. 
 

𝑊𝐴 = ∑ 𝑓|𝑥[𝑛] − 𝑥[𝑛 + 1]|

𝐿

𝑛=1

 (16.a) 

𝑓(𝑥) = {
1 𝑖𝑓 𝑥 ≥ 𝜀

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (16.b) 

 

Zero Crossing (ZC): This parameter quantifies the 

frequency of axis intersections throughout the segment. 

The mathematical formulation in equation 17.a identifies 

an axis crossing when adjacent values exhibit sign 

reversal. An additional verification can eliminate 

insignificant fluctuations near the zero line and confirm 

that the magnitude difference between consecutive 

samples exceeds a defined threshold, as formulated in 

equation 17.b. 
 

𝑍𝐶 = ∑(𝑥[𝑛] × 𝑥[𝑛 + 1]) < 0

𝐿

𝑛=1

 (17.a) 

(|𝑥[𝑛] − 𝑥[𝑛 + 1]|) > 𝜀 (17.b) 
 

Slope Sign Change (SSC): This metric counts directional 

reversals in the signal trajectory throughout the segment. 

Equation 18 provides the mathematical framework for 

identifying these gradient sign changes. Only instances 

where consecutive sample differences exceed a defined 

threshold are counted, following the criterion specified in 

equation 17.b. 
 

𝑆𝑆𝐶 = ∑((𝑥[𝑛 + 1] − 𝑥[𝑛]) × (𝑥[𝑛] − 𝑥[𝑛 − 1])) < 0

𝐿

𝑛=1

 (18) 

 

Root Mean Square (RMS): Equation 19 presents the 

mathematical formulation for this feature, which 

computes the square root of the average of squared values 

across the segment. 
 

𝑅𝑀𝑆 = √
1

𝐿
∑ 𝑥[𝑛]2

𝐿

𝑛=1

 (19) 

 

Mean (µ): This parameter determines the arithmetic 

average across all points within the segment, computed 

according to the formula presented in equation 20. 
 

𝑀𝑒𝑎𝑛 = µ =
1

𝐿
∑ 𝑥[𝑛]

𝐿

𝑛=1

 (20) 

 

Variance (𝜎2): This metric evaluates the dispersion of  

values by measuring squared deviations from the central 

tendency. The mathematical average of these squared 

differentials yields the variance parameter. Equation 21 

presents the computational framework for determining 

this statistical dispersion value for each analyzed 

segment. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2 =
1

𝐿
∑(𝑥[𝑛] − µ)2

𝐿

𝑛=1

 (21) 

 

Standard Deviation (STD): This parameter quantifies the 

degree of dispersion by extracting the square root of the 

variance value, as mathematically formulated in equation 

22. 
 

𝑆𝑇𝐷 = 𝜎 = √
1

𝐿
∑(𝑥[𝑛] − µ)2

𝐿

𝑛=1

 (22) 

 

Skewness (SKW): This attribute quantifies distributional 

asymmetry characteristics. For perfectly symmetric 

distributions, it yields a zero value. In asymmetric cases, 

the parameter's sign indicates directional bias—positive 

values denote rightward skewing while negative values 

indicate leftward skewing. Equation 23 provides the 

mathematical framework for calculating this 

distributional asymmetry metric for each segment. 
 

𝑆𝐾𝑊 =

1
𝐿

∑ (𝑥[𝑛] − µ)3𝐿
𝑛=1

𝜎3  (23) 

 

Kurtosis (KURT): This parameter evaluates the 

peakedness or flatness characteristics of a distribution 

profile. As formulated in equation 24, the KURT value for 

each segment offers a numerical assessment of the 

distribution's morphology compared to the Gaussian 

curve. 
 

𝐾𝑈𝑅𝑇 =

1
𝐿

∑ (𝑥[𝑛] − µ)4𝐿
𝑛=1

𝜎4  

 
(24) 

 

Feature extraction procedures were applied separately to 

amplitude and phase signals, and by combining the 

extracted features, a total of 24 features were generated 

for each data sample to be input into the classifier. 

