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Abstract

In this paper, by using the four functionals fixed point theorem, Avery-Henderson fixed point theorem
and the five functionals fixed point theorem, respectively, we investigate the conditions for the
existence of at least one, two and three positive solutions to nonlinear higher order three-point
boundary value problems on time scales.
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1. Introduction

The study of dynamic equations on time scales goes back to its founder Hilger [1] (in his Phd
thesis in 1988) and is a rapidly expanding area of research. Time scales theory explains the
mathematical structure underpinning the theories of discrete and continuous dynamical
systems and allows us to connect them. A result for a dynamic equation contains
simultaneously a corresponding result for a differential equation, one for a difference
equation, as well as results for other dynamic equations in arbitrary time scales. The study of
time scales has led to many important applications, e.g. in the study of insect population
models, epidemic models, heat transfer and neural networks. Some basic definitions and
theorems on time scales can be found in the book [2] and another excellent source on time
scales is the book [3].

A time scale T is a nonempty closed subset of R. T has the topology that it inherits from the
real numbers with the standard topology.



Definition 1.1 [2] Let T be a time scale. For t € T we define the forward jump operators
0:T—>T by o(t)=inf{s € T:s >t} while the backward jump operator p: T - T is
defined by p(t) = sup{s € T : s < t}.

If a(t) > t, tis said to be right scattered, and if If a(t) = t, t is said to be right dense. If
p(r) <r, r is said to be left scattered, and if p(r) =r, r is said to be left dense. The

graininess function y : T — [0,00) is defined by u(t) = o(t) —t. If T has a left scattered
maximum M, define T® = T — M; otherwise, set T* = T.

Definition 1.2 [2] For f : T — R and t € T¥, the delta derivative of f at t, denoted by f2(t),

is the number (provided it exists) with the property that given any & > 0, there is a
neighborhood U c T of t such that

[f(a(®) = f(s) = fA®WIo() —s]| < ela(t) - s,
foralls € U.
Theorem 1.3 Assume f : T — R is a function and let t € T*. Then we have the following:
(1) If f is differentiable at t, then f is continuous at t.

(i1) If f 1is continuous at t and ¢ is right-scattered, then f is differentiable at t with

fla(®) - f(©)
o(t)—t

) =

(ii1) If ¢ 1s right-dense, then f is differentiable at ¢t iff the limit

. f@®) —f(s)
lim——
sot t—s
exists as a finite number. In this case
. f@®)—f(s)
Ay — /
FO=m——

(iv) If f is differentiable at t, then

fle@®) =f®) + (@@® - 1) f4®).

Definition 1.4 [2] A function f : T — R is called rd-continuous provided it is continuous at
right -dense points in T and its left-sided limits exist (finite) at left-dense points in T.

Definition 1.5 [2] If f is rd-continuous, then there is a function F such that FA(t) = f(t) for
all t € T¥. In this case, we define

b
ff(t)At=F(b)—F(a), VYa,b € T.



Theorem 1.6 [2] Leta,b € T and f € C,4.

(1) If T = R, then

b b
f F(6) At = f £(6) dt,

where the integral on the right is the usual Riemann integral from calculus.

(1) If [a, b] consists of only isolated points, then

( .
(c(t) —t)f(t), ifa<hb,
]ﬂﬂAt=< 0, ifa=b,
a - Z (@) —Of (), ifa>b.
\ t€[b,a)

In this paper we are concerned with the existence of single and multiple positive solutions to
the following nonlinear higher order three-point boundary value problem (BVP) on time
scales:

{(_1)nyA2n(t) =f (t,y(a(t))), t€lt,ts]cT, neN 0

YA (0 (t5)) = 0, ay® () — By (t)) = y2* T (t,)

for 0<i<n-—1, where «a >0 and B >0 are given constants. We assume that
f:ty,0(t3)] X [0,00) = [0,00) is continuous. Throughout this paper we suppose T is any
time scale and [t,, t5] is a subset of T such that [t,,t;] = {t € T:t; <t < t3}.

The study of three-point boundary value problems was initiated by Neuberger [4] in 1966.
The first result concerning existence of positive solutions for higher order three-point
boundary value problems was given by Eloe and McKelwey [5] in 1997. Since then, by
applying the cone theory techniques, more general nonlinear three point boundary value
problems have been studied by several authors. We refer the reader to [6 — 8] and references
therein.

