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Abstract: Turning, the most widely used machining process in manufacturing, continues to maintain its popularity today. Given 
its ongoing relevance, evaluating machinability in turning operations remains critical. In this study, dry turning was applied 
to Toolox 33, a material commonly used due to its favorable machinability characteristics. In the experimental research, 
changes in surface roughness and cutting force (two of the most critical output parameters) were evaluated in the context of 
machinability by applying different values of machining parameters, including tool nose radius, cutting speed, feed, and cutting 
depth. The investigation was undertaken with consideration of integrating machine learning methods into the manufacturing 
process. The results of the study indicated that optimal cutting force values can be achieved by employing a larger tool nose 
radius, higher cutting speeds, and lower feed rates and depths of cut. Similarly, optimal surface roughness was obtained under 
conditions involving a larger nose radius tool, lower feed, and shallower cutting depth. However, variations in the cutting speed 
parameter led to differing results in surface roughness. For instance, while an increase in cutting speed led to lower surface 
roughness values in some experimental sets, an increase in surface roughness was observed in others. Graphical evaluations 
confirmed the suitability of machine learning techniques for this application. The optimum cutting force was recorded under 
experimental conditions involving a 0.8 mm nose radius tool, a feed rate of 0.2 mm/rev, a depth of cut of 0.2 mm, and a cutting 
speed of 60 m/min. The best surface roughness results were obtained in the same experiment that yielded the optimum 
cutting force values. Compared to the optimum result obtained with a 0.8 mm nose radius tool, reducing the nose radius to 0.4 
mm increased the cutting force by 29.87%, increasing the feed rate to 0.4 mm/rev led to a 100% rise, and increasing the depth 
of cut to 0.4 mm resulted in a 62.33% increase. In contrast, increasing the cutting speed from 40 m/min to 60 m/min reduced 
the cutting force by 44.20%. Following the physical experiments, it was observed that increasing the cutting speed from 40 to 
60 m/min reduced surface roughness (Ra) by approximately 5% to 22%, while increasing the cutting depth from 0.2 mm to 0.4 
mm and the feed rate from 0.2 mm/rev to 0.4 mm/rev led to increases of 65.28% and 147.93% in Ra, respectively. Additionally, 
compared to the 0.4 mm nose radius tool, the use of a 0.8 mm nose radius tool, which yielded the optimum surface quality, 
resulted in a 34.80% improvement in surface roughness.
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1. Introduction

Machining, as one of the fundamental pillars of metal-
working technology, plays a vital role in transforming 
raw materials into final products with precise geome-
tries. This category encompasses a range of processes, 
including turning, milling, drilling, and grinding, and 
is widely employed in the manufacturing of compo-
nents requiring superior dimensional accuracy, supe-
rior surface finish, and complex geometries. In today’s 

manufacturing industry (particularly in sectors such as 
automotive, aerospace, mold making, and defense), en-
hancing the efficiency and sustainability of machining 
operations is of critical importance. At this stage, both 
the mechanical properties and the machinability of the 
workpiece material have a direct impact on the quali-
ty, duration, and cost of production. With the growing 
demand for high-performance steels in recent years, 
the Toolox series has increasingly drawn attention. 
Developed by the Swedish company SSAB, Toolox 33 
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distinguishes itself with its pre-hardened and tempered 
structure. With a hardness of approximately 300 HB, it 
provides significant time and cost advantages by elim-
inating the need for post-machining heat treatment. 
Moreover, its high toughness, dimensional stability, 
and low internal stress levels make it a preferred choice 
in both mold manufacturing and machine component 
applications. However, while these advantageous me-
chanical properties improve performance, they also 
present challenges in terms of machinability (especially 
concerning tool wear and surface finish), necessitating 
careful optimization of cutting parameters. A system-
atic evaluation of the machinability characteristics of 
mold and tool steels is therefore essential for enhancing 
production efficiency and extending tool life. The ma-
chining of steels with superior mechanical properties, 
such as high hardness, toughness, and dimensional 
stability, requires not only the selection of appropriate 
cutting tool materials but also the precise adjustment 
of machining parameters. The following section pres-
ents a review of studies conducted on high-performance 
steels such as Toolox 44, 1.2367, and AISI P20, which 
exhibit similar structural and mechanical properties to 
Toolox 33.

