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Abstract: Accurate and robust detection of imbalance in rotating machinery is critical for ensuring operational reliability in industrial
environments. This study experimentally investigates the impact of common-mode noise (CN) on feature-based classification
performance in quadrature radar systems, estimating the imbalance level in a rotating disk. The proposed methodology utilizes a
homodyne radar architecture to acquire in-phase (I) and quadrature (Q) baseband signals, from which time-domain features are
extracted. A Hilbert transform-based denoising approach is implemented to address the detrimental effects of CN caused by
electromagnetic interference and hardware imperfections. The extracted features, both from raw and denoised signals, are evaluated
using various machine learning classifiers, including Decision Trees, Support Vector Machines, k-nearest Neighbors, Artificial Neural
Networks, and ensemble methods. Experimental results demonstrate that CN significantly degrades classification accuracy, particularly
for features derived from the amplitude and phase of complex-valued signals. The application of the proposed denoising technique yields
a substantial improvement in classification metrics, with k-nearest Neighbors and Support Vector Machines achieving over 97%
accuracy on the denoised data. The findings highlight the importance of effective noise mitigation in radar-based condition monitoring
pipelines and establish the practical viability of quadrature radar systems for non-contact, high-precision imbalance detection in rotating
machinery.

Keywords: Classification, Fault diagnosis, Feature extraction, Noise removal, Radar, Vibration

*Corresponding author: Selcuk University, Faculty of Technology, Department of Electrical and Electronics Engineering, 42075, Konya, Tiirkiye
E mail: yacar@selcuk.edu.tr (Y.E. ACAR)

Yunus Emre ACAR https://orcid.org/0000-0002-6809-9006 Received: June 19, 2025
Accepted: August 16, 2025
Published: September 15, 2025

Cite as: Acar YE. 2025. The effect of common-mode noise in quadrature radar systems: rotating disc imbalance estimation. BS] Eng Sci, 8(5): 1504-1513.

1. Introduction
Fault diagnosis and monitoring of rotating machinery are
crucial for

to their inherent capabilities in target detection, tracking,
and identification (Hansen et al.,, 2022; Acar, 2024).

Radar-based non-contact measurement methodologies
promise reliable imbalance detection, even within

maintaining production efficiency and
extending equipment lifespan within industrial settings
(Li et al, 2023; Zhao et al,, 2025). The imbalance, among
the prevalent faults, is a significant concern, potentially

demanding industrial environments. Contemporary radar
frequently employ signals derived from
quadrature demodulation for classification tasks. The

systems

leading to detrimental outcomes such as bearing damage,

excessive vibration, energy wastage, and catastrophic
machinery failures if not identified promptly (Cho et al.,
2018). This issue substantially contributes to increased
maintenance expenditures and unforeseen operational
downtimes in rotating machinery.

While traditionally identified through contact-based
vibration sensors, this approach faces several practical
limitations, including susceptibility to sensor wear and
degradation, challenges in sensor installation and
maintenance in confined or inaccessible locations, signal
interference from mechanical couplings, and reduced
reliability in environments characterized by high
temperatures, excessive contamination, or hazardous
operating  conditions. Consequently, non-contact
measurement techniques have garnered considerable
attention promptly (Goyal et al,, 2020; Liu et al., 2025; Xu
et al, 2025). In this regard, radar systems present a

compelling alternative for industrial applications, owing

cooperative use of in-phase (I) and quadrature (Q) signals,
which exhibit a 90-degree phase difference, ensures the
preservation of both amplitude and phase information
integral to their complex-valued representation. This
complex signal structure offers a rich dataset for
applications such as discerning varying levels of
imbalance in rotating machinery.

Nevertheless, common-mode noise (CN) presents a
substantial challenge in such radar systems (Du et al,
2022). CN concurrently affects both I and Q signals
acquired through IQ demodulation, degrading overall
system performance. of this noise,
particularly prevalent in industrial contexts, include

Key sources

electromagnetic interference, power supply fluctuations,
and hardware imperfections. The presence of CN can
distortions in complex-valued signal
parameters, complicating the accurate classification of

introduce

different imbalance severities.
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Although the existing literature describes various noise
mitigation techniques (Ge et al.,, 2025; Park et al,, 2025),
there is a lack of studies on the specific impact of CN on
imbalance detection within industrial radar applications.
This study systematically handles the effect of CN in
quadrature radar signals on the performance of classifiers
using features derived from complex-valued radar data
and evaluates the impact of CN reduction. Although
various noise reduction methods are available in the
literature, the study examines a practical Hilbert
transform-based CN elimination approach. It contributes
by demonstrating the negative effect of CN on
classification accuracy and determining to what extent the
selected methods successfully reduce this impact,
especially in the complex feature framework. This analysis
highlights the importance of CN removal in radar
processing chains.