2.6. Classification 

The four-class imbalance detection problem was 

addressed by well-known machine learning approaches 

with the dataset comprising 1802 experiments. The 

performance of these methods was validated using 5-fold 

cross-validation. The hyperparameters of the classifiers 

were optimized through a systematic grid search 

methodology. This process involved evaluating all 

possible hyperparameter combinations within predefined 

ranges at specific incremental steps. Performance metrics 

were assessed for each parameter configuration, enabling 

the identification of the optimal hyperparameter set that 

maximizes the model's generalization capability. Table 3 

summarizes the parameter searching ranges for the 

preferred classifiers. 
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2.7. Performance Metrics 

The effectiveness of the classifiers is evaluated through 

confusion matrices. These matrices are tabular 

representations that show how the model's predictions 

align with each class, functioning as an assessment tool for 

model performance. Figure 4 illustrates a multi-class 

confusion matrix. 

 

Table 3. Hyperparameter searching ranges for the 

classifiers 
 

Method Parameters 

SVM 

Kernel function: linear, quadratic, cubic 

box constraint level: 0.001-1.0 

multiclass meth.: one vs one, one vs all 

KNN 

number of neighbors: 1-901 

distance metric: Euclidean, Chebyshev, 

cosine, Hamming, cubic. 

distance weight: equal, inverse, squared 

inverse. 

DT 

Max. # of splits: 1-1801 

split criterion: Gini diversity index, 

twoing rule, maximum deviance 

reduction. 

Ensemble 

Ensemble method: Bag, AdaBoost, 

RUSBoost. 

# of learners:10-50 

learning rate:0.001-1.0 

max. # of splits: 1-1801 

ANN 

# of fully connected layer: 1-3 

activation func.: sigmoid, tanh, ReLU, 

none. 

lambda: 5 × 10−9 −50 

first layer size:1-300 

second layer size:1-300 

third layer size:1-300 

 

 
 

Figure 4. A multi-class confusion matrix. 

The confusion matrix's True Positive (TP), False Positive 

(FP), and False Negative (FN) values are used to compute 

various assessment metrics. equations 25 through 28 

present the metrics and formulas employed. 
 

Accuracy = ( TPs) / (All predictions) (25) 

Precision = TP / (TP + FP) (26) 

Recall = TP / (TP + FN) (27) 

F1 score = 2 x (Precision x Recall) / (Precision + 

Recall) 
(28) 

 

Within formulas (25)-(28), TP values indicate successful 

classification for individual classes. Accuracy represents 

the proportion of total TP values, showing how well the 

model correctly classifies the issue. Precision reflects the 

accuracy of the positive predictions, emphasizing its 

capability to reduce FP values. The Recall metric, 

meanwhile, gauges how effectively the model identifies 

actual positives, showcasing its ability to minimize FN 

values. 

In the context of the four-class imbalance detection 

problem, precision and recall metrics have been 

calculated discretely for each class. This calculation 

methodology yields four distinct precision and recall 

values corresponding to the four classes. For the final 

metric values in the analysis, we have implemented an 

averaging approach of the class-wise precision and recall 

metrics. The F1 score, the harmonic means of the average 

precision and recall metrics, has been utilized to evaluate 

the equilibrium between these metrics through collective 

assessment. 

 

3. Results and Discussion 
This section presents the classification results obtained 

using different input configurations. The performance of 

the classifiers is reported both without and with CN 

removal. Table 4 summarizes the classification results 

obtained by directly using the radar baseband signals 

without applying CN removal. In Table 4, the feature set 

𝐹𝐼  refers to the 12 features extracted solely from the I 

signal, 𝐹𝑄 denotes the features extracted exclusively from 

the Q signal, 𝐹𝑎𝑏𝑠 represents the features derived from the 

amplitude of the complex-valued signal formed by the 𝐼 

and 𝑄 components, and 𝐹𝑎𝑛𝑔𝑙𝑒  corresponds to the features 

extracted from the phase of the complex-valued signal. 

