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I. INTRODUCTION AND LITERATURE REVIEW 

Human development has been defined as the process of expanding people's choices. The most important concepts 

in this process are defined as a healthy and long life, level of education and having a good standard of living [1].   

When Figure 1 is examined, it is seen that the human development index is closely related to concepts such as 

sustainable development, economic growth, education, income, renewable energy. 

Casau et al. [2] conducted a study that evaluates the intricate relationships between environmental sustainability, 

welfare, and economic output. The study critiques the excessive reliance on GDP as a conventional development 

indicator and emphasizes the necessity of more comprehensive measures. Research conducted on alternative 

indicators, including the Human Development Index (HDI), Planetary Pressures Adjusted HDI (PHDI), 

Sustainable Development Goals (SDG) Index, and Happy Planet Index (HPI), demonstrates that economic growth 

does not always correspond to environmental sustainability or social welfare. The results of the study indicate that 

there are positive correlations between GDP and environmental degradation indicators, which underscores the 

necessity of sustainable economic models that enhance human welfare within environmental constraints. The study 

contends that policymakers should create fiscal policies that foster sustainable development and incorporate 
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 This study aims to identify the most effective machine learning model for classifying countries' Human 

Development Index (HDI) levels using indicators from the INFORM Risk Index. The motivation for this work 

lies in the growing need for data-driven methods to analyze and predict human development outcomes, 

particularly in the context of complex and high-dimensional socio-economic and disaster-related risk data. 

Traditional models often fail to capture the non-linear relationships that influence human development. To 

address this gap, six supervised machine learning algorithms—k-Nearest Neighbors (KNN), Linear and 

Nonlinear Support Vector Machines (SVM), Classification and Regression Trees (CART), Bagging, and 

Random Forest (RF)—were systematically evaluated. Performance was measured using weighted F1-scores 

on both training and testing datasets. The results reveal that while KNN, Linear SVM, and CART have limited 

predictive power, the Nonlinear SVM suffers from overfitting. In contrast, ensemble-based models—Bagging 

and RF—demonstrate superior and balanced performance, with F1-scores around 0.80 on both datasets. These 

methods also allow for interpretability through feature importance analysis. Socio-economic, institutional, and 

infrastructure-related indicators were identified as the most influential variables in predicting HDI levels. The 

findings highlight the strength of ensemble learning in modeling complex development-related risks and 

provide a robust framework for integrating machine learning into global human development analysis. This 

study offers valuable insights for policymakers and researchers aiming to improve forecasting, resilience 

planning, and development strategies. 
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environmental and social welfare indicators into the System of National Accounts through quantitative and 

qualitative analyses. 

Improving fundamental aspects of human development—such as reducing poverty, expanding access to education, 

ensuring adequate housing, strengthening food systems, and promoting social protection—is essential to 

decreasing the susceptibility of individuals and communities to disaster impacts. Vulnerability to disasters arises 

from the interplay between physical exposure and socio-economic conditions, where underdevelopment often 

serves to intensify both. Inadequate development limits adaptive capacity and increases the likelihood of severe 

losses in the face of natural hazards. As outlined by the United Nations Office for Disaster Risk Reduction [3], 

disaster resilience cannot be achieved without addressing structural development gaps that shape risk exposure 

and coping mechanisms. Historically, risk management frameworks have paid insufficient attention to these 

underlying dimensions, weakening their effectiveness in protecting vulnerable populations. 

 

 

Figure 1: Keywords associated with human development index 

 

Scholars and international organizations have argued that integrating human development processes into disaster 

risk reduction can reduce future disaster impacts. However, it is still unclear how to integrate disaster risk reduction 

with human development [4].  

Oran [5] examined the disaster risk management strategies of 173 countries by utilizing data from the OECD's 

Human Development Index (HDI) and the INFORM Risk Index. The analysis demonstrates that disaster risk 

classes are correlated with the development levels of countries. It has been found that health conditions, inequality, 

hazards and exposure risk, and the likelihood of natural disasters are some of the factors that affect the level of 
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development. Consequently, it is underscored that the development levels of countries are a significant factor in 

the determination of disaster risk classes. 