Our methodological approach begins with experimentally
acquired radar signals known to contain CN. We then
subject these signals to a CN denoising process. Following
the noise reduction step, we extract discriminative
features from the complex-valued I + jQ signals, for both
the original noisy signals (as a baseline) and the
processed, denoised signals. These features are chosen
based on their effectiveness in classification literature
(Nayana and Geethanjali, 2017). In the final stage, these
feature sets become the input for training and rigorously
testing standard machine learning classifiers, such as
Decision Tree (DT), Support Vector Machine (SVM), Kt
Nearest Neighbors (KNN), Artificial Neural Network

Induction motor

Disc to simulate
balance faults

(ANN), and some ensemble ones. The core of our analysis
involves quantitatively evaluating and comparing the
resulting classification performance and assessing the
impact of each denoising technique.

The rest of the study is structured as follows. Section 2
provides detailed information on the experimental setup,
dataset, mathematical background, feature extraction,
classification, and evaluation criteria. Section 3 presents
the experimental comprehensive
assessment. Finally, the last section concludes the study.

findings and a

2. Materials and Methods

2.1. The experimental Setup

This section details the experimental apparatus used for
this investigation. A versatile test rig designed by PiriTech
was employed. This setup enables the simulation of
common industrial faults such as winding defects, bearing
failures, rotor bar damage, shaft misalignment (horizontal
and vertical), and mechanical imbalance. Our research
utilizes this platform to focus on imbalance faults
intentionally introduced at different severity levels.

A 1.1 kV three-phase asynchronous motor rotated a metal
disc at different speeds and loads. Imbalance levels were
systematically created by attaching weights to threaded
mounting points on the disc: 0 g (normal), 10 g (slight
imbalance), 20 g (moderate imbalance), and 30 g (severe
imbalance). Figure 1 illustrates the experimental
configuration, and Table 1 lists the key components.

Magnetic Control unit

powder brake 1

Figure 1. The experimental setup.

Table 1. Key components of the experimental test rig

Component Specifications Explanation
Volt VM 90S-4 1.1 kW, 1500 the monitored
Induction motor rpm, 3-phase motor
131]3]]53_([)\5‘2;_520 50/60 Hz, controls the motor

. 220V, 1.5 kW speed
motor driver
EMF ABTF02 15 Nm, 24 W,
mag. powd. load for the motor

24 Vin
brake
EMF TFD-02 102'::332255'
mag. powd. p drives the load
brake driver options (4-20
mA, 0-10V)

A radar system based on the RFBEAM KLC5 transceiver
module was employed. The module features a Homodyne
receiver architecture, which directly provides baseband I
and Q signals. Following the
recommended circuit design, 1/Q signal outputs were
amplified by approximately 40 dB. Subsequently, the

manufacturer's

amplified signals were digitized using a Measurement
Computing MCC118 Data Acquisition (DAQ) card. The
Raspberry Pi 4 managed the data logging process, saving
the acquired digital data into a CSV file format. Figure 2
illustrates this compact, Raspberry Pi-based data

acquisition setup.
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Figure 2. The radar hardware for data acquisition.

2.2. The Dataset

For this four-class classification problem, encompassing
the normal operating condition and three distinct levels of
imbalance fault, a total of 1802 experimental trials were
conducted. Each trial resulted in a 30-second data
recording. The radar module, directed towards the motor
from a distance of 30 cm, sampled the I/Q signals at a rate
of 10 kSPS. The raw acquired data and a version processed
to remove CN have been made publicly accessible to the
research community via the KAGGLE platform
(Acar,2025). Table 2 provides a detailed breakdown of the
amount of data recordings obtained for each of the four
classes.