In recent years, there has been much research activity concerning the second order three-point
boundary value problems for dynamic equations on time scales. We refer the reader to the
recent papers [9 — 17] and references cited therein. We would like to mention some results of
Anderson and Avery [18], Anderson and Karaca [19], Sang [20], Yaslan [21], Sang [22],
and Yaslan [23].

In [18], Anderson and Avery were concerned with the following even-order three-point BVP:

{(—1)nx(AV)"(t) = (@) f(x(t)), t€[a,c]cT, ne€N @

x@' (@) =0, x27'(c) = Bx@'(b), 0<i<n-—1.



They have studied the existence of at least one positive solution to the BVP (2) using the
functional-type cone expansion-compression fixed point theorem.

n [19], Anderson and Karaca investigated the following higher-order three-point BVP:

(=12 (t) = (t y(o(t)), tela,b]cT, neN
(@ =y (@), vy () =y (o(b)), 0<i<n-1.

3)

A2i+1

i1y () + Bisry

Existence results of bounded solutions of a noneigenvalue problem are first established as a
result of the Schauder fixed point theorem. Second, the monotone method is discussed to
ensure the existence of solutions of the BVP (3). Third, they established criteria for the
existence of at least one positive solution of the eigenvalue problem by using the
Krasnosel’skii fixed point theorem. Later, they investigated the existence of at least two
positive solutions of the BVP (3) by using the Avery-Henderson fixed point theorem.

In [20], Sang considered the BVP (3). The existence result was first obtained by using a fixed
point theorem due to Krasnoselskii and Zabreiko. Later, under certain growth conditions
imposed on the nonlinearity, several sufficient conditions for the existence of a nonnegative
and nontrivial solution were obtained by using Leray-Schauder nonlinear alternative.

n [21], Yaslan studied the following even-order three-point BVP:

(D)2 (1) = (t y(a(t))) t€ft,t;]cT, neN

4
Y 0) = 0, ayt(a(ts)) = By* T (0(t)) = ¥ (1)

The criteria for the existence of at least one solution and of at least one positive solution for

the BVP (4) were established by using Schauder fixed point theorem and Krassnoselskii’s

fixed point theorem, respectively. Later, the existence of multiple positive solutions to the

BVP (4) was investigated by using Avery—Henderson fixed point theorem and Legget—

Williams fixed point theorem.

In [22], Sang was concerned with the BVP (4). The existence results of at least one positive
solution for a noneigenvalue problem and an eigenvalue problem were established by using
fixed point theorems, which have extended and improved the famous Guo-Krasnosel’skii
fixed point theorem at different aspects.

In [23], we investigated the conditions for the existence of one or two positive solutions for
the BVP (1) by using a result from the theory of fixed point index and establish the criteria for
the existence of at least three positive solutions for the BVP (1) by using Leggett-Williams
fixed point theorem.

We have organized the paper as follows. In Section 2, we give some lemmas which are
needed later. In Section 3, first, we use the four functionals fixed point theorem to show the
existence of at least one positive solutions for the BVP (1). Second, we apply the Avery-
Henderson fixed-point theorem to prove the existence of at least two positive solutions to the
BVP (1). Finally, we use the five functional fixed-point theorem to show that the existence of
at least three positive solutions to the BVP (1).



2. Preliminaries

From [23], we know the linear boundary value problem

—yM (@) = h(t),  tE[tyts]
YA(U(ts)) =0, ay(ty) — By2(ty) = y2(ty),

has the unique solution

a(t3) a(t3)

y(t) = f " (o) + g — ) h()As + % f h(s)As + j (t = o(s))h(s)As.

1 t2

If G(t, s) is Green's function for the boundary value problem

—y¥ () =0,  tE€[ty,ts]
y2(a(t3)) =0, ay(ty) — By (t) = y2(ty),

then we have

Hi(t,s), t; <s<t,

= 5
G(t,9) {Hz ), t,<s<t, 5)
where
B B+1
o(s) + -ty o(s) <t, o(s) + — b, o(s) <t
Hl(t, S) = B and Hz(t, S) = B+1
t+;-t1, t<s t+7—t1, t <s.

