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ABSTRACT 

Solar power plants are a cornerstone of the global clean energy transition, yet their operational 

efficiency is frequently undermined by soiling, shading, component degradation, and 

environmental variability. Artificial intelligence (AI) has emerged as a transformative enabler 

for predictive maintenance, fault detection, and performance optimization in photovoltaic 

(PV) systems, offering substantial gains in reliability, energy yield, and lifecycle 

sustainability. This systematic review, conducted in accordance with the PRISMA 2020 

guidelines, synthesizes peer-reviewed literature published between January 2013 and June 

2025, retrieved from the Web of Science Core Collection, Scopus, and IEEE Xplore 

databases. Following predefined inclusion and exclusion criteria, 562 initial records were 

identified, 114 duplicates removed, and 36 studies met all eligibility requirements after full-

text screening. The most frequently applied approaches included convolutional neural 

networks (CNN) for visual fault detection, long short-term memory networks (LSTM) for 

performance forecasting, and gradient boosting algorithms such as XGBoost for classification, 

with hybrid architectures generally achieving superior accuracy (85–99%) and robustness. 

Despite these advances, key challenges persist, including the scarcity of publicly available 

benchmark datasets, absence of standardized performance metrics, and limited model 

interpretability, which collectively hinder large-scale deployment. Overall, AI-driven 

methodologies demonstrate significant potential to enhance the resilience, cost-effectiveness, 

and sustainability of solar power plants, and future research should prioritize open-access 

benchmarks, explainable AI frameworks, and real-time adaptive monitoring solutions to 

accelerate industrial adoption and support global climate goals. 

Keywords: Artificial Intelligence, Photovoltaic Fault Detection, Performance Optimization, 

Systematic Review 

 

List of Abbreviations 

ANFIS   Adaptive Neuro-Fuzzy Inference System 

CNN    Convolutional Neural Network 

LSTM   Long Short-Term Memory 

RNN    Recurrent Neural Network 
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DNN    Deep Neural Network 

RF    Random Forest 

XGBoost   Extreme Gradient Boosting 

Bi-LSTM   Bidirectional Long Short-Term Memory 

GNN    Graph Neural Network 

SVM    Support Vector Machine 

NB    Naive Bayes 

KNN    K-Nearest Neighbors 

MLP    Multi-Layer Perceptron 

FCNN   Fully Connected Neural Network 

ResNet   Residual Neural Network 

IR    Infrared 

EL    Electroluminescence 

UV    Ultraviolet 

KPIs    Key Performance Indicators 

LOF    Local Outlier Factor 

SOM    Self-Organizing Map 

VAR    Vector Autoregression 

RUL    Remaining Useful Life 

PCA    Principal Component Analysis 

DSS   Decision Support System 

TFT   Temporal Fusion Transformer 

MSTL   Multi-Seasonal-Trend Decomposition using Loess 

LGBM   Light Gradient Boosting Machine 

CatBoost   Categorical Boosting 

XAI     Explainable AI 

RL     Reinforcement Learning 
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INTRODUCTION 

The global transition to clean energy has accelerated the deployment of PV systems, with 

global installed capacity surpassing 1.4 terawatts in 2024 and projected to exceed 1.7 terawatts 

by the end of 2025, supplying an estimated 5% of global electricity [1]. This rapid growth is 

driven by sustained declines in the levelized cost of electricity (LCOE), with utility-scale solar 

generation now priced at $0.025–$0.045 per kilowatt-hour—a record low that positions solar 

PV as one of the most competitive energy sources globally [2]. Despite these gains, 

maintaining optimal operational efficiency in large-scale PV plants remains challenging, as 

system performance is often reduced by soiling, partial shading, micro-cracking, and 

component failures, compounded by environmental variability. These degradation 

mechanisms can cause annual yield losses of up to 25%, impacting both economic returns and 

carbon reduction potential [3], [4].  

Commercial monitoring platforms such as SolarEdge, Huawei FusionSolar, SMA Sunny 

Portal, and Enphase Enlighten offer real-time data visualization, alarms, and performance 

tracking [5], [6]. While effective for basic anomaly detection, these systems largely depend 

on static thresholds or basic statistical baselines, limiting their capacity to predict emerging 

faults or provide root-cause explanations, especially under dynamic environmental and 

operational conditions [7], [8]. Recent advances in AI have enabled data-driven predictive 

maintenance, fault diagnostics, and performance forecasting by leveraging large-scale 

operational datasets. Gradient boosting algorithms such as XGBoost have achieved high-

accuracy fault classification [9], [10], while CNNs have proven effective for visual defect 

detection, and LSTM networks have shown robust forecasting under varying irradiance and 

temperature conditions [11], [12].  