Table 2. Class distribution in the dataset

Class Name # of data
normal 462
slight imbalance 464
moderate imbalance 413
severe imbalance 463

In constructing the dataset for each classification
category, we systematically varied the operational
parameters of the motor. The rotational speed was
incrementally adjusted across a comprehensive range
from 500 to 1500 rpm, with precise 100 rpm intervals
between test conditions. We implemented a methodical
variation in mechanical loading conditions for each speed
level. The load modulation was precisely controlled via a
magnetic powder brake mechanism, varying from
minimal loading (0%) to quarter-capacity loading (25% of
the maximum 15 Nm torque capacity). We conducted
repeated measurement sessions at different intervals to
enhance statistical robustness and monitor temporal
variations in system response.

2.3.1Q Demodulation

Homodyne, or Direct-Conversion (Zero-IF), receiver
architectures offer significant advantages in radar system
design primarily because they simplify the overall
structure. By eliminating the need for an Intermediate

Frequency (IF) stage, these architectures reduce

component count, lower power consumption, decrease
cost, and readily support monolithic integration onto a
single chip. These factors make homodyne designs
attractive for cost-sensitive, low-power, or highly
integrated radar applications, such as automotive sensors
or short-range presence detection.

Within this simplified framework, quadrature (IQ)
demodulation, performed directly at the baseband,
provides a key technique for extracting crucial target
information, particularly velocity direction. Modern radar
systems employing these homodyne architectures utilize
IQ demodulation to directly convert the received Radio
Frequency (RF) echo signal into its baseband I and Q
components. The demodulation process maintains these
components in phase quadrature (a 90-degree phase
separation).

In this architecture, the Local Oscillator (LO) signal
operates at the same frequency (f;) as the transmitted
carrier signal . The system derives this LO signal directly
from the transmitter's frequency source for phase
coherence. A power splitter then divides the LO signal to
generate the two reference signals in phase quadrature as
in equation 1 and equation 2.

Ly = coS 2Tf,t (1)
Qrey = sin2mf.t (2)

The antenna captures the RF echo signal reflected from
the vibrating target. This received signal, S, (t), carries the
phase modulation imparted by the target's time-varying
displacement x(t). Its phase relative to the transmitted
signal can be expressed as equation 3

4mx(t)

$(O) = g0+ —— 3)

where A is the carrier wavelength (c/f;) and ¢,
represents the static phase shift due to the average target
distance and system delays. The received signal is thus
(equation 4):

4rx(t)
A

where Ap, is the received signal amplitude.

The receiver front-end directly mixes this incoming RF
signal S,.(t) independently with both the I and Q reference
signals. Two parallel low-pass filters then reject the high-
frequency mixing, yielding the baseband I and Q signals
(equation 5.1 and 5.2):

S, (t) = Agcos(2nfct + ¢y + ) (4)

I(6) = K cos( + 4”’;“)) (5.1)
Q) = K sin(go + D) (52)

Here, K represents the overall gain and amplitude factors.
These 1/Q signals encode the target's
information within their relative phase. By treating the
outputs as a complex baseband signal C(t) = I(t) + jQ(t),

vibration
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one can robustly extract the instantaneous phase angle
(equation 6):

4mx(t)

F) (6)

arctan2(Q(t),1(t)) = ¢ +

The arctan2 function resolves phase ambiguities across
the 360-degree range. Subsequent processing involves
unwrapping this phase angle (if necessary) and removing
the static phase offset ¢ (often achieved through high-
pass filtering or baseline subtraction). Finally, we recover
the target's vibration displacement waveform x(t) by
scaling the dynamic phase component (equation 7):

A
x(t) = = X (arctan2(C(t)) — ¢o) (7)

This homodyne 1Q demodulation scheme allows direct
conversion of the target's micro-scale motion x(t) into
measurable baseband phase variations, forming the basis
for our vibration analysis. Figure 3 illustrates the
described receiver architecture.

— % Power Power
Divider Amplifier
90° Hybrid
i
Bﬂscﬁand Lowpass D 2 Power
Sign%ls Filter (Z i) ¢ Divider

Figure 3. Block scheme of an IQ demodulated CW radar.

2.4.CN Removal

CN can be expressed for 1Q demodulated receivers as
noise that affects both quadrature signals equally, as
shown in equations 8.a and 8.b.

I,(t) = K cos (¢0 + 47”;(0) + noise (8.a)
Qn(t) = K sin (qbo + 47tx(t)> + noise (8.b)

System performance can be considerably compromised by
CN in hardware configurations where dedicated CN
elimination mechanisms are absent or in architectures
with simplified complexity.