To state the main results of this paper, we will need the following lemmas.

Lemma 2.1 [23] If « > 0 and 8 > 0, then the Green's function G (t, s) in (5) satisfies

G(t,s) = %G (a(t3),s)

for (t,s) € [ty,0(t3)] X [ty, t3].

Lemma 2.2 [23] Let @ > 0 and f > 0. Then the Green's function G(t,s) in (5) satisfies
0 < G(t,5) <G(a(s),s) for (¢,5) € [t1,0(tz)] X [ty, t3].

Lemma 2.3 [23] Assume a > 0, § > 0 and s € [t;, t3]. Then the Green's function G (t, s) in
(5) satisfies minge(e, 5t G (¢, 5) = K||G(., s)||, where

_ Ba(ty—-ty)
T B+1+a(o(ts)—ty) (6)

and ||. || is defined by [[x|| = max,e[¢, g(e,) 12 ()]



If we let Gi(t,s) :==G(t,s) for G as in (5), then we can recursively define G;(t,s) =

f:(tz) Gi_1(t,7)G(r,s)Ar for 2<j<n and G,(t,s) is Green's function for the

homogeneous problem

(D)2 () =0, te€[tyts]cT, neN
Y2 (a(t5)) = 0, ay® () — By (t) = ¥ (L), 0<i<n—1

Lemma 2.4 [23] Leta > 0 and > 0. The Green's function G, (t, s) satisfies the following
inequalities

0<Gu(t,s) <LV HIGC, 9L (65) € [ty a(ta)] X [ty, 5]
and
Gn(t,s) = K"M™ Y|G(.,s)|l, (t,s) € [ty a(t3)] X [tq, t3]
where K is given in (6),
L=["16(,9)las >0 (7)
and
M= ftz(t3)||G(.,s)||As > 0. (8)

Let B denote the Banach space C[t;, a(t3)] with the norm ||y|| = max,efe, g¢e,) V(@]
Define the cone P c B by

. KMt
P = {y € B:y(t) = 0, mingee, o) V() = i ||}’||}- )
where K, L, M are given in (6), (7), (8), respectively.

(1) is equivalent to the nonlinear integral equation

y(®) = 7V 6a(t,)f (5,9(0(5))) As (10)

We can define the operator A: P — B by

ay(®) = [T 6,6, )f (5,9(0())) As (1)

where y € P. Then (10) can be written as y = Ay. Therefore solving (10) in P is equivalent to
finding fixed points of the operator A in (11). If y € P, then by Lemma 2.4 we have

nyn—-1

W”A)’”

nMn—l

min ]Ay(t) = W

t€lty,0(t3)

o(t3)
ft s G (5 (o) s =



Thus Ay € P and therefore AP c P. In addition, A: P = P is completely continuous by a
standard application of the Arzela-Ascoli Theorem.

In order to follow the main results of this paper easily, now we state the fixed point theorems
which we applied to prove main theorems.

We are now in a position to present the four functionals fixed point theorem. Let ¢ and ¥ be
nonnegative continuous concave functionals on the cone P, and let n and 6 be nonnegative
continuous convex functionals on the cone P. Then for positive numbers 7, 7, u and R, define
the sets

Q(p,n,7,R) ={x € P:r < 9p(x), n(x) < R},
UMW, t) ={x €Q(p,nrR):T<¥X)}
V(e,w) ={x € Q(p,n,1,R):0(x) < u}.

The following theorem can be found in [24].

Theorem 2.5 (Four Functionals Fixed Point Theorem) Suppose P is a cone in a real Banach
space E, ¢ and ¥ are nonnegative continuous concave functionals on P, n and 6 are
nonnegative continuous convex functionals on P, and there exist nonnegative positive
numbers 7, T, 4 and R, such that A: Q(¢,n,r,R) — P is a completely continuous operator, and
Q(p,n,7,R) is a bounded set. If

(1) xeUMW,1):inx) <RIN{xeV@,u:r<oex)}+0d

(ii) @(Ax) = r, forall x € Q(¢,n,7, R), with ¢(x) = r and u< 6(4Ax),
(iii) @(Ax) =r, forallx € V(6,u), with p(x) =,

(iv) n(Ax) <R, forall x € Q(¢,n,7,R), with n(x) = R and ¥(Ax) < 1,
(v) n(Ax) <R, forallx € U(¥Y,1), withn(x) =R,

then A has a fixed point x in Q(¢,n, 7, R).