The [∙] operator indicates that the respective feature sets 

are used in combination. Each classifier was trained and 

evaluated separately with these different input sets, and 

the classification performance is reported in terms of 

accuracy, precision, recall, and F1 score. The complexity 

analysis of the models is conducted based on model size 

and prediction speed. 
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Table 4. The classification results without CN removal 

Model Name 

Input signal Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

Prediction 

Speed (obs/s) 

Model Size 

(kb) 

DT 

𝐹𝐼  88.62 88.61 88.58 88.58 16000 36 

𝐹𝑄 82.74 82.52 82.49 82.5 21000 48 

[𝐹𝐼  𝐹𝑄] 88.9 88.89 88.8 88.84 36000 35 

𝐹𝑎𝑏𝑠 81.63 81.68 81.59 81.63 54000 46 

𝐹𝑎𝑛𝑔𝑙𝑒 83.02 82.9 82.9 82.9 48000 49 

[𝐹𝑎𝑏𝑠 𝐹𝑎𝑛𝑔𝑙𝑒] 87.85 87.82 87.82 87.82 52000 39 

SVM 

𝐹𝐼  93.23 93.38 93.12 93.21 13000 387 

𝐹𝑄 93.4 93.4 93.34 93.35 20000 124 

[𝐹𝐼  𝐹𝑄] 95.56 95.52 95.54 95.52 15000 155 

𝐹𝑎𝑏𝑠 93.4 93.45 93.37 93.4 33000 225 

𝐹𝑎𝑛𝑔𝑙𝑒 88.79 88.68 88.68 88.68 45000 131 

[𝐹𝑎𝑏𝑠 𝐹𝑎𝑛𝑔𝑙𝑒] 95.12 95.12 95.14 95.1 43000 156 

KNN 

𝐹𝐼  91.51 91.67 91.46 91.53 19000 216 

𝐹𝑄 91.24 91.22 91.16 91.16 14000 216 

[𝐹𝐼  𝐹𝑄] 91.51 91.59 91.48 91.51 4000 395 

𝐹𝑎𝑏𝑠 91.45 91.54 91.5 91.49 15000 216 

𝐹𝑎𝑛𝑔𝑙𝑒 90.23 90.28 90.28 90.25 5000 218 

[𝐹𝑎𝑏𝑠 𝐹𝑎𝑛𝑔𝑙𝑒] 94.12 94.13 94.16 94.12 15000 386 

NN 

𝐹𝐼  94.40 94.47 94.36 94.40 88000 18 

𝐹𝑄 92.79 92.73 92.77 92.75 67000 169 

[𝐹𝐼  𝐹𝑄] 96.89 96.89 96.9 96.9 38000 32 

𝐹𝑎𝑏𝑠 91.62 91.63 91.59 91.6 44000 37 

𝐹𝑎𝑛𝑔𝑙𝑒 91.95 91.91 91.89 91.89 52000 110 

[𝐹𝑎𝑏𝑠 𝐹𝑎𝑛𝑔𝑙𝑒] 96.84 96.79 96.86 96.81 47000 74 

Ensemble 

𝐹𝐼  94.89 94.89 94.85 94.86 730 23000 

𝐹𝑄 89.62 89.54 89.43 89.46 620 32000 

[𝐹𝐼  𝐹𝑄] 96.45 96.43 96.45 96.44 400 20000 

𝐹𝑎𝑏𝑠 86.51 86.56 86.54 86.54 23000 824 

𝐹𝑎𝑛𝑔𝑙𝑒 89.96 89.9 89.92 89.88 13000 2200 

[𝐹𝑎𝑏𝑠 𝐹𝑎𝑛𝑔𝑙𝑒] 96.12 96.09 96.16 96.12 1700 7000 

 