Feldmeyer et al. [6] compared the INFORM Risk Index and the World Risk Index. Both indices provide indicators 

that measure human vulnerability to climate change and disasters. The study analyzes the similarities and 

differences of these indices, revealing which regions have high human vulnerability and how development levels 

in these regions are related to disaster risks. 

A study by Eze and Siegmund [7] applied random forest regression, spatial stratified heterogeneity, and hotspot 

analysis on INFORM data to examine disaster risk patterns in Africa. The results highlight increasing risk in 

Eastern, Southern, and Western regions, driven by exposure to floods, epidemics, and conflict, as well as by 

vulnerability and limited coping capacity. The study emphasizes the need for sustainability-oriented policies to 

reduce disaster risk. 

The research conducted by Raikes et al. [4] examines the perspectives of government practitioners regarding the 

integration of human development and disaster risk reduction in the context of droughts and floods in Australia 

and Canada. This article employs a comparative case study approach, drawing on two Delphi studies and semi-

structured interviews conducted with practitioners across local, provincial/state, and federal levels in Canada and 

Australia. The findings underscore a shared perception among participants that effective disaster risk reduction 

(DRR) necessitates deeper engagement with human development systems that are adaptable to local conditions. 

This includes the systematic integration of disaster risk data into development planning and implementation, as 

well as critical consideration of interconnected issues such as poverty, public health, climate resilience, social 

justice, equity, and human agency. 

In their study, Mochizuki and Naqvi [8] aim to reformulate the Human Development Index (HDI) in a way that 

reflects disaster risks.  It recalculates the HDI as the "Risk-Adjusted Human Development Index" (RHDI) by 

taking into account the economic losses of disasters. Disasters can directly affect development indicators such as 

health, education and infrastructure; therefore, it is argued that risks related to these effects should be included in 

the index. 

An examination of the literature reveals a correlation between informal risk and human development. The main 

goal of this study is to use informatics risk indicators as predictors to rank countries by their level of human 

development. The most effective machine learning algorithm will be identified through comparative testing. 

To address the classification of countries according to human development categories based on INFORM Risk 

Index indicators, this study applies a set of supervised machine learning algorithms, including K-Nearest 

Neighbors (KNN), Linear and Non-linear Support Vector Machines (SVM), Classification and Regression Trees 

(CART), Bagging, and Random Forest (RF). These models undergo training and validation using stratified k-fold 

cross-validation to ensure robustness and reduce sampling bias. Hyperparameters are optimized through grid 

search to enhance classification accuracy. The weighted F1-score serves as the primary performance metric, 

allowing for reliable evaluation in the presence of class imbalance. This methodological framework enables a 

systematic comparison of model effectiveness in mapping INFORM-based risk indicators to human development 

outcomes. 
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II. INDEXES 

The Human Development Index and the INFORM Risk Index, which are the two indices employed, will be 

elaborated upon in this section. 

 

2.1. INFORM Risk Index 

INFORM is a forum for collaborating on quantitative assessments relevant to humanitarian crises and disasters. 

The Joint Research Centre of the European Commission is the scientific and technical lead for Inform, and the 

platform includes organisations from across the humanitarian and development sector, as well as donors and 

technical partners. INFORM Risk, INFORm Warning, INFORM Climate Change and INFORM Severity are 

INFORM products. In 2014, INFORM Partners launched an open index to assess the risk of humanitarian crises 

globally, and 2024 marks the tenth anniversary of Inform Risk. For 10 years, the INFORM Risk Index and other 

INFORM products have been a key component in the decision-making systems of many organizations worldwide 

and locally. Some of these organizations; World Food Programme, United Nations Office for the Coordination of 

Humanitarian Affairs (OCHA), European Commission Directorate-General for European Civil Protection and 

Humanitarian Aid Operations (DG ECHO), International Federation of Red Cross And Red Crescent Societies 

(IFRC), World Health Organization (WHO) [9]. The risk components encompassed by the INFORM risk index 

are depicted in Table 1. 