Binali et al. [1] investigated the machinability of Toolox 
44 hot-work tool steel, with a hardness of 44 HRC, us-
ing a dry milling process. In their experiments, they 
varied cutting speeds (150–240 m/min), feed rates (0.4–
1.6 mm/tooth), and depths of cut (0.2–0.4 mm), evaluat-
ing cutting forces and surface quality. The results 
demonstrated that cutting parameters had an import-
ant influence, particularly on surface roughness and 
tool life. Despite the high hardness of Toolox 44, the 
findings indicated that its machinability could be en-
hanced under optimized cutting conditions. Persson et 
al. [2] compared the machinability of martensitic Toolox 
33 and Toolox 44 steels with two commercial steels of 
similar hardness. Milling tests were conducted on sam-
ples with a hardness ranging from 300 to 400 HV30, 
focusing on tool life and wear behavior. Based on the 
Taylor machinability index, Toolox steels exhibited su-
perior machinability at both hardness levels. The au-
thors attributed this advantage to the influence of alloy 
composition on the tool wear mechanism. In a separate 
study, Binali et al. [3], studied the impacts of dry and 
minimum quantity lubrication (MQL) methods on the 
machinability of Nimax mold steel during milling. The 
evaluation considered criteria such as surface rough-
ness, chip morphology, material removal rate, cutting 
temperature, and tool wear. Among the tested parame-
ters, the MQL method was particularly effective in re-
ducing tool wear and improving chip control. Although 
only limited improvements were observed in cutting 
temperature, MQL showed overall superiority over dry 
machining in terms of machinability performance. 
Bayraktar and Uzun [4] conducted an experimental 
comparison of the machinability of Nimax and Toolox 
44 mold steels under three dissimilar feed rates and 
cutting speeds. Their results revealed that Toolox 44 
generated higher cutting forces and surface roughness 