When examining the classification results obtained from 

non-denoised data, the NN model with the [𝐹𝐼  𝐹𝑄] 

combination demonstrates superior performance, 

achieving an accuracy rate of 96.89%. This model also 

excels in other classification metrics, showing balanced 

precision (96.89%), recall (96.9%), and F1 score (96.9%), 

indicating its robust performance across all evaluation 

criteria. The NN model using the [abs angle] combination 

follows closely with 96.84% accuracy, 96.79% precision, 

96.86% recall, and 96.81% F1 score, demonstrating 

consistent performance across metrics. From a model 

complexity perspective, NN models stand out not only for 

their high accuracy but also for their remarkably compact 

model sizes (18-169 kb) and rapid prediction speeds 

(38,000-88,000 observations per second). In contrast, 

Ensemble models, while achieving comparable accuracy 

levels (96.45%) and balanced precision (96.43%), recall 

(96.45%), and F1 score (96.44%), require substantially 

larger model sizes (7,000-32,000 kb) and operate at 

significantly slower prediction speeds (400-1,700 

observations per second). SVM models demonstrate good 

performance with moderate model sizes (124-387 kb) 

and prediction speeds (13,000-45,000 observations per 

second), maintaining consistent precision, recall, and F1 

scores that closely track their accuracy values. Despite 

being the smallest and fastest, the decision tree model 

yields the lowest accuracy rates and corresponding 

classification metrics. These findings highlight the critical 

importance of model selection and signal feature 

combination strategies in quadrature signal classification. 

Notably, NN models emerge as the most suitable option 

for real-time applications by offering an optimal balance 

between computational efficiency and comprehensive 

classification performance across all evaluation metrics. 

Examining the classification results after CN removal 

reveals significant performance improvements across 

models as tabulated in Table 5. The KNN model with the 

[𝐹𝑎𝑏𝑠_𝑐  𝐹𝑎𝑛𝑔𝑙𝑒_𝑐] combination achieves the highest 

accuracy at 97.45%, with corresponding precision 

(97.43%), recall (97.42%), and F1 score (97.41%) values 

demonstrating exceptional balance across metrics. 
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Table 5. The classification results with CN removal 

Model Name 

Input signal Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

Prediction 

Speed (obs/s) 

Model Size 

(kb) 