This research employs a methodology centered on Hilbert
transformation techniques to extract CN-removed I and Q
signals. The Hilbert transform represents a mathematical
operation that generates a phase-quadrature version of
the original signal, shifted by precisely 90 degrees. In
formal mathematical terms, when applied to a signal f(t),
the Hilbert transform H{f(t)} is characterized as the
convolution integral of the signal with the function 1/(mt).
In this approach, the difference between the noisy signals,
D(t), is initially obtained as expressed in equation 9.

D(t) = In(t) — Qn (1)

= Kcos($(t) — sin(p(t))] ©)

When the Hilbert transform is applied to this difference
signal, the Dg(t) signal is obtained as presented in
equation 10.

Dq(t) = H{D(t)}
= K[sin(¢(t)) + cos(¢(1))]
The noise-free baseband signals I(t) and Q(t) are

recovered through the combined utilization of these
signals as formulated in equation 11 and equation 12.

(10)

D(t) + Dg(t)

I1(t) = >

= Kcos(¢(t)) (11)
Dy(H) = D(®) _

5 Ksin(p(t)) (12)

Q) =
2.5. Feature Extraction

Feature extraction is a critical stage in machine learning-
based classification applications. Numerous studies have
demonstrated effective feature extraction methods in
both time and frequency domains for applications like
vibration-based machine health monitoring and fault
diagnosis (Zhao et al, 2023; Jiao et al, 2025). While
frequency domain features obtained through time-
frequency transformations often improve classification
performance (Kilic and Acar, 2024), time domain feature
extraction offers simplicity and superior capability in
capturing transient events. Direct usage of time domain
signals reduces complexity across many applications
(Wangetal,, 2022).

This study focuses on time domain features with proven
classification efficacy from windowed signals. We
constructed the complex signal C(t) from 30-second
recordings and divided its amplitude and phase
components into 1-second windows with 50% overlap.
For each signals, we calculated 12 features by averaging
the values extracted from individual windows. We applied
this extraction methodology to raw signals and those
processed with the CN reduction approach. Equations 13-
24 present the mathematical formulations of these
extracted features.

Mean Absolute Value (MAV): Equation 13 demonstrates
the calculation method for this particular feature, which
represents the arithmetic average of absolute sample
magnitudes within the analyzed segment.

L
1
MAV = Z; x[n]| (13)

Energy (E): The segment's power content is quantified by
this feature, with its mathematical computation presented
in equation 14.

L
E= Zx[n]2 (14)

n=1

Waveform Length (WL): This feature corresponds to the
sum of absolute differences between consecutive samples.
It represents the sum of absolute first-order derivatives,
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providing information about the signal's roughness, rate
of change, and frequency characteristics for discrete
signals. WL is calculated as shown in equation 15.

L

WL = Z [x[n] — x[n —1]] (15)
n=1
Willison Amplitude (WA): This metric evaluates

sequential sample variations against a predetermined
threshold, tallying occurrences where the differential
surpasses this boundary value. The quantification process
utilizes the mathematical framework outlined in

equations 16.a and 16.b.

L
WA = flx[n] —x[n+ 1]| (16.a)
fe) = {Oloi];ljrviiie} (16.6)

Zero Crossing (ZC): This parameter quantifies the
frequency of axis intersections throughout the segment.
The mathematical formulation in equation 17.a identifies
an axis crossing when adjacent values exhibit sign
reversal. An additional verification can eliminate
insignificant fluctuations near the zero line and confirm
that the magnitude difference between consecutive
samples exceeds a defined threshold, as formulated in
equation 17.b.

L
ZC = Z(x[n] xx[n+1]) <0

n=1

(lx[n] = x[n+1]]) > ¢

(17.a)

(17.b)

Slope Sign Change (SSC): This metric counts directional
reversals in the signal trajectory throughout the segment.
Equation 18 provides the mathematical framework for
identifying these gradient sign changes. Only instances
where consecutive sample differences exceed a defined
threshold are counted, following the criterion specified in
equation 17.b.

SSC = Z((x[n +1]—x[n) X (x[n] —x[n—1])) <0 (18)
n=1

Root Mean Square (RMS): Equation 19 presents the
mathematical formulation for this feature, which

computes the square root of the average of squared values
across the segment.

(19)

Mean (p): This parameter determines the arithmetic
average across all points within the segment, computed
according to the formula presented in equation 20.