than Nimax. While high cutting speed and low feed rate 
were optimal for Nimax, Toolox 44 performed better 
under low cutting speed and low feed rate. A rise in cut-
ting speed led to significant increases in cutting force 
and surface roughness in Toolox 44, whereas these val-
ues decreased in Nimax. Surface analyses showed gap 
formation in Nimax and thermal deformation with 
more pronounced feed marks in Toolox 44. Kuram and 
Ucuncu [5] investigated the impacts of feed rate, tool 
nose radius, and cutting speed on tool wear and surface 
roughness during the dry turning of Toolox 44 steel, one 
of the commonly used machining methods. While no 
chip adhesion or crater wear was observed, flank wear 
was detected on the side surfaces of the inserts. The 
minimum tool wear occurred at a cutting speed of 140 
m/min, a feed rate of 0.1 mm/rev, and a nose radius of 
0.4 mm. The Ra value rises with feed rate and generally 
reduces with a larger nose radius. Based on their find-
ings, the authors recommended avoiding a feed of 0.3 
mm/rev and suggested using a nose radius of 0.8 mm at 
a feed of 0.2 mm/rev for advanced surface quality. Er-
dem et al. [6], examined the impacts of various machin-
ing parameters on surface roughness (Ra) and cutting 
forces during the turning of 1.2367 hot-work tool steel 
hardened to 55 HRC. The experimental design em-
ployed the Taguchi method, with three various feed 
rates, three cutting speeds, and a constant cutting 
depth. ANOVA was used to assess the effect of cutting 
parameters. The findings revealed that increasing the 
feed rate significantly raised the surface roughness, 
while cutting speed had no observable effect on Ra. 
Among the cutting forces (radial (Fx), tangential (Fy), 
and feed (Fz)), feed rate was found to be the most influ-
ential variable. In a related study, Özlü [7] conducted 
both experimental and statistical optimizations of ma-
chinability to minimize surface roughness (Ra), vibra-
tion (Vib), cutting force (Fc), energy consumption (Ec), 
and during the dry turning of Toolox 44 steel. Experi-
ments followed the Taguchi L27 design on a CNC lathe. 
Grey Relational Analysis (GRA) and ANOVA were ap-
plied to optimize multiple outputs simultaneously. The 
lowest measured energy consumption was 0.06 kW, and 
the optimal cutting parameter combination (220 m/
min cutting speed, 0.1 mm/rev feed, and 0.5 mm depth 
of cut) was identified. According to GRA, the best pa-
rameter set was A1B3C1, and the overall improvement 
rate was calculated as 25.25%, confirming the success 
of the multi-criteria optimization. Binali et al. [8] ana-
lyzed the machinability of AISI P20 mold steel through 
milling simulations using the Finite Element Method 
(FEM). The study explored the influence of different 
speeds, feeds, and cutting depths on power consump-
tion under up-milling and corner-milling strategies. 
Power was calculated using the resultant forces Fx, Fy, 
and Fz. The results showed that power consumption in-
creased with all cutting parameters. The maximum 
and minimum power values were 8041.91 W and 
1748.10 W, respectively, and the FEM predictions 
aligned well with experimental data. Kara [9] explored 
the influence of machining parameters on surface 
roughness during finish milling of AISI P20+S plastic 
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mold steel and identified optimal process parameters. 
The experiments were designed to utilize the Taguchi 
L8 orthogonal array, and the results were analyzed 
through signal-to-noise (S/N) ratios, ANOVA, and mul-
tiple regression analysis. The best surface quality was 
achieved at a cutting speed of 150 m/min, a feed of 0.1 
mm/rev, a depth of cut of 0.16 mm, and under wet cool-
ing conditions. The predicted and validated Ra values 
were 0.288 µm and 0.296 µm, respectively, with a mod-
el reliability of R² = 0.923. In another FEM-based study, 
Binali [10] examined the effects of different machining 
parameters on AISI P20 steel. Four cutting speeds, four 
feed rates, and two depths of cut were tested, with con-
stant lateral feed. FEM simulations revealed that cut-
ting force increased with higher cutting speed, feed, 
and cutting depth. Interestingly, when the cutting depth 
was kept constant, increasing the feed rate and cutting 
speed resulted in lower temperature values. Cutting 
forces ranged from 36.11 to 1951.42 N, and tempera-
tures varied between 448.98 and 593.14 °C. These re-
sults demonstrated the effectiveness of FEM in opti-
mizing machining parameters. Banavase et al. [11]  
investigate the effects of using vegetable oil as a 
high-pressure minimum quantity lubrication (MQL) 
fluid on tool life, chip morphology, and surface rough-
ness during the turning of hardened Toolox® steel. 
Compared to conventional flood cooling, MQL—applied 
at varying pressures and flow rates—demonstrated 
significant improvements in tool performance and 
surface quality. The results highlight the potential of 
MQL systems in enhancing sustainability in machining 
processes and suggest further research opportunities 
across different operations, such as milling, drilling, 
and grinding. SK et al. [12] employ an artificial neural 
network (ANN) to predict flank wear based on cutting 
force and surface roughness during the turning of EN8 
steel under dry conditions. Using a face-centered cen-
tral composite design, the effects of cutting parameters 
and their interactions on machinability outputs were 
analyzed, revealing that feed rate had the most signifi-
cant influence on surface roughness and tool wear. 
Among the tested training algorithms, the BFGS qua-
si-Newton backpropagation method yielded the lowest 
mean squared error with the shortest computation 
time. Elshaer et al. [13] focus on optimizing the turning 
parameters of TC21 titanium alloy, known for its high 
strength, toughness, and corrosion resistance, under 
both as-delivered and heat-treated conditions. Using a 
Taguchi L9 orthogonal array design, the effects of cut-
ting speed, feed rate, and depth of cut on tool wear and 
surface roughness were evaluated. The results show 
that the three-stage heat treatment significantly im-
proved machinability by reducing surface roughness by 
56.25% and tool wear by 24.18%. Cutting speed and 
tool-workpiece contact time were the most influential 
factors. They also report that the depth of cut is the 
most influential parameter on surface roughness, ac-
counting for 46.6% of its variability. Adizue et al. [14] 
explore the relationship between experimental design 
strategies, process optimization, and the prediction ac-
curacy of machine learning models in ultra-precision 