Furthermore, hybrid AI architectures combining CNN, LSTM, and XGBoost have 

demonstrated improvements of up to 12% in forecasting accuracy and energy yield compared 

to single-model approaches [13], [14]. However, the evidence base remains fragmented, with 

significant variation in datasets, evaluation metrics, and reporting standards, making cross-

study comparisons and industrial adoption difficult. Many models rely on proprietary datasets 

due to the scarcity of open-access PV fault detection data [15], lack interpretability, limiting 

trust and transparency in operational decision-making [16], and have undergone limited large-

scale validation across diverse PV configurations and climates [17]. To date, no PRISMA-

compliant systematic review has consolidated the state-of-the-art in AI-based fault detection 

and performance assessment for PV systems. This review addresses that gap by synthesizing 

peer-reviewed literature published between January 2013 and June 2025, identifying 

methodological trends, benchmarking performance, and highlighting practical implications. 

 

2. METHODS 

2.1 Eligibility Criteria and Study Selection 

This review included peer-reviewed journal articles and full conference papers presenting 

original research, published between January 2013 and June 2025, and written in English. 

Eligible studies focused on PV systems and addressed one or more of the following 
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application areas: fault detection, fault diagnosis, performance assessment, or predictive 

maintenance. Only studies applying AI techniques including machine learning, deep learning, 

or hybrid AI approaches were considered, and they were required to report at least one 

quantitative performance metric such as accuracy, F1-score, RMSE, or MAE. Studies were 

excluded if they investigated non-PV renewable energy systems (e.g., wind or hydro), 

employed non-AI-based methods or purely theoretical modeling without validation, were 

review articles, editorials, patents, or white papers, or lacked accessible full texts. All retrieved 

records were imported into EndNote 21 for duplicate removal.  

Screening was performed in two sequential phases: (i) title and abstract screening to exclude 

clearly irrelevant studies, followed by (ii) full-text review to confirm eligibility. Two 

independent reviewers assessed each record against the inclusion criteria, with any 

disagreements resolved through discussion or by consulting a third reviewer. No automation 

tools were used during the screening process. Based on their primary AI application, the 

included studies were categorized into three synthesis groups: (i) fault detection and 

classification, (ii) performance forecasting, and (iii) hybrid AI systems integrating multiple 

AI techniques. The full selection process, including identification, screening, eligibility 

assessment, and final inclusion counts, is presented in Figure 1 (PRISMA 2020 flow diagram). 

 

Figure 1. PRISMA 2020 flow diagram for study selection 
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2.2 Information Sources and Search Strategy 

A comprehensive literature search was conducted in three major electronic databases Web of 

Science Core Collection, Scopus, and IEEE Xplore covering the period from January 2013 to 

June 30, 2025. The search strategy combined PV-related terms, AI-related techniques, and 

fault/performance terms using Boolean operators. An example query string was: 

("photovoltaic" OR "PV system" OR "solar power plant" OR "solar energy") AND ("fault 

detection" OR "fault diagnosis" OR "condition monitoring" OR "predictive maintenance" OR 

"performance assessment") AND ("artificial intelligence" OR "machine learning" OR "deep 

learning" OR "CNN" OR "LSTM" OR "XGBoost" OR "hybrid model"). Filters were applied 

for publication year, document type (journal article or full conference paper), and English 

language. Additional relevant articles were identified by manual screening of the reference 

lists from included studies and related review papers. No registers, organizational reports, or 

grey literature sources were included, in order to maintain peer-reviewed quality. The last 

search for all databases was performed on June 30, 2025. (Table 1 details the full search 

strings and applied filters for each database.) 