Theorem 2.6 [25] (Avery-Henderson Fixed Point Theorem) Let P be a cone in a real Banach
space E. Set P(¢,r) = {u € P: p(u) < r}. Assume there exist positive numbers r and M,
nonnegative increasing continuous functionals 77, ¢ on P, and a nonnegative continuous
functional 6 on P with 8(0) = 0 such that ¢(u) < 0(u) < n(u) and [|u|| £ M¢p(u) for all
u € P(¢, 7). Suppose that there exist positive numbers p < g < r such that 8(Au)) < 10(u)
for all 0 <A <1 and u € dP(0,q). If A:P(¢p,r) = P is a completely continuous operator
satisfying

(1) ¢(Au) > r forallu € dP(¢,1),
(i1) 0(Au) < q forallu € dP(6, q),
(iii)) P(m,p) # @ and n(Au) > p forallu € dP(n,p),

then A has at least two fixed points u; and u, such that p < n(u,) with 8(u,) < q and
q < 6(u,) with ¢p(u,) <r.

Now, we will present the five functionals fixed point theorem. Let ¢,n,0 be nonnegative
continuous convex functionals on the cone P, and y,¥ nonnegative continuous concave



functionals on the cone P. For nonnegative numbers h,a, b,d and c, define the following
convex sets:

( P(p,c) ={x € P:p(x) < c},
P(p,v,a,c) ={x € P:a <y(x),p(x) <c},
Qlp,nd,c) ={x € Pin(x) <d, p(x) <}, (12)

P(p,0,v,a,b,c) ={x € P:a<y(x),0(x) <b, o) <c},
Q(p,n,¥Y,h,d,c) ={x €eP:h <¥(x),nx) <d,px) <c}.

The following theorem can be found in [26].

Theorem 2.7 (Five Functionals Fixed Point Theorem) Let P be a cone in a real Banach space
E. Suppose that there exist nonnegative numbers ¢ and M, nonnegative continuous concave
functionals ¥ and W on P, and nonnegative continuous convex functionals ¢, 7,8 on P, with
y(x) <nx), |llx|| < Mp(x), Vx € P(p,c). If A:P(p,c) » P(p,c) is a completely
continuous and there exist nonnegative numbers h, a, k, b with 0 < a < b such that

(1) {x € P(p,0,y,b,k,c):y(x) > b} # @and y(Ax) > b forx € P(¢,0,y,b,k,c),
(i1) {x€Q(p,n,¥ hac)nx)<al# @andn(Adx) < aforx € Q(p,n, ¥, h,a,c),
(iii)  y(Ax) > b for x € P(¢, v, b, c) with 8(Ax) > k,

(iv) n(Ax) < aforx € Q(p,n,a,c) with W(Ax) < h,

then A has at least three fixed points x;,x,, x3 € P(¢,r) such that n(x;) < a, y(x,) > b,
n(x3) > a with y(x3) < b.

3. Main results

Now, we will give the sufficient conditions to have at least one positive solution for the BVP
(1). Four functionals fixed point theorem will be used to prove the next theorem.

Theorem 3.1 Suppose a > 0 and f > 0. In addition, let there exist constants y and T with

nym-1 n—
0< KL:I —u <Tt=su< K”M“il such that the function f satisfies the following conditions:
. MTl—l
(i) f&y) = Esforall () € [ty 0(t)] X [ poa),
.. - 1
(i) f(ty < K— forall (t,y) € [ty, 0(t3)] X [O K‘;M” 1]

n—1
—u <y(t)< =1 for

n-1

Then the BVP (1) has at least one positive solution y such that X
t € [ty,0(t3)].