hard turning of 62 HRC AISI D2 steel using CBN in-
serts. Surface roughness and material removal rate 
were analyzed under Taguchi and full factorial designs, 
with a Bayesian regularized neural network (BRNN) 
employed for predictive modeling. The results demon-
strated that the full factorial design improved predic-
tion accuracy by 36% compared to the Taguchi method, 
with strong interpretability of machining parameters 
and high model reliability (R² = 0.99, MAPE = 8.14). 
Turan et al. [15] examine the influence of cutting tool 
coatings and machining parameters on surface rough-
ness, cutting temperature, hole diameter accuracy, cir-
cularity, and cylindricity during the drilling of Al 6082-
T6 alloy. Using a Taguchi L27 design, the predictive 
performances of Taguchi, artificial neural networks 
(ANN), and adaptive neuro-fuzzy inference system 
(ANFIS) models were compared based on both experi-
mental data and corresponding S/N ratios. The ANN 
model demonstrated superior reliability and accuracy, 
particularly when using S/N-based data, and uncoated 
tools generally yielded better surface and dimensional 
outcomes, while TiAlN-coated tools were most effective 
in minimizing cylindricity error.

Although hot work tool steels have been widely investi-
gated in the literature, studies specifically focusing on 
Toolox 33 remain relatively limited. In particular, there 
is a lack of systematic investigations into the behavior 
of this material under dry machining conditions, espe-
cially with regard to the influence of cutting parame-
ters and tool geometry on surface quality and cutting 
forces. This study aims to comprehensively evaluate the 
machinability performance of Toolox 33 steel under dry 
turning conditions, focusing on the effects of tool nose 
radius, feed rate, depth of cut, and cutting speed. The 
novelty of the research lies in its systematic analysis 
of a relatively underexplored tool steel using a full fac-
torial experimental design, along with the inclusion of 
machinability characterization specific to dry machin-
ing environments. In addition to conventional anal-
ysis techniques, machine learning-based approaches 
(decision tree analysis and heatmap correlation) were 
employed to assess the influence and interaction of 
machining parameters on output responses. The inte-
gration of these data-driven methods enables a deeper 
and more comprehensive understanding of the relation-
ships between process parameters and machinability 
outcomes. 

2. Materials and Methods

2.1. Workpiece Material, Cutting Tools, and Measure-
ment Equipment

The Toolox 33 material used as the workpiece had a 
length of 200 mm and a diameter of 50 mm. ▶Table 
1 presents the chemical composition of the material, 
while ▶Table 2 outlines its mechanical properties. The 
experiments were designed using a full factorial exper-
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imental approach, with three primary cutting param-
eters selected: feed rate (0.2–0.4 mm/rev), depth of cut 
(0.2–0.4 mm), and cutting speed (40–60 m/min). The 
cutting parameters applied in the experiments are pre-
sented in ▶Table 3. All machining operations were per-
formed on a conventional lathe under dry cutting con-
ditions, without the use of any coolant. 