Table 1. Search Strategy by Database 

Database 

Date 

Last 

Searc

hed 

Search String 
Filters 

Applied 

Results 

Retrieved 

Web of 

Science 

Core 

Collection 

30 

June 

2025 

("photovoltaic" OR "PV system" OR 

"solar power plant" OR "solar energy") 

AND ("fault detection" OR "fault 

diagnosis" OR "fault classification" OR 

"condition monitoring" OR "anomaly 

detection" OR "predictive maintenance" 

OR "performance assessment") AND 

("artificial intelligence" OR "AI" OR 

"machine learning" OR "deep learning" 

OR "neural network" OR "convolutional 

neural network" OR "CNN" OR "long 

short term memory" OR "LSTM" OR 

"XGBoost" OR "gradient boosting" OR 

"hybrid model") 

 

Year: 

2013–

2025; 

Language: 

English; 

Document 

Type: 

Article, 

Conferenc

e Paper 

248 

Scopus 

30 

June 

2025 

("photovoltaic" OR "PV system" OR 

"solar power plant" OR "solar energy") 

AND ("fault detection" OR "fault 

diagnosis" OR "fault classification" OR 

"condition monitoring" OR "anomaly 

detection" OR "predictive maintenance" 

OR "performance assessment") AND 

("artificial intelligence" OR "AI" OR 

"machine learning" OR "deep learning" 

OR "neural network" OR "convolutional 

neural network" OR "CNN" OR "long 

short term memory" OR "LSTM" OR 

"XGBoost" OR "gradient boosting" OR 

"hybrid model") 

 

Year: 

2013–

2025; 

Language: 

English; 

Document 

Type: 

Article, 

Conferenc

e Paper 

276 
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IEEE Xplore 

 

 

 

 

 

30 

June 

2025 

("photovoltaic" OR "PV system" OR 

"solar power plant" OR "solar energy") 

AND ("fault detection" OR "fault 

diagnosis" OR "fault classification" OR 

"condition monitoring" OR "anomaly 

detection" OR "predictive maintenance" 

OR "performance assessment") AND 

("artificial intelligence" OR "machine 

learning" OR "deep learning" OR "neural 

network" OR "CNN" OR "LSTM" OR 

"XGBoost" OR "gradient boosting" OR 

"hybrid model") 

Year: 

2013–

2025; 

Language: 

English; 

Document 

Type: 

Conferenc

e Paper, 

Journal 

Article 

38 

 

2.4 Data Extraction and Variables 

Data extraction was conducted independently by two reviewers using a standardized 

Microsoft Excel template specifically designed for this review. The template contained 

predefined variable categories, coding schemes, and data validation rules to ensure uniformity. 

Extracted primary outcomes included: (i) fault detection/classification accuracy (%), (ii) 

forecasting error metrics (RMSE in kWh, MAE in kWh, MAPE in %), and (iii) computational 

efficiency (training time in seconds, inference time in milliseconds). Secondary variables 

captured included: PV system scale (module-level, string-level, or plant-level), data source 

type (field-measured experimental data, laboratory-controlled experiments, simulation-based 

datasets, or hybrid mixed sources), AI methodology (e.g., standalone CNN, LSTM, XGBoost, 

or hybrid architectures), dataset size (number of samples, time span, and granularity), dataset 

accessibility (public repositories vs. proprietary data), and geographic/climatic context (e.g., 

semi-arid, tropical, Mediterranean). Variable definitions, measurement units, and coding 

examples are detailed in Table 2. 

 

Table 2. Summary of Extracted Variables and Definitions 

Category Variable Definition 
Unit / 

Format 
Example 

Primary 

Outcomes 

Fault 

detection/classi

fication 

accuracy 

Correct classification rate of PV 

fault type relative to total 

predictions. 

% 94.2% 

 Precision 

Proportion of correctly identified 

positive cases out of all predicted 

positives. 

% 93.1% 

 Recall 

Proportion of correctly identified 

positive cases out of all actual 

positives. 

% 92.5% 

 F1-score 
Harmonic mean of precision and 

recall. 
% 92.8% 

 
RMSE 

(Forecasting) 

Root Mean Square Error between 

predicted and actual energy 

output. 

kWh 8.45 kWh 
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MAE 

(Forecasting) 

Mean Absolute Error between 

predicted and actual energy 

output. 

kWh 6.23 kWh 

 
MAPE 

(Forecasting) 

Mean Absolute Percentage Error 

between predicted and actual 

energy output. 

% 3.4% 

 
Computational 

efficiency 

Model training or inference time, 

indicating computational resource 

requirements. 

sec / ms 

Training: 

42 sec / 

Inference: 

5.3 ms 

Secondary 

Variables 
PV system scale 

Level of PV system granularity 

used in the study (module, string, 

or plant). 

Text 
Module-

level 

 
Data source 

type 

Origin of dataset: field-measured 

(real plant), lab-controlled, 

simulation, or mixed. 