DT 

𝐹𝐼_𝑐  83.24 83.08 83.09 83.07 64000 52 

𝐹𝑄_𝑐 83.24 83.15 83.11 83.13 6600 50 

[𝐹𝐼_𝑐  𝐹𝑄_𝑐] 85.96 85.89 85.9 85.89 37000 43 

𝐹𝑎𝑏𝑠_𝑐 85.18 85.17 85.12 85.13 56000 45 

𝐹𝑎𝑛𝑔𝑙𝑒_𝑐 81.47 81.4 81.42 81.38 56000 53 

[𝐹𝑎𝑏𝑠_𝑐  𝐹𝑎𝑛𝑔𝑙𝑒_𝑐] 90.57 90.5 90.59 90.52 39000 38 

SVM 

𝐹𝐼_𝑐  92.79 92.64 92.7 92.66 20000 144 

𝐹𝑄_𝑐 92.73 92.63 92.63 92.61 25000 149 

[𝐹𝐼_𝑐  𝐹𝑄_𝑐] 93.9 93.82 93.85 93.82 42000 166 

𝐹𝑎𝑏𝑠_𝑐 91.73 91.71 91.69 91.67 45000 98 

𝐹𝑎𝑛𝑔𝑙𝑒_𝑐 93.45 93.37 93.32 93.33 9900 237 

[𝐹𝑎𝑏𝑠_𝑐  𝐹𝑎𝑛𝑔𝑙𝑒_𝑐] 97.29 97.26 97.28 97.26 30000 152 

KNN 

𝐹𝐼_𝑐  85.13 85.16 85.17 85.09 20000 216 

𝐹𝑄_𝑐 84.24 84.16 84.18 84.15 3500 218 

[𝐹𝐼_𝑐  𝐹𝑄_𝑐] 86.9 86.85 86.9 86.86 9900 386 

𝐹𝑎𝑏𝑠_𝑐 92.06 92.09 92.12 92.06 14000 216 

𝐹𝑎𝑛𝑔𝑙𝑒_𝑐 92.45 92.38 92.36 92.37 8100 216 

[𝐹𝑎𝑏𝑠_𝑐  𝐹𝑎𝑛𝑔𝑙𝑒_𝑐] 97.45 97.43 97.42 97.41 14000 386 

NN 

𝐹𝐼_𝑐  93.51 93.41 93.46 93.4 57000 70 

𝐹𝑄_𝑐 94.4 94.32 94.27 94.28 65000 193 

[𝐹𝐼_𝑐  𝐹𝑄_𝑐] 95.23 95.17 95.19 95.17 26000 284 

𝐹𝑎𝑏𝑠_𝑐 95.89 95.87 95.89 95.87 74000 163 

𝐹𝑎𝑛𝑔𝑙𝑒_𝑐 93.78 93.69 93.69 93.67 64000 46 

[𝐹𝑎𝑏𝑠_𝑐  𝐹𝑎𝑛𝑔𝑙𝑒_𝑐] 97.34 97.3 97.32 97.3 86000 19 

Ensemble 

𝐹𝐼_𝑐  91.73 91.65 91.65 91.64 7200 3000 

𝐹𝑄_𝑐 90.95 90.95 90.89 90.9 910 24000 

[𝐹𝐼_𝑐  𝐹𝑄_𝑐] 94.17 94.12 94.15 94.13 630 16000 

𝐹𝑎𝑏𝑠_𝑐 92.01 92.05 92.0 92.02 810 25000 

𝐹𝑎𝑛𝑔𝑙𝑒_𝑐 88.57 88.45 88.46 88.46 850 21000 

[𝐹𝑎𝑏𝑠_𝑐  𝐹𝑎𝑛𝑔𝑙𝑒_𝑐] 95.06 95.04 95.02 95.01 13000 891 

 

This performance is closely followed by the SVM model 

using the same feature combination (97.29% accuracy) 

and the NN model (97.34% accuracy), showing similarly 

balanced precision, recall, and F1 scores. 

The relationship between model complexity and 

performance also presents interesting patterns in the 

noise-removed scenario. Despite their previously modest 

performance, KNN models show remarkable 

improvement with noise removal, particularly with the 

[𝐹𝑎𝑏𝑠_𝑐  𝐹𝑎𝑛𝑔𝑙𝑒_𝑐] combination, while maintaining moderate 

model sizes (386 kb) and reasonable prediction speeds 

(14,000 obs/s). NN models continue to offer an excellent 

balance of high accuracy and computational efficiency 

with small model sizes (19-284 kb) and impressive 

prediction speeds (26,000-86,000 obs/s). SVM models 

demonstrate substantial improvement with noise 

removal while maintaining moderate resource 

requirements. 

The most striking transformation occurs in the 

effectiveness of signal features. While [𝐹𝐼  𝐹𝑄] 

combinations dominated in the non-denoised scenario, 

the [𝐹𝑎𝑏𝑠_𝑐  𝐹𝑎𝑛𝑔𝑙𝑒_𝑐] combination consistently 

outperforms all other feature combinations after noise 

removal across nearly all models. Additionally, individual 

𝐹𝑎𝑏𝑠_𝑐 and 𝐹𝑎𝑛𝑔𝑙𝑒_𝑐  features show marked improvement 

compared to their non-denoised counterparts. 

Comparing the Table 4 and Table 5 highlights the critical 

importance of CN noise removal in quadrature signal 

classification. The overall accuracy ceiling rises from 

96.89% to 97.45%, but more importantly, the 

performance distribution across models and features 

changes significantly. The noise removal process 

enhances the discriminative power of amplitude and 

phase information, making the [𝐹𝑎𝑏𝑠_𝑐  𝐹𝑎𝑛𝑔𝑙𝑒_𝑐] 

combination superior to the previously dominant [𝐹𝐼  𝐹𝑄] 

combination. This transformation suggests that CN 

disproportionately affects signal characteristics, and its 

removal allows previously obscured patterns to emerge. 
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Furthermore, the improved performance of simpler 

models like KNN after noise removal indicates that much 

of the classification challenge in the original data stemmed 

from noise rather than inherent signal complexity. These 

findings emphasize that implementing effective noise 

removal techniques can be as crucial as model selection in 

achieving optimal classification performance, potentially 

allowing computationally lighter models without 

sacrificing accuracy in practical applications. The heatmap 

presented in Figure 5 visually summarizes the impact of 

CN removal on classification accuracy. 