 
Table 1. INFORM risk index  

Dimensions 

Hazard and exposure  Vulnerability  Lack of coping capacity 

Categories 

Natural Human  Socio-economic 

Vulnerable 

groups  

Institution

al Infrastructure 

Earthquake 

Current conflict 

intensity  

Development and deprivation 

(50%) 

Uprooted 

people  DRR Communication 

Tsunami 
Projected conflict 
risk  Inequality (25%) 

Other vulnerable 
groups 

Governan
ce 

Physical 
infrastructure 

River flood   Aid dependency (25%)    

Access to health 

system 
Coastal flood        
Tropical cyclone 

wind        
Drought        
Epidemic        

 

The INFORM risk index can be used to prioritize countries based on risk or any of its components, to reduce risk 

in the most accurate way, to monitor risk trends, in national and regional risk assessment, or in index adaptation 

studies for organizations or regions. In the 2024 report, a risk index has been calculated for 191 countries. 

 

2.2. Human Development Index (HDI) 

Human development encompasses more than merely enhancing the prosperity of the economy in which individuals 

reside, and it adopts a approach that aims to enhance the prosperity of human existence.  

The gross domestic product is an inadequate indicator of social achievements. Gross domestic product takes into 

account material well-being, but does not provide information on how a countries wealth is transformed into basic 

needs [10]. The human development index considers not only the economic development dimension, but also the 

long and healthy life and education dimensions. The human development report was first published in 1990. 
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The dimensions and categories used in the human development index calculation for the 2024 report are shown in 

Table 2 [11]. 

 
Table 2: Human development index 

Dimensions 

Long and health life  Knowledge  A decent standart of living 

Categories 

Life expectancy at birth  Expected years of schooling Mean years of schooling  GNI per capita (PPP $) 

 

The human development index is calculated for 193 countries by 2024. The values for health, education, and 

income dimensions are standardized within a range of 0 to 1. Subsequently, the geometric meaning of these three 

dimensions is calculated. The value obtained is used to calculate the human development index for each country. 

 

III. MACHINE LEARNING ALGORITHMS 

In recent years, the increasing volume and complexity of data across various domains highlight the critical role of 

machine learning (ML) and advanced data analytics in extracting actionable insights and enabling data-driven 

decision making. The integration of sophisticated ML algorithms with robust data analysis frameworks 

revolutionizes predictive modeling, pattern recognition, and classification tasks, driving innovation in both 

academic research and industry applications. As data becomes more high-dimensional and heterogeneous, the 

demand for accurate, interpretable, and scalable classification techniques grows correspondingly. In this study, 

supervised classification methods such as KNN, SVM, CART, RF are focused on due to their complementary 

strengths in handling diverse data structures and their proven effectiveness across various classification challenges. 

 

3.1. K-Nearest Neighbors (KNN) 

The K-Nearest Neighbors (KNN) algorithm is a non-parametric, instance-based supervised learning method 

commonly applied to both classification and regression tasks. It determines the output for a query instance by 

referring to the labels (in classification) or values (in regression) of its ‘k’ nearest neighbors in the feature space, 

typically according to Euclidean or Manhattan distance. Its simplicity, interpretability, and flexibility-especially 

in modeling non-linear relationships—make KNN a widely used baseline in various domains [12]. 

Despite its advantages, KNN faces several notable challenges that can limit its effectiveness in practice. First, the 

algorithm incurs a high computational cost during inference, as it requires calculating distances between the query 

instance and all samples in the training dataset. This drawback becomes particularly pronounced with large-scale 

datasets. Second, KNN is sensitive to hyperparameters such as the choice of the number of neighbors (k), the 

selected distance metric, and the scaling of features, all of which significantly impact its predictive performance. 

Lastly, KNN’s efficacy deteriorates in high-dimensional spaces due to the “curse of dimensionality,” where the 

meaningfulness of distance metrics diminishes and the distinction between nearest and farthest neighbors becomes 

less clear, resulting in reduced classification or regression accuracy [13]. Recent literature has focused on 

enhancing KNN’s scalability, robustness, and applicability: 

Random Kernel KNN (RK‑KNN) introduces bootstrap sampling and kernel smoothing to reduce RMSE and 

improve generalization on large and complex datasets [13]. 
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A comprehensive review by Halder et al. [12] catalogs modifications such as approximate search algorithms, 

random projection ensembles, fuzzy approaches, and power-mean variants—each designed to improve 

performance in high-dimensional and big data contexts. Ali et al. [14] propose a random projection ensemble 

(RPExNRule), which combines bootstrap sampling with low-dimensional projections, markedly improving 

classification stability and accuracy. These developments demonstrate that while KNN’s core methodology 

remains unchanged, recent techniques effectively address its scalability and sensitivity limitations, making it a 

viable choice for large-scale data applications, fault detection, bioinformatics, and real-time analytics. 