L
Mean = p = %Z x[n] (20)
n=1

Variance (¢2): This metric evaluates the dispersion of

values by measuring squared deviations from the central
tendency. The mathematical average of these squared
differentials yields the variance parameter. Equation 21
presents the computational framework for determining
this statistical dispersion value for each analyzed

segment.

L
1
Variance = ¢% = ZZ(x[n] - w? (21)
n=1
Standard Deviation (STD): This parameter quantifies the
degree of dispersion by extracting the square root of the
variance value, as mathematically formulated in equation
22.

STD =g = (22)

Skewness (SKW): This attribute quantifies distributional
asymmetry characteristics. For perfectly symmetric
distributions, it yields a zero value. In asymmetric cases,
the parameter's sign indicates directional bias—positive
values denote rightward skewing while negative values
indicate leftward skewing. Equation 23 provides the
mathematical calculating  this
distributional asymmetry metric for each segment.

framework for

1gp 3
SKW = LZn:l(x[;l] w (23)
o
Kurtosis (KURT): This parameter evaluates the

peakedness or flatness characteristics of a distribution
profile. As formulated in equation 24, the KURT value for
each segment offers a numerical assessment of the
distribution's morphology compared to the Gaussian
curve.

1

KURT = ZZ%:l(xEn] - u)4 (24)
o

Feature extraction procedures were applied separately to
amplitude and phase signals, and by combining the
extracted features, a total of 24 features were generated
for each data sample to be input into the classifier.
2.6. Classification
The four-class imbalance detection problem was
addressed by well-known machine learning approaches
with the dataset comprising 1802 experiments. The
performance of these methods was validated using 5-fold
cross-validation. The hyperparameters of the classifiers
were optimized through a systematic grid search
methodology. This process involved evaluating all
possible hyperparameter combinations within predefined
ranges at specific incremental steps. Performance metrics
were assessed for each parameter configuration, enabling
the identification of the optimal hyperparameter set that
maximizes the model's generalization capability. Table 3
summarizes the parameter searching ranges for the
preferred classifiers.
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2.7.Performance Metrics

The effectiveness of the classifiers is evaluated through
These
representations that show how the model's predictions
align with each class, functioning as an assessment tool for

confusion matrices. matrices are tabular

model performance. Figure 4 illustrates a multi-class
confusion matrix.

Table 3. Hyperparameter searching ranges for the
classifiers

Method Parameters

Kernel function: linear, quadratic, cubic
SVM box constraint level: 0.001-1.0
multiclass meth.: one vs one, one vs all
number of neighbors: 1-901
distance metric: Euclidean, Chebyshev,
KNN cosine, Hamming, cubic.
distance weight: equal, inverse, squared
inverse.
Max. # of splits: 1-1801
DT split criterion: Gini diversity index,
twoing rule, maximum deviance
reduction.
Ensemble method: Bag, AdaBoost,
RUSBoost.
# of learners:10-50
learning rate:0.001-1.0
max. # of splits: 1-1801
# of fully connected layer: 1-3
activation func.: sigmoid, tanh, ReLU,
none.
ANN lambda: 5 x 10=° =50
first layer size:1-300
second layer size:1-300
third layer size:1-300

Ensemble

Predicted Classes

Class 1 Class 2 Class 3 Class N
Class1 | TP FP | FP FP EP
Class 2 FN TP
True ' Class3 | BN TP
Classes
FN TP
Class N | FN TP

Figure 4. A multi-class confusion matrix.

The confusion matrix's True Positive (TP), False Positive
(FP), and False Negative (FN) values are used to compute
various assessment metrics. equations 25 through 28

present the metrics and formulas employed.

Accuracy = (X TPs) / (All predictions) (25)
Precision = TP / (TP + FP) (26)
Recall = TP / (TP + FN) 27)

F1 score = 2 x (Precision x Recall) / (Precision +

Recall) (28)

Within formulas (25)-(28), TP values indicate successful
classification for individual classes. Accuracy represents
the proportion of total TP values, showing how well the
model correctly classifies the issue. Precision reflects the
accuracy of the positive predictions, emphasizing its
capability to reduce FP values. The Recall metric,
meanwhile, gauges how effectively the model identifies
actual positives, showcasing its ability to minimize FN
values.

In the context of the four-class imbalance detection
problem, precision and recall metrics have been
calculated discretely for each class. This calculation
methodology yields four distinct precision and recall
values corresponding to the four classes. For the final
metric values in the analysis, we have implemented an
averaging approach of the class-wise precision and recall
metrics. The F1 score, the harmonic means of the average
precision and recall metrics, has been utilized to evaluate
the equilibrium between these metrics through collective
assessment.