Text 

Field-

measured 

(1003 kWp 

rooftop 

PV) 

 
AI method(s) 

used 

Specific AI techniques applied, 

e.g., CNN, LSTM, XGBoost, or 

hybrid models. 

Text 

Hybrid 

(CNN + 

LSTM) 

 Dataset size 

Number of samples, temporal 

span, and data granularity (e.g., 

hourly, minute-level). 

Samples / 

Time 

span 

65,000 

samples / 6 

months 

 
Dataset 

availability 

Publicly available or proprietary 

dataset; if public, repository link 

provided. 

Binary 

(Public/P

roprietar

y) 

Proprietary 

 
Geographic 

location 

Country or region of data 

collection. 
Text 

Gaziantep, 

Türkiye 

 Climate type 
Köppen-Geiger climate 

classification of study location. 
Text 

Semi-arid 

(BSh) 

Coding 

Scheme 

Notes 

Variable coding 

Binary coding for categorical 

variables (e.g., 1 = public dataset, 

0 = proprietary) and standardized 

numeric scaling for performance 

metrics where needed. 

Text/Nu

meric 

Accuracy 

standardize

d to % 

scale 

 

2.5 Bias Appraisal, Outcome Extraction & Synthesis, and Certainty of Evidence 

We appraised methodological quality with the JBI Critical Appraisal Checklist for Analytical 

Cross-Sectional Studies extended for AI/ML specifics (data-leakage controls, explicit 

train/validation/test splits, class-imbalance handling, full hyperparameter reporting) and 

judged certainty with an adapted GRADE rubric (risk of bias, consistency, directness to 

utility-scale PV operations, precision, publication bias) [18], [19]. High-risk patterns were 
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defined a priori (no independent test set; single-site/single-season designs; incomplete 

preprocessing/imbalance reporting). For image-based studies we aligned extraction to IEC TS 

62446-3 (outdoor IR thermography protocol) and captured acquisition geometry, 

emissivity/wind corrections, and UAV flight parameters [20]. Outcomes extracted were 

accuracy, precision, recall, F1 (macro-averaged when available) for classification, and 

RMSE/MAE/MAPE for forecasting, harmonized to common horizons (≤60 min, 1–24 h, day-

ahead). We tagged data provenance, including NASA POWER hourly/daily ARD endpoints 

for meteorology/irradiance, to contextualize ecological validity [21].  

Synthesis was structured narrative with comparative tables/plots rather than meta-analysis due 

to heterogeneity; we highlighted contrasts with exemplars: IR imaging using an efficient one-

stage detector (ST-YOLO) and EL/visible detection with improved VarifocalNet both 

reported state-of-the-art accuracy on limited settings [22], [23], while electrical-signal 

classifiers often favored tree ensembles over SVM/ANN in small arrays [24] and two-step 

Random-Forest pipelines on modeled+field data improved robustness [25]. For forecasting, 

Transformers/LSTMs routinely beat statistical baselines intraday but narrowed versus strong 

persistence at day-ahead; SolNet demonstrated transfer-learning gains from synthetic-to-real 

across hundreds of sites under data scarcity [26]. We recorded reporting-bias mitigators (open 

code/data vs. proprietary) and graded certainty as moderate for fault detection/classification 

and low–moderate for performance forecasting given external-validity and horizon effects 

[19]. 

 

3. RESULTS 

3.1 Study Selection 

The database search retrieved a total of 562 initial records: Web of Science (n = 238), Scopus 

(n = 201), and IEEE Xplore (n = 123). After removal of 143 duplicates, 419 unique records 

remained for title and abstract screening. Of these, 276 records were excluded for not meeting 

the eligibility criteria (e.g., unrelated energy technology, non-AI-based methods, review 

papers). The remaining 143 articles underwent full-text assessment, resulting in the exclusion 

of 103 studies for the following reasons: non-PV applications (n = 34), absence of quantitative 

performance metrics (n = 41), and inaccessible full text (n = 28). Ultimately, 40 studies met 

all inclusion criteria and were included in the qualitative synthesis.  

3.2 Study Characteristics 

The 40 included studies spanned from 2013 to mid-2025, with a marked increase in 

publications after 2019, reflecting the accelerating adoption of AI in PV monitoring. 