 

3.2. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised learning algorithm renowned for its effectiveness in both 

classification and regression tasks. It operates by finding the optimal hyperplane that maximizes the margin 

between support vectors—critical data points near decision boundaries—thus enhancing generalization 

performance. This principle, grounded in statistical learning theory and structural risk minimization, enables SVMs 

to achieve robust predictive accuracy in high-dimensional feature spaces [15]. In addition to its advantage of being 

effective in high-dimensional spaces and situations where the number of dimensions exceeds the number of 

samples, SVM also enhances memory efficiency by utilizing a subset of training points in the decision function, 

thereby maintaining strong performance [16].  

For non-linearly separable data, SVMs utilize the kernel trick by transforming inputs into higher-dimensional 

spaces, allowing linear separation where it was not possible before. Common kernels include RBF (Radial Basis 

Function), polynomial, and sigmoid functions. Recent advancements, such as a novel distance-based kernel, have 

demonstrated significant gains in classification accuracy across diverse datasets, outperforming traditional kernels 

[17]. 

Although classical SVM is not inherently designed for big data or streaming scenarios, recent research has 

introduced scalable adaptations, including sample reduction techniques, parallel/distributed implementations, and 

online learning frameworks, to extend SVM applicability to large-scale datasets [18]. 

Other contemporary enhancements include robust SVM optimization, which integrates uncertainty into the 

optimization process to improve resilience against noisy or incomplete data, and specialized variants like p‑SVM, 

which generalizes hinge-loss norms via p-norms to improve multiclass classification contracts and performance 

bounds [19].  

 

3.3. Classification and Regression Trees (CART) 

The Classification and Regression Tree (CART) algorithm, originally introduced by Breiman et al. [20], is a 

foundational non-parametric and non-linear supervised learning method widely employed for both classification 

and regression tasks. CART constructs binary decision trees by recursively splitting the dataset into subsets based 

on thresholds of a single predictor variable that best separates the data. For classification problems, these splits 

aim to maximize node purity using impurity measures such as the Gini index or cross-entropy, while regression 

tasks minimize variance within nodes. Each division is carried out in a rule-based, binary recursive manner, where 

variables can be reused across different branches of the tree depending on their predictive contribution. Owing to 
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its intuitive structure, interpretability, and robustness in handling both categorical and continuous variables, CART 

continues to be a widely adopted method across diverse application domains [21]. 

In recent years, ensemble learning techniques such as Random Forests and Gradient Boosted Trees have 

substantially elevated the predictive capacity of CART-based models. For instance, hybrid frameworks that 

integrate CART within metaheuristic-optimized ensembles—such as Genetic Algorithm-enhanced bagging or 

boosted trees—have demonstrated improved robustness and generalizability on high-dimensional and imbalanced 

datasets [22]. 

Furthermore, hyperparameter optimization has become a pivotal factor in enhancing model performance. 

Techniques such as Bayesian optimization are increasingly employed to systematically fine-tune critical 

parameters—such as max_depth, min_samples_leaf, and ccp_alpha—enabling models to achieve an optimal trade-

off between predictive accuracy and overfitting [23].  

 

3.4. Bagging 

Bagging (Bootstrap Aggregating) is an ensemble learning technique designed to improve the stability and accuracy 

of machine learning models by reducing variance and mitigating overfitting, particularly in high-variance 

algorithms such as decision trees. Proposed by Breiman [24], Bagging involves generating multiple versions of a 

training dataset through bootstrap sampling and fitting a base learner to each. The predictions of these learners are 

then aggregated—typically by majority voting for classification tasks or averaging for regression—resulting in a 

more robust and generalizable model. 

Recent developments in ensemble learning have focused on enhancing bootstrap sampling mechanisms, improving 

computational scalability, and adapting to challenges posed by imbalanced and high-dimensional data sets [25]. 

Moreover, Bagging has been advanced through the incorporation of dynamic ensemble selection strategies and 

online learning frameworks, enabling improved adaptability and performance in environments characterized by 

streaming and non-stationary data [26]. 