Two carbide inserts (CCMT-09T308-304 and CCMT-
09T304-304) with different nose radii were used as cut-
ting tools. For each experimental setup, surface rough-
ness (Ra1–Ra10) and cutting force (Fc1–Fc10) values 
were measured and recorded in Excel. Surface rough-
ness was measured using a Mahr Perthometer M1 de-
vice, while cutting force values were captured using a 
TeLC dynamometer integrated into the lathe. Surface 
roughness values were determined in accordance with 
ISO 4287 by measuring the average surface roughness 

(Ra) generated on the workpiece during machining. 
The calibration of the measurement instruments was 
performed using standard calibration equipment spe-
cifically designed for each device.  These cutting force 
values were recorded in real time using the XKM2000 
software. The recorded data were organized into tables, 
and average cutting force (Favg) values were calculated. 
▶Figure 1 presents a graphical summary of the exper-
imental study.

2.2. Evaluation Methods 

Initially, the variations in cutting force and surface 
roughness due to different machining parameter values 
considered in the study were examined through graph-
ical analysis. In the second stage, machine learning 
methods were employed to further analyze the results. 
Python was used as the programming language for ma-

Table 1. Chemical composition of Toolox 33 (wt%)[16]  

Work Material C Si Mn P S Cr Mo V Ni

Toolox 33 0.22 –0.24 0.6 –1.1 0.8 Max 0.010 Max 0.004 1–1.2 0.3 0.1 Max 1
 
  
Table 2. Mechanical properties of Toolox 33 

Tensile Strength (MPa) Yield Strength (MPa) Elongation (%) Impact toughness [J] Hardness (HRC)

980 850 16 100 29
  

Figure 1. Graphical abstract of the realized study.
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chine learning applications. Regression decision trees 
and heatmaps (used to visualize the correlation matrix) 
were selected as the primary machine learning meth-
ods in this study. In the study, the dataset was parti-
tioned into training and testing subsets with an 80/20 
split, and the decision tree algorithm was applied using 
its default parameters. Furthermore, Pearson correla-
tion analysis was conducted to generate the heatmap.

Decision trees can be categorized into classification and 
regression types, depending on the nature of the data. 
Classification trees are used for discrete data, whereas 
regression trees handle continuous data. In a decision 
tree, the root node is the starting point from which data 
is split into branches, while the leaf node represents the 
final outcome where no further splitting occurs [17]. 
Each node is color-coded to represent purity, and nu-
merical values in regression tree nodes facilitate the 
evaluation of results. The heatmap technique was em-
ployed to visualize the correlation matrix derived from 
the dataset. This method not only simplifies analysis 
for experts but also enhances the interpretability and 
accessibility of the findings for readers. Heatmaps dis-
tinguish between positive and negative correlations: in 
the case of a positive correlation, both variables tend 
to change in the same direction (either increasing or 
decreasing simultaneously), indicating a direct rela-
tionship. Shades of red represent positive correlations, 
whereas shades of blue denote negative correlations. 
Darker shades in either spectrum indicate stronger cor-
relation levels [18].  

3. Results and Discussions

The result parameters (surface roughness, cutting 
force) considered in this study are subjected to graph-
ical evaluation, regression decision tree analysis, and 
heatmap interpretation under separate headings.