3. Results and Discussion

This section presents the classification results obtained
using different input configurations. The performance of
the classifiers is reported both without and with CN
removal. Table 4 summarizes the classification results
obtained by directly using the radar baseband signals
without applying CN removal. In Table 4, the feature set
F; refers to the 12 features extracted solely from the I
signal, F; denotes the features extracted exclusively from
the Q signal, F,; represents the features derived from the
amplitude of the complex-valued signal formed by the I
and Q components, and Fg, g4, corresponds to the features
extracted from the phase of the complex-valued signal.
The [-] operator indicates that the respective feature sets
are used in combination. Each classifier was trained and
evaluated separately with these different input sets, and
the classification performance is reported in terms of
accuracy, precision, recall, and F1 score. The complexity
analysis of the models is conducted based on model size
and prediction speed.
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Table 4. The classification results without CN removal

Input signal Accuracy Precision Recall F1 Prediction Model Size
Model Name (%) (%) (%) Score Speed (obs/s) (kb)
(%)
F 88.62 88.61 88.58 88.58 16000 36
Fy 82.74 82.52 82.49 82.5 21000 48
DT [F; Fyl 88.9 88.89 88.8 88.84 36000 35
Faps 81.63 81.68 81.59 81.63 54000 46
Fangle 83.02 82.9 82.9 82.9 48000 49
[Fabs Fangte) 87.85 87.82 87.82 87.82 52000 39
F, 93.23 93.38 93.12 93.21 13000 387
Fy 93.4 93.4 93.34 93.35 20000 124
SVM [F; Fol 95.56 95.52 95.54 95.52 15000 155
Faps 93.4 93.45 93.37 93.4 33000 225
Fangle 88.79 88.68 88.68 88.68 45000 131
[Fabs Fangte] 95.12 95.12 95.14 95.1 43000 156
F 91.51 91.67 91.46 91.53 19000 216
F, 91.24 91.22 91.16 91.16 14000 216
KNN [F; Fql 91.51 91.59 91.48 91.51 4000 395
Faps 91.45 91.54 91.5 91.49 15000 216
Fangte 90.23 90.28 90.28 90.25 5000 218
[Fabs Fangte] 94.12 94.13 94.16 94.12 15000 386
F 94.40 94.47 94.36 94.40 88000 18
Fy 92.79 92.73 92.77 92.75 67000 169
NN [F1 Fol 96.89 96.89 96.9 96.9 38000 32
Faps 91.62 91.63 91.59 91.6 44000 37
Fangle 91.95 91.91 91.89 91.89 52000 110
[Fabs Fangte) 96.84 96.79 96.86 96.81 47000 74
F, 94.89 94.89 94.85 94.86 730 23000
Fo 89.62 89.54 89.43 89.46 620 32000
[F; Fql 96.45 96.43 96.45 96.44 400 20000
Ensemble
Fabs 86.51 86.56 86.54 86.54 23000 824
Fangte 89.96 89.9 89.92 89.88 13000 2200
[Fabs Fangtel 96.12 96.09 96.16 96.12 1700 7000

When examining the classification results obtained from
non-denoised data, the NN model with the [F; Fj]
combination demonstrates superior performance,
achieving an accuracy rate of 96.89%. This model also
excels in other classification metrics, showing balanced
precision (96.89%), recall (96.9%), and F1 score (96.9%),
indicating its robust performance across all evaluation
criteria. The NN model using the [abs angle] combination
follows closely with 96.84% accuracy, 96.79% precision,
96.86% recall, and 96.81% F1 score, demonstrating
consistent performance across metrics. From a model
complexity perspective, NN models stand out not only for
their high accuracy but also for their remarkably compact
model sizes (18-169 kb) and rapid prediction speeds
(38,000-88,000 observations per second). In contrast,
Ensemble models, while achieving comparable accuracy
levels (96.45%) and balanced precision (96.43%), recall
(96.45%), and F1 score (96.44%), require substantially
larger model sizes (7,000-32,000 kb) and operate at
significantly prediction speeds (400-1,700
observations per second). SVM models demonstrate good

slower

performance with moderate model sizes (124-387 kb)
and prediction speeds (13,000-45,000 observations per
second), maintaining consistent precision, recall, and F1
scores that closely track their accuracy values. Despite
being the smallest and fastest, the decision tree model
yields the lowest accuracy rates and corresponding
classification metrics. These findings highlight the critical
importance of model
combination strategies in quadrature signal classification.