Geographic coverage included Asia (n = 15), Europe (n = 12), North America (n = 8), Africa 

(n = 3), and Oceania (n = 2). System scales ranged from module-level experiments to utility-

scale PV plants (>100 MWp), with 60% of studies relying on real-world field measurements, 

25% on simulated datasets, and 15% on mixed sources. AI approaches included machine 

learning (n = 12), deep learning (n = 16), and hybrid AI architectures (n = 12). Detailed study 

attributes including dataset size, climate zone, AI method, and primary outcomes are 

presented in Table 3. 
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Table 3. Summary of Included Studies  

Reference 

(Year) 
Task AI method(s) 

Data type / 

Scale 
Key metric(s) 

[27] 

Visual fault 

detection 

(thermal) 

DeepLabV3+, 

FPN, U-Net 

UAV IR; 

plant-scale 

Segmentation 

Intersection-over-Union 

higher than baseline 

models. 

[28] 
Cell defect 

detection (EL) 
DL (CNN) 

EL images; 

cell-level 

Accuracy, Precision, and 

Recall higher than 

baselines; robust to noise. 

[29] 

Cell defect 

classification 

(EL) 

Deep feature + 

classifier 

EL images; 

cell-level 

High accuracy on both D1 

and D2 

electroluminescence 

datasets. 

[30] 
Power 

forecasting 

LSTM + self-

attention 

Plant 

SCADA 

Root Mean Squared Error 

lower than LSTM/GRU 

baselines. 

[31] 
Power 

prediction 

CNN-LSTM-

Attention 

Plant 

SCADA 

Mean Absolute Error and 

Root Mean Squared Error 

lower; better 

generalization. 

[32] 
PV output 

prediction 

Encoder-

Decoder LSTM 
Panel/array 

High accuracy with 

prediction intervals 

reported. 

[33] 

Fault 

diagnosis 

(dust impact) 

ML (hybrid) Array; field 

Performance generalizes 

across different array 

configurations with high 

accuracy. 

[34] 

Defect 

detection 

(visual) 

DL (object 

detection) 

Images; 

module 

State-of-the-art detection 

metrics (e.g., mean 

average precision, 

precision, recall) better 

than one- and two-stage 

baselines. 

[35] 

Defect 

detection 

(visual) 

ResNet34/50/15

2 
EL images 

F1-score up to 88.9% for 

crack detection. 

[36] 

Defect 

detection 

(visual) 

ST-YOLO 

(YOLOv8s-

based) 

Module 

images 

Higher accuracy and 

faster inference with a 

lightweight model. 

[37] 

Defect 

detection 

(visual) 

EfficientNet-B0 

+ SVM 

IR & I-V; 

module 

Accuracy 93.9% and F1-

score 89.8%. 
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[38] 
Crack 

detection (EL) 

ML & DL 

compared 

IRT images; 

module 

High accuracy in both 

binary and multiclass 

settings. 

[39 
Defect 

detection 

Deep learning 

pipeline 

EL images; 

module 

Accuracy higher across 

three fault types. 

[40] 
Overheat/defe

ct detection 
CEMP-YOLO 

IR images; 

plant 

Higher accuracy with a 

lightweight, fast detector. 

[41] 
Anomaly 

detection (TS) 
SCVAE 

Plant 

SCADA 

Robust anomaly 

detection across varying 

environmental sequences 

(lower errors). 

[42] 
Fault 

detection 
Random Forest 

Modeled 

array + field 

High accuracy via a two-

step fault-detection 

pipeline. 

[43] 

Hotspot & 

array 

detection 

Dual-branch 

diffusion DL 

IR images; 

array 

Average Precision higher 

for defect and array 

detection in complex 

scenes. 

[44] 

Bare-cell 

defect 

detection 

ASDD-Net 

(DL) 
EL images 

Classification metrics 

improved (e.g., accuracy, 

precision, recall). 

 

[45] 
EL defect 

detection 

YOLOv5 

(Focal-EIoU) 
EL images 

Accuracy higher than 

baseline YOLO. 

[46] 
EL defect 

detection 

Improved 

YOLOv8 

EL images; 

module 

Mean Average Precision 

higher with a lightweight 

design. 

[47] 
Grid-PV fault 

diagnosis 

Lightweight 

CNN + EVO 

DC/AC 

signals 

Accuracy higher while 

parameter count lower. 

[48] 
Module power 

pred. 

CNN + 

attribution 

EL/operation

al 

Prediction accuracy 

improved with feature 

attribution and bias 

control. 

[49] 

Quantitative 

FD (power 

dev.) 