3.1. Cutting Force

Cutting force is a mechanical response generated 
during machining and is one of the most critical output 
parameters, influencing tool condition, surface rough-
ness, and overall surface quality [19]. When the work-
piece material exhibits low machinability, cutting force 
values become significantly high during the process. As 
a result, tool wear may accelerate and tool life may be 
reduced [20, 21]. Additionally, increased cutting force 
can intensify machine vibrations, potentially causing 
considerable surface damage and leading to irregular 
surface profiles post-machining [22, 23]. Therefore, 
optimizing cutting force is essential for efficient ma-
chining processes. ▶Figure 2 illustrates the graphical 
distribution of the cutting force values obtained from 
the experiments. As depicted in the figure, the optimum 
cutting force was observed in the experiment conduct-
ed with a feed rate of 0.2 mm/rev, a cutting depth of 
0.2 mm, and a cutting speed of 60 m/min, utilizing a 
tool with a tip radius of 0.8 mm. When using a cutting 
tool with a 0.4 mm nose radius under the machining 
parameters that yielded the optimum results, a 29.87% 
increase in cutting force values was observed. A general 
analysis reveals that high feed rates and cutting depths, 
in addition to both low and high cutting speeds, contrib-
uted to increased cutting forces for both tool tip radius. 
In the experimental setup where the feed rate was 0.2 
mm/rev, the depth of cut was 0.2 mm, the cutting speed 
was 60 m/min, and a cutting tool with a 0.8 mm nose 
radius was used, increasing the feed rate to 0.4 mm/rev 
resulted in a 100% increase in cutting force. Addition-
ally, under the same cutting conditions, increasing the 
depth of cut from 0.2 mm to 0.4 mm led to a 62.33% 
increase in cutting force. In the 0.8 mm tip radius test 
set (except for the experiment conducted with 0.2 mm/
rev feed, 0.4 mm cutting depth, and 40 m/min cutting 
speed), cutting forces were lower compared to those in 
the 0.4 mm tip radius test set. This reduction in cut-
ting force with increased tip radius can be attributed to 
more stable cutting due to reduced vibration (resulting 
from enhanced tool rigidity) or the improved thermal 
distribution over a larger contact area, which facilitates 
the cutting process. Cutting force values also decreased 
with growing cutting speed. In the experimental setup 
where the feed rate was 0.2 mm/rev, the depth of cut 
was 0.2 mm, and the tool nose radius was 0.8 mm, in-
creasing the cutting speed from 40 m/min to 60 m/min 
resulted in a 44.20% reduction in cutting force. This 
reduction may be associated with the thermal soften-
ing of the material due to heat buildup at higher speeds, 
which alters the mechanical properties of the cork ma-
terial or enhances plastic deformation, making the cut-

Table 3. Cutting parameters used in experiments 

Exp Nu. Feed Rate 
(mm/rev)

Cutting 
Depth 
(mm)

Cutting 
Speed  

(m/min)

Cutting Tool 
Radius 0.8

1 0.2 0.2 40

2 0.2 0.2 60

3 0.2 0.4 40

4 0.2 0.4 60

5 0.4 0.2 40

6 0.4 0.2 60

7 0.4 0.4 40

8 0.4 0.4 60

Cutting Tool 
Radius 0.4

1 0.2 0.2 40

2 0.2 0.2 60

3 0.2 0.4 40

4 0.2 0.4 60

5 0.4 0.2 40

6 0.4 0.2 60

7 0.4 0.4 40

8 0.4 0.4 60
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ting process easier [24, 25]. However, in the test with 
a 0.8 mm tip radius, 0.4 mm/rev feed, 0.2 mm cutting 
depth, and cutting speeds increased from 40 m/min to 
60 m/min, cutting forces were observed to rise. This 
can be explained by the inability of the large chip sec-
tion—formed due to the high feed rate and large tip ra-
dius—to undergo sufficient thermal softening, resulting 
in higher resistance in the machining zone. A compara-
ble finding was documented in [26]. The increase in cut-
ting force with feed rate (from 0.2 mm/rev to 0.4 mm/
rev) is attributed to a larger chip load and insufficient 
chip evacuation [27], consistent with findings in the lit-
erature [28-30]. Interestingly, in the experiment with a 
0.8 mm tip radius, 0.2 mm depth of cut, and 40 m/min 
cutting speed, cutting forces decreased with increased 
feed rate. This anomaly may be due to a larger cutting 
contact area and higher heat generation, making the 
material easier to cut. As cutting depth increases, so do 
cutting forces. This is due to the increased resistance 
resulting from a larger cutting area, which requires 
more power for material removal [31, 32]. The highest 
cutting force was observed with the 0.4 mm tip radius 
tool, using 0.4 mm/rev feed, 0.4 mm cutting depth, and 
40 m/min speed. 

Figure 2. Graphical representation of cutting force value.