selection and signal feature
Notably, NN models emerge as the most suitable option
for real-time applications by offering an optimal balance
between computational efficiency and comprehensive
classification performance across all evaluation metrics.
Examining the classification results after CN removal
reveals significant performance improvements across
models as tabulated in Table 5. The KNN model with the
highest

combination achieves the

[Fabs_c Fangle_c]
accuracy at 97.45%, with corresponding precision
(97.43%), recall (97.42%), and F1 score (97.41%) values

demonstrating exceptional balance across metrics.
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Table 5. The classification results with CN removal

Input signal Accuracy Precision Recall F1 Prediction Model Size
Model Name (%) (%) (%) Score Speed (obs/s) (kb)
(%)
Fre 83.24 83.08 83.09 83.07 64000 52
Foc 83.24 83.15 83.11 83.13 6600 50
DT [Fic Fo.cl 85.96 85.89 85.9 85.89 37000 43
Faps_c 85.18 85.17 85.12 85.13 56000 45
Fangle_c 81.47 81.4 81.42 81.38 56000 53
[Fabs_c Fangle_c] 90.57 90.5 90.59 90.52 39000 38
Fie 92.79 92.64 92.7 92.66 20000 144
Foc 92.73 92.63 92.63 92.61 25000 149
SUM [Fic Fo_cl 93.9 93.82 93.85 93.82 42000 166
Faps ¢ 91.73 91.71 91.69 91.67 45000 98
Fangle_c 93.45 93.37 93.32 93.33 9900 237
[Fabs_c Fangte_c] 97.29 97.26 97.28 97.26 30000 152
Fic 85.13 85.16 85.17 85.09 20000 216
Foc 84.24 84.16 84.18 84.15 3500 218
KNN [Fic Fo.cl 86.9 86.85 86.9 86.86 9900 386
Faps._c 92.06 92.09 92.12 92.06 14000 216
Fangle_c 92.45 92.38 92.36 92.37 8100 216
[Fabs_c Fangte_c] 97.45 97.43 97.42 97.41 14000 386
Fre 93.51 93.41 93.46 93.4 57000 70
Foc 94.4 94.32 94.27 94.28 65000 193
NN [Fic Focl 95.23 95.17 95.19 95.17 26000 284
Faps_c 95.89 95.87 95.89 95.87 74000 163
Fangle_c 93.78 93.69 93.69 93.67 64000 46
[Fabs_c Fangte_c] 97.34 97.3 97.32 97.3 86000 19
Fie 91.73 91.65 91.65 91.64 7200 3000
Fo ¢ 90.95 90.95 90.89 90.9 910 24000
[Fic Focl 94.17 94.12 94.15 94.13 630 16000
Ensemble
Faps ¢ 92.01 92.05 92.0 92.02 810 25000
Fangle_c 88.57 88.45 88.46 88.46 850 21000
[Fabs_c Fange_c] 95.06 95.04 95.02 95.01 13000 891
This performance is closely followed by the SVM model effectiveness  of signal features. While [F; Fy]
using the same feature combination (97.29% accuracy) combinations dominated in the non-denoised scenario,
and the NN model (97.34% accuracy), showing similarly the [Fabs_c Fangie cl combination consistently

balanced precision, recall, and F1 scores.

The relationship between model complexity and
performance also presents interesting patterns in the
noise-removed scenario. Despite their previously modest
performance, KNN
improvement with noise removal, particularly with the
[Faps ¢ Fangie ] combination, while maintaining moderate

models show remarkable

model sizes (386 kb) and reasonable prediction speeds
(14,000 obs/s). NN models continue to offer an excellent
balance of high accuracy and computational efficiency
with small model sizes (19-284 kb) and impressive
prediction speeds (26,000-86,000 obs/s). SVM models

demonstrate substantial improvement with noise
removal while maintaining moderate resource
requirements.

The most striking transformation occurs in the

outperforms all other feature combinations after noise
removal across nearly all models. Additionally, individual
Faps.c and Fgpgie o features show marked improvement
compared to their non-denoised counterparts.