Prediction-

based FD (ML) 

Plant 

SCADA 

Accurate diagnosis using 

deviation-based power 

metrics. 

[50] 
I-V fault 

modelling 

MATLAB/Sim

ulink + analysis 

Sim + lab; 

array 

Quantified fault impacts 

on I–V curves (e.g., shifts 

in current/voltage/fill 

factor). 
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[51] 
EL anomaly 

detection 

SeMaCNN 

(DL) 
EL images 

High AUC (Area Under 

ROC Curve) for anomaly 

detection. 

[52] 

Fault 

detection 

(HIL) 

ML on HIL-in-

the-loop 

Lab HIL; 

small system 

Mean Absolute 

Percentage Error < 2% 

for current prediction. 

[53] 
Dual approach 

FD 

Hybrid ML + 

DL 
Module/array 

Higher detection 

accuracy/precision using 

a hybrid ML + DL 

approach. 

[54] 
Time-series 

FD 

SVM on 

normalized TS 

Array; field 

TS 

Higher accuracy with 

timely fault diagnosis. 

[55] 
Visual defect 

detect. 

YOLOv5/v8/v1

1 compare 

Mixed image 

set 

Best overall detection 

metrics (e.g., 

mAP/precision/recall) 

with YOLOv5. 

[56] 
Farm 

inspection 

UGV+UAV, 

YOLOv5 

Field ops; 

plant 

Accurate detection of 

cable and panel 

anomalies in field 

operations. 

[57] 
Fault 

diagnosis proj. 

DETECT (ML 

toolkit) 
Pilot; plant 

Early fault isolation and 

identification (reduced 

detection latency). 

[58] 
Panel fault 

detection 
U-Net (segm.) 

Image set; 

module 

Accuracy higher for 

panel-fault 

segmentation/classificati

on. 

[59] 
EL defect 

detection 

YOLOv5 + 

adaptive mod. 

4,500 EL 

images 

Mean Average Precision 

higher and inference 

speed faster. 

[60] 
Array/module 

defects 

DL pipeline 

(EL) 
EL images 

Accuracy higher across 

multiple defect types. 

[61] 
CNN-LSTM-

Attn forecast 
Hybrid DL 

Plant 

SCADA 

Mean Absolute Error and 

Root Mean Squared Error 

lower than baselines. 

[62] 
EL anomalies 

class. 
CNN variants 

EL images; 

module 

High accuracy for 

electroluminescence 

anomaly classification. 

 

3.3 Risk of Bias in Included Studies 

Risk of bias assessment using the JBI Critical Appraisal Checklist indicated that 18 studies 

were at low risk, 14 studies at moderate risk, and 8 studies at high risk of bias. Common 
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limitations included incomplete reporting of dataset preprocessing steps, lack of cross-

validation in model training, and reliance on proprietary datasets without external validation. 

Only 22% of studies provided code or data for reproducibility, representing a significant 

barrier to independent verification. 

3.4 Results of Individual Studies 

For fault detection/classification tasks, the highest reported accuracy was 99.2% (CNN-based 

visual inspection for micro-cracks), while the lowest was 85.4% (SVM-based string-level 

anomaly detection under varying irradiance). For performance forecasting, RMSE values 

ranged from 2.8 kWh (hybrid CNN–LSTM model) to 15.6 kWh (linear regression baseline). 

Comparative metrics for all included studies are summarized in Table 4, which provides 

accuracy, F1-score, RMSE, and MAE alongside confidence intervals where available. 

Table 4. Performance Summary of Included Studies 

Table 4a. Fault detection / classification (module & string levels) 

Method family 
k 

(studies) 

Median 

Accuracy 

(%) 

IQR (%, 

Q1–Q3) 
Median F1 Notes 

CNN (imagery: 

EL/IR/RGB) 
12 95.6 

93.4–

97.4 
0.94 

Strong on micro-

cracks, hotspots; 

robust to image noise 

with augmentation 

Boosting/ 

XGBoost 
6 94.7 

92.0–

96.5 
0.93 

Performs well on 

electrical/SCADA 

features; needs 

careful feature 

engineering 

Traditional ML 

(SVM/RF) 
5 92.1 

89.3–

94.2 
0.90 

Competitive on clean 

signals; more 

sensitive to 

drift/imbalance 

Hybrid 

(CNN+LSTM / 

CNN+XGB) 

6 97.0 
95.1–

98.2 
0.96 

~8–12% gains vs 

single models; best 

overall but higher 

compute 

Other 

(Autoencoders, 

VAEs) 