TLl

Proof. Define maps ¢(y) =¥Y(y) = mingepe, o, ¥(8),  0(y) = maxee(e, o(t,)) ¥ (O,
n(y) = maXeepe, o(t,)) Y(t). Then @ and ¥ are nonnegative continuous concave functionals

on P, and n and 6 are nonnegative continuous convex functionals on P. Since [[y| =
TLn_l KnMn 1 TLn—l
maXtE[t1,U(t3)]|y(t)| = n(y) S Knmn-1 for all y E Q ((p’ n' Ln-1 M 4 KTLMTL—I)’
KTIMTL—I TLn—l KMn— 1 TLn_l
Q ((p, Pl 1O KnMn—l) is a bounded set. The operator A: Q ((p, el KnMn—l) - P

is completely continuous by a standard application of the Arzela-Ascoli theorem.




Now, we verify that the remaining conditions of Theorem 2.5. We obtain

KTLMTL—I

TLTL—I
0w =pn, oW =pu>—]=5nu.

Knmn-1’

Yw=p=z1, nw=u<

KnMn—l

N1y €V, u):——un < @(y)f, which
L

.L.Ln—l

Then, we have u € {y eUW,1):ny) < K1

means that (i) in Theorem 2.5 is fulfilled.

Now, we shall verify that the condition (ii) of Theorem 2.5 is satisfied. By Lemma 2.4, we get

a(t3)

Ga(0(ts), )f (5,¥(0(s))) As < 17 j 1GC,IF (5.7(a(s))) as.

t1

a(t3)

o = |

t1

Since 6(Ay) > u, we find

FN6CNf (5.9(0())) s > (13)

Then, we obtain

o(t3)

@(Ay) = f Gn(ty, 8)f (s, y(a(s))) As

t1

- s [

t1

a(tz) nyn-1

K™"M
16C.9f (5,7(0())) s > —=—w

using Lemma 2.4 and (13).

K" n-1

Now, we shall show that the condition (iii) of Theorem 2.5 holds. Since ¢ (y) =
KnMn—l
n—1

u and

Ln-1
y € V(6,u), we find
hypothesis (i), we have

u<y()<u for t €[ty a(t;)]. By Lemma 2.4 and the

p(Ay) = j; " G (tz, 8)f (s,y(a(s))) As

1

o(ts) KMt
> gnmn-t f I6C.9If (5,3(0(s))) Bs 2 ——p.

ts
Now, we shall verify that the condition (iv) of Theorem 2.5 is fulfilled. We get

o(t3) a(t3)

W(4y) = f Galtz, )f (5,¥(0(s))) As = KM f 1GCIf (5,7(a(s)) As
ty L1
using Lemma 2.4. Since W(Ay) < T,
IN6C9Nf (5,9(0())) As < . (14)



Then, by Lemma 2.4 and (14) we obtain

a(ts)
1) = [ 6o, 9) £ (5,9(0()) s

1
n-—1

< v f "lec. N f (5,9(0())) As < oy

1

KTlMTl 1°

Finally, we shall show that the condition (v) of Theorem 2.5 is satisfied. Since n(y) =
KnLMn -, we find 0< y(t) S oo fort € [t;, 0(t3)]. Using Lemma 2.4 and the hypothesis

(i1), we have

a(t3)

) = [ Guloe). )1 (59(0())) s

< 1 fta(tS)IlG(-,s)IIf (s.7(a(s)))as <

nym-—1

Hence, by Theorem 2.5, the BVP (1) has at least one positive solution y such that K 11\14-1

U<

n-—1
y(t) < K;LMn_l for t € [ty,a(t3)]. This completes the proof.
Now we will use the Avery-Henderson fixed point theorem to prove the next theorem.

Theorem 3.2 Assume a > 0 and 8 > 0. Suppose there exist numbers 0 < p < g < r such
that the function f satisfies the following conditions:

M) f6y) > o forall (t,y) € [t 0(ta)] X [r, 2],
(i) f(ty) <-%forall (t,y) € [ty, a(ts)] x [0, L]

KTLMTll
i) f(t,y) > forall (t,y) € [t,0(t)] x [ p,p]

where K, L, M, are defined in (6), (7), (8), respectively. Then the BVP (1) has at least two
positive solutions y; and y, such that

p < maXtE[t1 o(ts)] }’1(t) with maXtE[tZ a(tg) 171(8) < q

Proof. Define the cone P as in (9). From Lemma 2.4, AP € P and A is completely continuous.
Let the nonnegative increasing continuous functionals ¢, 8 and n be defined on the cone P

by (¥): = mingerr, o(e,) Y (£), (V)= maXee(r, o(e,)] Y(E), (V) = maxeepe, o) ¥ ().