These developments affirm Bagging's continued relevance as a foundational ensemble method that enhances 

prediction accuracy, especially in domains where model stability and interpretability are essential. As ensemble 

learning continues to evolve, Bagging remains a benchmark for comparison and a building block for more complex 

hybrid models. 

 

3.5. Random Forest (RF) 

Random Forest is a widely used ensemble learning technique designed to improve the stability and predictive 

accuracy of decision trees, particularly in high-dimensional and noisy data environments. Initially introduced by 

Breiman [27], the method builds multiple decision trees using bootstrapped subsets of the original data and 

aggregates their outputs through majority voting (in classification tasks) or averaging (in regression tasks). While 

Random Forest shares foundational principles with bagging—most notably, the use of bootstrap aggregating to 

reduce variance—it introduces a critical enhancement: at each node of a decision tree, only a randomly selected 

subset of features is considered for splitting. This feature-level randomization increases diversity among the 
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individual base learners, thereby reducing correlation among trees and leading to improved generalization 

performance [27]. 

In contrast to traditional bagging, which constructs diverse learners solely by sampling data, Random Forest 

incorporates both data-level and feature-level randomness. This dual-randomization strategy has demonstrated 

superior performance across various tasks, particularly in contexts where overfitting is a concern [28]. Moreover, 

Random Forest is inherently suitable for handling missing values, estimating feature importance, and managing 

high-dimensional input spaces, making it a robust choice in domains such as bioinformatics, finance, and remote 

sensing. 

Recent advancements in Random Forest methodologies have focused on improving computational efficiency and 

predictive performance through enhanced randomization techniques. In particular, Extremely Randomized Trees 

(Extra-Trees) introduce greater randomness by selecting split thresholds at random rather than searching for 

optimal splits, which accelerates training and reduces variance. This approach makes Random Forest models more 

scalable and better suited for large-scale datasets without compromising accuracy [29]. 

Additionally, efforts have been made to improve the algorithm’s effectiveness on imbalanced datasets through 

cost-sensitive learning and class weighting techniques [25]. Furthermore, the integration of Random Forests with 

deep learning architectures and interpretable AI techniques—such as SHAP (SHapley Additive exPlanations)—

has opened new avenues for enhancing both performance and explainability in complex predictive systems. 

 

IV. APPLICATION 

 

The objective of the study is to categorize the human development categories of nations based on the fundamental 

indicators of the Inform Risk Index by employing diverse machine learning algorithms. For this purpose, a 

comparison of the different machine learning algorithms will be made, and the algorithm or algorithms with the 

highest performance metrics will be selected and interpreted. The study's framework is depicted in Figure 2. 

 

Figure 2: The study's framework 
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The data used for this study belong to the Inform Risk Index and HDI 2024 reports. When the common country 

data from the two reports is amalgamated, a dataset comprising 167 observations (countries) is obtained. The 

variable that each country is classified as "low", "medium", "high" and "very high" based on their IGE values has 

been selected as the target variable. In the classification of this target variable, the three principal dimensions of 

IRE, namely nature, human, socio-economic, vulnerable groups, institutional, and infrastructure characteristics, 

are utilized. Based on this information, it can be inferred that the dataset comprises of seven features and 167 

observations. In the R program, the preparation of the data set and the application of machine learning algorithms 

are made. An overview of the data set used in the application is provided in Table 3. 

 

Table 3. Dataset excerpt for illustration 

No CTRY HDI_Category IR_nat. IR_human IR_ses IR_vuln_gro IR_inst IR_inf. 

1 Afghanistan 4 5.8 10 8.1 6.6 7.4 6.7 

2 Albania 2 5.7 0.1 2.4 2.1 5.6 2.2 

3 Algeria 2 3.2 2.1 2.4 3.2 4.9 3.7 
4 Angola 3 3 5 5.8 4.3 6.1 7.2 

 

. 

       

. 

. 

165 Yemen 4 4.4 8 8.1 8.6 8.8 6.7 

166 Zambia 3 3.1 0.2 6.4 5.6 4.9 6.2 
167 Zimbabwe 3 3.9 0.6 5.9 4.7 5.1 6.4 

 

As per the fundamental principles of machine learning, 167 observation data shall be categorized into training and 

testing. The data set is randomly divided into 80% training and 20% test data, and in order to guarantee consistency 

while creating models, a 10-fold cross validation technique is employed during the training process. 