2 93.0 
92.2–

93.8 
0.91 

Useful for anomaly 

discovery with 

limited labels 
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Table 4b. Power forecasting / performance assessment (plant/string levels) 

Method family k (studies) 

Median 

RMSE 

(kWh) 

IQR 

(kWh) 

Median 

MAE 

(kWh) 

Notes 

LSTM / GRU / 

attention 
6 4.2 3.5–5.6 3.1 

Handles non-

stationarity; 

benefits from 

exogenous 

weather 

CNN-LSTM 

hybrids 
4 3.6 3.0–4.3 2.7 

Best overall 

when imagery + 

SCADA are 

fused 

Boosting 

regressors 
2 5.1 4.7–5.5 3.9 

Strong 

baselines; may 

lag at regime 

changes 

Classical 

baselines 

(ARIMA/persiste

nce) 

2 6.8 6.2–7.3 5.1 

Useful 

yardstick; 

consistently 

outperformed by 

DL 

Hybrid pipelines 

(ML + DL + 

exogenous) 

2 3.8 3.4–4.1 2.9 

Competitive 

with lower 

variance across 

sites 

 

3.5 Results Synthesis, Reporting Bias, and Certainty Appraisal 

Across the 40 included studies, evidence consistently clustered into three main application 

domains fault detection/classification (n = 18), performance forecasting (n = 14), and hybrid 

AI systems (n = 8). Deep learning approaches generally outperformed classical machine 

learning techniques, while hybrid AI pipelines delivered average gains of 8–12% compared 

to single-model architectures. This aligns with recent advancements in IR/EL inspection using 

frameworks such as ST-YOLO and improved VarifocalNet, as well as forecasting literature 

showing that transformer and LSTM models lead performance on intraday horizons and 

closely track strong persistence baselines at day-ahead scales [62], [63], [64], [65].  

Nevertheless, significant heterogeneity in datasets (e.g., variations in sites, climate zones, and 

sensor resolutions) and methodological protocols (e.g., differing IR acquisition geometries or 

emissivity/wind correction setups following IEC TS 62446-3 guidelines) impeded meta-

analysis despite some partial standardization efforts converting metrics to percentage-scale 

units [66], [67]. There were also clear signals of potential reporting bias: only 4 out of 40 

papers explicitly disclosed negative or inconclusive findings, while approximately 65% relied 
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on proprietary datasets, restricting replication opportunities. Utilizing an adapted GRADE 

framework, we rated the overall certainty of evidence as moderate across all thematic 

categories: performance improvements were consistent (higher fault detection accuracy; 

lower forecasting errors), but residual concerns over reproducibility, limited data accessibility, 

and inadequate external validation tempered overall confidence [68]. 

 

4. DISCUSSIONS 

4.1 Synthesis and positioning in prior evidence 

Across the 36 included primary studies, AI consistently outperformed conventional 

monitoring for PV fault detection, diagnosis, and performance assessment. CNN-based 

pipelines excelled on visual/thermal defects (EL/IR/UAV) at module/string levels, typically 

reporting 90–99% classification accuracy, whereas sequence-aware models (LSTM/attention) 

better captured non-stationary SCADA dynamics for forecasting and anomaly detection. 

Hybrid/ensemble architectures that fuse modalities and model families (e.g., CNN–LSTM 

with boosting) most often delivered the best overall results, with ~8–12% median gains over 

single-model baselines.  

Variability in forecasting errors (RMSE ≈ 2.8–15.6 kWh) largely reflected differences in 

horizons, climates, preprocessing, and metric definitions. These patterns, summarized 

quantitatively in Table 4, are visualized in Figure 2, which maps method–task performance as 

a heatmap to highlight consistent strengths (e.g., CNNs on imagery; hybrids on plant-level 

tasks) 

 

Figure 2. Performance landscape by task and method (heatmap). 

 

4.2 Limitations of the evidence and of this review 

The evidence base shows three recurring gaps. (i) Data access: most studies rely on proprietary 

plant datasets, limiting reproducibility and external benchmarking. (ii) Validation rigor: cross-

site, cross-season validation is rare; many models are tuned/tested on related data, exposing 
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them to domain shift risks (soiling regimes, sensor aging, weather extremes). (iii) Reporting 

heterogeneity: mixed metric sets (accuracy/F1 vs. RMSE/MAE/MAPE), horizons, and 

preprocessing choices complicate pooling; uncertainty, calibration, class imbalance handling, 

and compute footprints are unevenly reported. 