 

 
 

Figure 5. The impact of the CN-removal for each model and input type. 

 

The heat map visualization presents a comprehensive 

comparative analysis of classification accuracy across 

multiple dimensions: machine learning models, signal 

feature combinations, and noise conditions. This 

multifactorial representation effectively illustrates the 

interaction between model selection and feature 

engineering in noisy and noise-removed scenarios. 

The color gradient reveals a clear performance 

stratification, with the highest accuracy values (>97%) 

concentrated in the noise-removed [𝐹𝑎𝑏𝑠_𝑐  𝐹𝑎𝑛𝑔𝑙𝑒_𝑐] 

combinations for KNN, SVM, and NN models. This pattern 

suggests a significant interaction between noise removal 

and the discriminative power of combined amplitude and 

phase information. The visualization demonstrates that 

while [𝐹𝐼  𝐹𝑄] combinations generally outperform other 

feature sets in normal conditions, the CN removal 

fundamentally alters this relationship, elevating 

[𝐹𝑎𝑏𝑠_𝑐  𝐹𝑎𝑛𝑔𝑙𝑒_𝑐] combinations to superior performance. 

The heat map also effectively captures the differential 

impact of noise removal across models. The dramatic 

improvement in KNN performance with noise-removed 

amplitude and phase features (from 94.12% to 97.45%) 

represents a particularly noteworthy transition, 

suggesting that this model's classification boundaries 

become substantially more effective when the CN is 

eliminated. Conversely, the relatively modest 

improvements in some DT model configurations indicate 

potential limitations in the model's ability to leverage 

enhanced signal quality. 

From a methodological perspective, this visualization 

provides valuable insights for optimizing classification 

pipelines in quadrature signal processing applications. It 

demonstrates that optimal model selection may differ 

significantly between noisy and clean signal conditions, 

challenging the assumption that more complex models 

necessarily yield better performance. The heat map also 

indicates that appropriate noise removal techniques 

potentially allow simpler, computationally efficient 

models to achieve performance comparable to or 

exceeding that of more complex alternatives in noisy 

environments. 

 

4. Conclusion  
This study investigated the classification of quadrature 

radar signals using machine learning methods and the 

impact of CN removal on classification performance. The 

results demonstrate that radar-based systems offer an 

effective solution for detecting imbalance in rotating 

machinery. 

The elimination of CN noise led to significant 

transformations in classification performance. The most 

striking improvement was observed in the KNN model 

with the [𝐹𝑎𝑏𝑠_𝑐  𝐹𝑎𝑛𝑔𝑙𝑒_𝑐] combination, where accuracy 

increased from 94.12% to 97.45%. Furthermore, the noise 
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removal process fundamentally altered the effectiveness 

of signal features, elevating the [abs angle] combination to 

superiority over the [𝐹𝐼  𝐹𝑄] combination.  

The superiority of radar-based solutions lies in their 

ability to detect imbalance from a safe distance without 

requiring physical intervention with machinery. The 

capability of radar signals to detect movements with 

millimeter precision enables early-stage detection of 

imbalance. 

Accuracy rates exceeding 97% confirm that radar-based 

systems represent a high-performance solution for 

imbalance detection. The combined use of noise-removed 

amplitude and phase information demonstrates the 

effectiveness of radar signals in capturing imbalance 

characteristics. 

Unlike conventional vibration sensor-based approaches, 

radar systems enable simultaneous monitoring of 

multiple machines, offering a cost-effective monitoring 

solution for industrial facilities. 

Future research will explore the capability of radar-based 

systems to detect imbalance location and provide 

automatic correction recommendations. This 

development transforms radar technology from a passive 

monitoring tool into an active troubleshooting solution. 
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