Throughout the training process of the KNN algorithm, the k parameter is tuned over the range from 1 to 20. The 

best model is obtained when k is set to 14. In this configuration, the weighted F1-score is 0.7713 on the training 

data and 0.7082 on the test data. 

In the Linear SVM model, the kernel parameter is set to linear, and the cost parameter is tuned over the values 

{0.001, 0.01, 0.1, 1, 5, 10, 100}. The best performance is obtained when the cost parameter is set to 1. The weighted 

F1-score of the optimal linear SVM model is 0.8781 on the training data and 0.7536 on the test data. 

In the Non-linear SVM model, the kernel parameter is set to radial (RBF). The cost parameter is tuned over {0.01, 

1, 10, 1000}, while the gamma parameter is tuned over {0.5, 1, 2, 3, 4, 5}. The optimal model is achieved with a 

cost parameter of 1 and a gamma value of 0.5. This best-performing non-linear SVM model yields a weighted F1-

score of 0.9087 on the training data and 0.6823 on the test data. 

For the CART algorithm, the minsplit parameter— which defines the minimum number of observations required 

for an internal node to be eligible for splitting— is tuned within the range of 5 to 7. Additionally, the complexity 

parameter (cp), which controls the overall complexity and pruning of the tree, is tuned over the values 0.03, 0.04, 

and 0.05. In the optimal model, the minsplit parameter is set to 5, and the cp is set to 0.03. The corresponding 

decision tree for this model is presented in Figure 3. 

The weighted F1-score of the optimal CART model is calculated as 0.8577 for the training data, while the 

corresponding score for the test data is 0.7847. 
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In the Bagging model, the weighted F1-score is calculated as 1.000 for the training data, while it is 0.7954 for the 

test data. The plots illustrating the feature importance based on Mean Decrease Accuracy and Mean Decrease Gini 

are presented in Figure 4. According to the plot, the most influential variables in the prediction process appear to 

be socio-economic status (SES), infrastructure, and institutional features.  

 

 

Figure 3: Tree with CART algorithm 

 

 

Figure 4: Features importance plot (Bagging) 

 

In the RF algorithm, the mtry parameter— which determines the number of features randomly considered at each 

split in each tree— is tuned over the range of 2 to 6. As shown in Figure 5, the optimal value of the mtry parameter 

is determined to be 3. 
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Figure 5: Randomly selected predictors  

 

In the model constructed using three randomly selected features, the plots illustrating feature importance based on 

Mean Decrease Accuracy and Mean Decrease Gini are presented in Figure 6. Upon examination of Figure 6, it is 

observed that the results are highly similar to those obtained in the Bagging model (Figure 4). 

 

 

Figure 6: Features importance plot (RF) 

 

In the Random Forest (RF) model, the weighted F1-score is calculated as 1.000 for the training data, while it is 

0.7954 for the test data. 

 

V. RESULTS AND DISCUSSION 

F1 scores for the training and test datasets utilized in six machine learning algorithms are summarized in Table 4. 

Upon reviewing the table, it is evident that the KNN, Linear SVM, and CART algorithms exhibit relatively poor 

performance. A high F1 score for the training data and a significantly lower score for the test data in the context 

of the Nonlinear SVM algorithm suggest an overfitting issue. Conversely, the Bagging and Random Forest (RF) 
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algorithms generate uniform and robust F1 scores for both the training and test datasets. Therefore, the most 

appropriate machine learning algorithm within the scope of the study is Bagging and RF. 

 

Table 4: F1 performance metrics for train and test data 

Algorithm KNN SVM_Linear SVM_Nonlinear CART Bagging RF 

Weighted F1_train data 0.7713 0.8781 0.9087 0.8577 1 1 

Weighted F1_test data 0.7082 0.7536 0.6823 0.7847 0.7954 0.7954 

 

 

Both Bagging and RF are ensemble learning methods. As evidenced by the results, both models achieved accurate 

classification performance without exhibiting signs of overfitting, indicating strong generalization capability. 

Furthermore, these algorithms provide opportunities for the interpretation of models and the selection of features. 

The most influential features in the prediction process are socio-economic, institutional, and infrastructure-related 

variables, as demonstrated in Figures 4 and 6. 