For each y € P, we have ¢(y) < 6(y) < n(y) and from (9)

n-1
T PO

IVl < s

Moreover, 8(0) = 0 and forall y € P, A € [0,1] we get 8(1y) = 16(y).

10



We now verify that the remaining conditions of Theorem 2.6 hold.

Ln—l

Claim 1: If y € P (¢, 1), then ¢p(Ay) > r: Since y € dP(¢,r) and ||y|| < P o (y), we
haver < y(t) < KZLI\:;; for t € [t,,0(t3)]. Then, by hypothesis (i) and Lemma 2.4 we find

a(t3)

bty = [ Guer Of (5,5(0(5)) s

1
a(t3)

> KnMnl f 1GC, IIf (s, y(a(s)))As > 7.
2
n—-1
Claim 2: If y € dP(0, q), then 8(Ay) < q: Sincey € dP(0,q) and ||y|| < K,an_l d(y), we
have 0 < y(t) < K?:\:;il for t € [ty, a(t3)]. Thus, using hypothesis (ii) and Lemma 2.4 we

get

a(t3)
0 = [ Guloe). )1 (5, 9(0())) s

1

< [t fa(tg)llG(-,s)Ilf (s,y(a(s))) As < q.

t1

Claim 3: P(n,p) # @ and n(Ay) > p for all y € dP(n,p): Since SE P and p > 0, ge

KTan—l Tan—l

. K
P(n,p).If y € 9P(n,p) and n(y) = —=—Ilyll, we obtain —=—p < y(©) < |ly|l = p for
t € [t,, a(t3)]. Hence, by hypothesis (iii) and Lemma 2.4 we have

a(t3)

1) = [ Guloe).)f (9(0())) s
1 o(t5)

> KMt j 1GC, If (5,9(a(s))) As > p.

t2

Since the conditions of Theorem 2.6 are satisfied, the BVP (1) has at least two positive
solutions y; and y, such that

P < MaXe[e, o(t5)] Y1 (£) With maxeee, o(e4)] Y1 () < q
q < max ¥ () with minge(z, o)) Y2(8) <.

Now, we will apply the five functionals fixed point theorem to investigate the existence of at
least three positive solutions for the BVP (1).

Theorem 3.3 Let > 0 and § > 0. Suppose that there exist constants a, b, c with 0 < a <

bLTL—l
b < —
Knpmn 1

< ¢ such that the function f satisfies the following conditions:

(1) f(t, Y) < Linfor (t’ }’) € [tllo—(t?;)] X [01 C]>

11



(i) f(6.9) > g for (69) € [e20(6)] x [bu g,

Knyn—-1

(111) f(t' J’) < L—nfOI' (t, Y) € [tl,O'(t3)] [ ) ]9

where K, L, M, are defined in (6), (7), (8), respectively. Then the BVP (1) has at least three
positive solutions y;, y, and y; such that

MaX¢e(t, o(t5)] Y1 (E) < @ < MaXeelr, o)) Y3 (E),  MiNgepr, o6 Y3 () < b <
Minere, oty Y2 (6)-

Proof. Define the cone P as in (9) and define these maps

Y =¥Y() = mingepe, o) Y (0, 0(y): = maXee(r, g(t,)] Y (E),
) =n(y) = e(hax. y(t)

Then y and W are nonnegative continuous concave functionals on P, and ¢, n and 6 are
nonnegative continuous convex functionals on P. Let P(¢,c), P(p,y,a,c), Q(¢p,n,d,c),
P(¢,0,y,a,b,c) and Q(¢,n, ¥, h,d, c) be defined by (12). It is clear that y(y) < n(y) and

lyll = (), Yy € P(gp,c).

If y € P(p,c), then we have y(t) € [0,c] for all t € [t;,0(t3)]. By Lemma 2.4 and the
hypothesis (i), we get

o(t3)

o) = [ Gl ) (5.3(0)) s

t1

< [n-1 fta(tg)”G(.,s)Ilf (s,y(a(s))) As < c.

1

This proves that A: P(¢@,c) = P(¢@,c).