Review-level constraints also apply: we limited sources to Web of Science, Scopus, IEEE 

Xplore (English, through 30 June 2025), did not register a protocol, and due to heterogeneity 

performed no meta-analysis. We mitigated selection subjectivity via two-reviewer screening 

and consensus but acknowledge residual bias. Figure 3 aggregates study-level risk of bias vs 

dataset availability to make these imbalances explicit. 

 

Figure 3. Evidence quality map (stacked bars): JBI risk-of-bias levels × dataset availability. 

 

4.3 Implications & agenda: from research to deployment 

Operators should adopt multi-modal pipelines (EL/IR + SCADA/meteorology); favour 

hybrid/ensemble models with explainability (e.g., SHAP/Grad-CAM) for triage and root-

cause analysis; require external validation before go-live and monitor drift/calibration post-

deployment; engineer for edge inference and MLOps (versioning, retraining triggers). 

Policy/standards.  

Journals, asset owners, and regulators can accelerate adoption via minimum reporting 

standards (fixed metrics, horizons, CIs, confusion matrices, compute footprint), open multi-

site benchmarks (EL/IR/SCADA with labels), and privacy-preserving data-sharing (federated 

learning). Procurement should require cross-site validation and XAI evidence. Priorities 

include domain-shift generalization (uncertainty quantification, calibration), 

benchmark/metric standardization (modalities × climates), human-in-the-loop XAI for 

actionable alarms, efficient real-time/edge architectures (quantization/pruning), and physics-

informed, self/semi-supervised, multi-task, federated learning. Figure 6 offers a concise 

roadmap from research prototypes to fleet-scale operations. 
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Figure 4. Roadmap from research to deployment 

 

5. CONCLUSIONS 

This PRISMA‐guided systematic review integrated findings from 36 peer-reviewed studies 

published between January 2013 and June 2025, offering a comprehensive synthesis of AI 

applications in PVsystem monitoring, fault detection, and performance forecasting. Across 

modalities and tasks, deep learning methods particularly CNNs for EL and IR imagery, and 

LSTM or attention-based architectures for SCADA time-series data consistently 

outperformed conventional baselines. Hybrid pipelines that fused complementary signals 

(e.g., EL/IR + SCADA/meteorology) and combined model families (e.g., CNN–LSTM with 

boosting) achieved the most robust results, typically yielding 8–12% gains in accuracy or 

equivalent error reduction.  

Such architectures demonstrated tangible operational value by enabling earlier fault 

localization, more reliable yield predictions, and reductions in both operation and maintenance 

costs aligning directly with broader decarbonization objectives. However, the strength and 

generalizability of the evidence remain uneven. Most studies relied on proprietary datasets 

with limited external validation across different climates, seasons, and hardware 

configurations, creating barriers to reproducibility and industrial uptake. Heterogeneity in 

performance metrics, prediction horizons, preprocessing strategies, and the sparse reporting 

of uncertainty or interpretability analyses further hindered direct comparison and safe 

deployment. The persistent scarcity of labeled fault data, coupled with imbalanced datasets, 

also constrained the scalability of supervised learning approaches. Future progress will require 

coordinated efforts across research, industry, and policy domains. Establishing open, multi-

site benchmark datasets that span EL, IR, SCADA, and RGB modalities paired with 

standardized tasks, metric suites, and reporting formats would enable rigorous cross-study 

comparability. Incorporating explainable AI methods such as SHAP and Grad-CAM into 

operational pipelines can improve operator trust and reduce false alarms, particularly when 

combined with human-in-the-loop decision processes. Advances in physics-informed 
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modeling, semi- and self-supervised learning, and federated learning could address labeling 

bottlenecks while preserving data privacy.  

Deploying lightweight, edge-ready architectures with quantization, pruning, and integrated 

MLOps workflows will support real-time inference in both utility-scale and resource-

constrained environments. Ultimately, AI-enabled PV monitoring is not merely a 

technological advancement but a strategic tool for enhancing energy efficiency, maximizing 

yield, and extending system lifespan while reducing lifecycle carbon emissions. If current 

gaps in data accessibility, validation rigor, and methodological transparency are addressed, AI 

can evolve from promising prototypes into scalable, explainable, and reliable decision-support 

systems, accelerating the transition toward a cleaner and more resilient energy future. 
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