Comparing the Table 4 and Table 5 highlights the critical
importance of CN noise removal in quadrature signal
classification. The overall accuracy ceiling rises from
96.89% to 97.45%, but more importantly, the
performance distribution across models and features
changes removal process
enhances the discriminative power of amplitude and
phase information, making the

significantly. The noise

[Fabs_c Fangle_c]
combination superior to the previously dominant [F; Fy]
combination. This transformation suggests that CN
disproportionately affects signal characteristics, and its
removal allows previously obscured patterns to emerge.
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Furthermore, the improved performance of simpler
models like KNN after noise removal indicates that much
of the classification challenge in the original data stemmed
from noise rather than inherent signal complexity. These
findings emphasize that implementing effective noise
removal techniques can be as crucial as model selection in

5- 8324 85.96

96.45

Ensemble

85.13 91.51

91.51

Model
KNN

96.89

NN

95.56

SVM

Q-Normal |

o ---

I-Noise Removed -|
Q-Noise Removed -

I+Q-Noise Removed |

abs-Noise Removed |

achieving optimal classification performance, potentially
computationally lighter models without
sacrificing accuracy in practical applications. The heatmap
presented in Figure 5 visually summarizes the impact of
CN removal on classification accuracy.

87.85 81.47 83.02
.
L

93.78
-

allowing

89.96

90.23

91.95

- 86

-84

-82

abs-Normal |

e _--
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Figure 5. The impact of the CN-removal for each model and input type.

The heat map visualization presents a comprehensive
comparative analysis of classification accuracy across
multiple dimensions: machine learning models, signal
feature combinations,
multifactorial representation effectively illustrates the
interaction between model

and noise conditions. This
selection and feature
engineering in noisy and noise-removed scenarios.

The color gradient reveals a clear performance
stratification, with the highest accuracy values (>97%)
concentrated in the noise-removed [Fyps ¢ Fangie cl
combinations for KNN, SVM, and NN models. This pattern
suggests a significant interaction between noise removal
and the discriminative power of combined amplitude and
phase information. The visualization demonstrates that
while [F; Fy] combinations generally outperform other
feature sets in normal conditions, the CN removal
fundamentally alters this relationship, elevating
[Fabs_c Fangle_c] combinations to superior performance.
The heat map also effectively captures the differential
impact of noise removal across models. The dramatic
improvement in KNN performance with noise-removed
amplitude and phase features (from 94.12% to 97.45%)
represents a noteworthy transition,
suggesting that this model's classification boundaries
become substantially more effective when the CN is
eliminated. = Conversely, the relatively modest
improvements in some DT model configurations indicate

particularly

potential limitations in the model's ability to leverage
enhanced signal quality.

From a methodological perspective, this visualization
provides valuable insights for optimizing classification
pipelines in quadrature signal processing applications. It
demonstrates that optimal model selection may differ
significantly between noisy and clean signal conditions,
challenging the assumption that more complex models
necessarily yield better performance. The heat map also
indicates that appropriate noise removal techniques
potentially allow simpler, computationally efficient
models to achieve performance comparable to or
exceeding that of more complex alternatives in noisy
environments.

4. Conclusion

This study investigated the classification of quadrature
radar signals using machine learning methods and the
impact of CN removal on classification performance. The
results demonstrate that radar-based systems offer an
effective solution for detecting imbalance in rotating
machinery.

The elimination of CN noise led to significant
transformations in classification performance. The most
striking improvement was observed in the KNN model
with the [Faps ¢ Fangie c] combination, where accuracy

increased from 94.12% to 97.45%. Furthermore, the noise
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removal process fundamentally altered the effectiveness
of signal features, elevating the [abs angle] combination to
superiority over the [F; F] combination.

The superiority of radar-based solutions lies in their
ability to detect imbalance from a safe distance without
requiring physical intervention with machinery. The
capability of radar signals to detect movements with
millimeter precision enables early-stage detection of
imbalance.

Accuracy rates exceeding 97% confirm that radar-based
systems represent a high-performance solution for
imbalance detection. The combined use of noise-removed
amplitude and phase information demonstrates the
effectiveness of radar signals in capturing imbalance
characteristics.

Unlike conventional vibration sensor-based approaches,
radar systems enable simultaneous monitoring of
multiple machines, offering a cost-effective monitoring
solution for industrial facilities.

Future research will explore the capability of radar-based
systems to detect imbalance location and provide
automatic correction recommendations. This
development transforms radar technology from a passive
monitoring tool into an active troubleshooting solution.
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