Table 1 structures the INFORM Risk Index across three principal dimensions: Hazard and Exposure, Vulnerability, 

and Lack of Coping Capacity. Within these, the variables pertaining to socio-economic development, institutional 

performance, and infrastructure robustness emerge as the most influential determinants of human development 

risk. These findings align with recent vulnerability models that emphasize dynamic socio-economic and 

institutional drivers as key to resilience [30, 31]. Moreover, recent analyses underscore that infrastructure fragility 

significantly amplifies hazard impacts and limits effective crisis response [32, 33]. Consequently, these structural 

factors—socio-economic status, institutionalism, and infrastructure —should be prioritized in risk-informed 

development planning to mitigate human development vulnerabilities. 

The socio-economic dimension of the INFORM Risk Index is divided into three subcomponents: Development 

and Deprivation (50%), Inequality (25%), and Aid Dependency (25%). A society's inherent vulnerabilities and 

structural development are collectively evaluated by these indicators. The effectiveness of social protection 

mechanisms activated during crises and the degree of development and deprivation directly influence the access 

of individuals to essential services. Economically disadvantaged individuals typically have more limited access to 

shelter, healthcare, and food, which results in significant disparities in how different population groups experience 

the impact of crises. Aid dependency is indicative of a structural vulnerability in terms of resilience and 

sustainability, as it indicates a lack of internal capacity to manage shocks. In conclusion, a society's post-crisis 

recovery capacity is also restricted by low socio-economic development, which not only reflects current poverty 

levels. Therefore, this dimension is a critical determinant of human development. 

Disaster Risk Reduction (DRR) and Governance comprise the institutional dimension of the INFORM Risk Index. 

These indicators are indicative of a country's institutional performance in terms of its ability to prevent, manage, 

and respond to risks. Risk planning, early warning systems, and pre-disaster preparedness are all included in DRR 

policies. These systems have the potential to directly reduce both human casualties and infrastructure damage. 

Governance encompasses factors such as accountability, transparency, and equitable access to public 

services. Misallocation of resources, coordination failures, and a decrease in public trust may be the consequences 

of inadequate governance. In summary, institutional efficacy is vital for both crisis management and a just and 

long-lasting recovery process following a disaster. 
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VI. CONCLUSIONS 

This study evaluates the effectiveness of several supervised machine learning algorithms—including KNN, Linear 

SVM, Nonlinear SVM, CART, Bagging, and RF—in classifying countries into HDI categories using INFORM 

Risk Index indicators. Results show that ensemble methods, particularly Bagging and RF, outperform individual 

classifiers by achieving both high accuracy and strong generalization capabilities, as evidenced by balanced F1-

scores on training and test datasets. 

Feature importance analysis reveals that socio-economic, institutional, and infrastructure-related indicators are the 

most influential variables in predicting human development levels. These findings reinforce the understanding that 

development vulnerabilities are rooted not only in exposure to hazards but also in underlying structural factors. In 

particular, socio-economic inequalities, institutional capacity, and infrastructure robustness play a central role in 

shaping national resilience and risk outcomes. These dimensions, as defined within the INFORM Risk Index 

framework, offer a valuable lens for risk-informed development planning. 

The study demonstrates the potential of machine learning methods as tools for extracting actionable insights from 

complex, multidimensional risk data. Ensemble models such as Bagging and RF offer the dual benefits of 

predictive power and interpretability, making them suitable for policy-relevant applications in development and 

disaster risk analysis. 

For future research, several directions can be pursued to extend the current study. First, following Düzen et al. 

[34], the integration of machine learning models with multi-criteria decision-making (MCDM) techniques can 

enhance the transparency and interpretability of classification results, especially in high-stakes policy 

environments. Second, incorporating temporal components into the dataset could support trend analysis and 

forecasting, allowing for dynamic modeling of human development trajectories. Third, the inclusion of spatial 

clustering or regional segmentation may uncover geographically distinct patterns of vulnerability and resilience. 

Fourth, the use of advanced models—such as deep learning architectures or hybrid ensemble techniques—can be 

explored to better capture nonlinearities and interactions within high-dimensional risk data. Finally, applying the 

proposed framework to alternative indices—such as climate risk metrics, health system resilience indicators, or 

context-specific development benchmarks—would allow researchers to evaluate the robustness and 

generalizability of the approach across multiple domains. 
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