Now we verify that the remaining conditions of Theorem 2.7.

n-—1
Lety; =b+ & suchthat0 < g < (m
b n-—1 .
and 9(y1) = b +¢ < # < ¢, we obtain
n—1 L™ 1

{yEP(<p,9 y,b m, ) y(y)>b}¢¢ InyP(go,H y,b,w, ) then we have

b < y(t) < g forall t € [t,,0(t3)]. By using Lemma 2.4 and the hypothesis (ii), we
get

— 1) b.Sincey(y;) =b+¢& >b,0(y,) =
b+¢g <

Knyn-1

y(4y) = ja(tB) G, (t,,S)f (s,y(o(s))) As

t1
a(t3)

Krmn-1 j 16, IIf (5, 9(o())) As > b.

t2

\Y

Thus, the condition (i) of Theorem 2.7 holds.
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nMn—l

Lety, =a —¢&, suchthat0 < ¢, < (1 - KLn_l )a. Sincen(y,) =a—¢, <a,¥(y,) =

nMn—l
a—e, >Ln—_1aand(p(y2) =a—e¢g, <c,we find
nyn—1

nyn-1
{yeQ(p,n¥ ,%a,a,c): ny) <a}#0.1fyeQ(o,n¥ ,%a,a, c), then we
obtain 0 < y(t) < a, for t € [t;,d(t3)]. Hence,

a(t3)

) = [ Guloe). )1 (59(0())) s

t1

< |1 fta(tg)llG(-,S)Ilf (s.7(0(s))as <a

1

by Lemma 2.4 and the hypothesis (iii). It follows that condition (ii) of Theorem 2.7 is
fulfilled.
Now, we shall show that the condition (iii) of Theorem 2.7 is satisfied. We have

O'(t3) U(t3)

6(4y) = f Gu(a(t3), 9)f (5,¥(0(s)) ) As < 177 f IGC,)IIf (s,7(o(s))) s
using Lemma 2.4. Since 6(Ay)> Py, n: <, We get
IZNGCNf (5,9(0())) s > e (15)

Then, by Lemma 2.4 and (15) we find

y(Ay) = ft e G (t2,8)f (s,y(a(s))) As
' a(t3)

> KnMn-1 f IIG(.,s)IIf(s,y(a(s)))As > b.

t2

Finally, we shall verify that the condition (iv) of Theorem 2.7 holds. By Lemma 2.4, we
obtain

O'(t3) U(tS)

Ga(t2, 5)f (5,9((s))) As = K"Mm f 1GC, If (5.7(a(s))) s

ty

Y(Ay) = f

t1

Since ¥ (Ay) <M M a we have

1706 9)NIf (5,3(a())) (16)

Then, we find
a(t3)

) = [ Guloe).)f (59(0())) s

t1
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< [t fta(tg)llG(-,s)llf (s,y(a(s))) As < a

1

using Lemma 2.4 and (16).

Since the conditions of Theorem 2.7 are satisfied, the BVP (1) has at least three positive
solutions y;, y,,y3 € P(¢,c) such that

MaXeet, o(ts)] Y1 () < @ < MaXeelr, o(e,)] Y3 (E)s
MiN¢ele, o(t,)] Y3 (£) < b <Mingepe, g(¢,)] V2 (0.

This completes the proof.

Example 3.4 Let T = {0} U {% ne N} U [3,6]. Consider the following boundary value

problem:
2

VO =7
y2(6) = 0, 3y (%) — 2yt (%) = y4(3).

If we take p = 0.0106, g = 0.0108 and r = 5, then all the conditions in Theorem 3.2 are
satisfied. Thus, by Theorem 3.2, the BVP has at least two positive solutions y; and y, such
that

0.0106 < maXtE[lﬁ] y1(t) with maxepz 6 y1 () < 0.0108
3
0.0108 < trer%gué] y2(t) with minge3 6 y2(t) < 5.

If we take a = 0.1, b =1 and c¢ = 12, then all the conditions in Theorem 3.3 are satisfied.
Thus, the BVP has at least three positive solutions y;, y, and y; such that

maxte[%,é] y.(t) <0.1< maxteE’G] y3(t), mingepz6) ¥3(t) < 1 < minggpzq) ¥ (t).
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