▶Figure 3 shows the regression decision tree for cut-
ting force. In the figure, “H” denotes a 0.8 mm tip ra-
dius and “L” denotes a 0.4 mm tip radius. In ▶Figure 
3a, the cutting force values from the experiments with 
a 0.4 mm tip radius, 0.2 mm/rev feed, and 0.2 mm cut-
ting depth at 40 m/min and 60 m/min cutting speeds 
correspond to nodes with values of 78.5 and 75, respec-
tively. Based on this, it can be concluded that cutting 
force values decrease as cutting speed values increase. 
▶Figure 3b compares results from the same tool ra-
dius and cutting depth (0.4 mm) and constant cutting 
speed (40 m/min), where increasing the feed rate from 
0.2 to 0.4 mm/rev increased the value from 78 to 79, 
indicating a rise in cutting force. In ▶Figure 3c, with 
constant tool radius (0.4 mm), feed (0.2 mm/rev), and 
speed (60 m/min), escalating the cutting depth from 0.2 
to 0.4 mm also increased the cutting force from 78 to 79. 
These observations confirm that cutting force increases 
with both cutting depth and feed rate. The consistency 
between the regression tree and graphical evaluations 

strengthens the reliability and accuracy of the experi-
mental findings. 

▶Figure 4 presents the heatmap of cutting force. The 
dark red squares along the diagonal indicate the high-
est positive correlations within the same parameters. In 
the figure, positive correlations are depicted in various 
shades of red, whereas negative correlations are shown 
in different shades of blue. As in the decision tree, “H” 
and “L” denote 0.8 mm and 0.4 mm tip radii, respective-
ly. According to the figure, the strongest positive cor-
relation was observed between FH1 and FL4. FH1 used 
parameters of 0.2 mm/rev feed rate, 0.2 mm cutting 
depth, and 40 m/min speed, while FL4 used 0.2 mm/
rev feed, 0.4 mm depth of cut, and 60 m/min speed. In 
both cases, cutting forces increased with cutting depth 
and speed, suggesting that the cutting depth had the 
most crucial positive correlation with cutting force. A 
notable negative correlation occurred between FH3 and 
FH4, where feed and cutting depth were constant, but 
cutting force decreased with increased cutting speed. 
This again highlights the inverse relationship between 
cutting speed and cutting force. A positive correlation 
exists between cutting force and depth of cut is likely 
the strongest due to the pronounced effect of increased 
material resistance at higher cutting depths. 

3.2. Surface Roughness

Surface roughness is a result of the mechanical engage-
ment between the cutting tool and the surface of the 
work material. To attain a high-quality final surface 
profile, surface roughness values must remain minimal, 
which can be accomplished through proper optimiza-
tion of the machining parameters [33]. ▶Figure 5 pres-
ents the graphical representation of the surface rough-
ness data obtained from the experiments. As observed, 
the 0.8 mm tip radius yielded more favorable results in 
achieving optimal surface roughness compared to the 
0.4 mm tip radius. Thus, a larger tip radius positively 
influenced surface roughness. Compared to the experi-
ment conducted with a 0.4 mm nose radius tool, the use 
of a 0.8 mm nose radius tool, which yielded the optimum 
surface roughness, resulted in a 34.80% reduction in 
surface roughness. The impact of speed on surface 
roughness was not uniform across all test conditions. 
When the cutting speed increased from 40 to 60 m/min, 
surface roughness (Ra) values decreased on average by 
approximately 5% to 22%, while in some cases, a slight 
increase of up to 3% was observed. A growth in cutting 
speed may result in reduced surface roughness due to 
the associated rise in temperature within the machin-
ing zone, which in turn reduces friction between the 
tool and the chip and enhances chip evacuation [34, 
35].  However, an increase in surface roughness with 
higher cutting speeds may also occur due to the accel-
erated wear of the cutting tool [36]. In all experimental 
sets, an rise in feed rate causes a consistent increase in 
surface roughness, which aligns with prior studies [37, 
38]. This phenomenon can be attributed to the larger 
volume of material removed per unit time, which in-
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Figure 3. Regression decision tree model for cutting force parameter.

Figure 4. Heat map model for cutting force parameter.
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creases deformation on the surface. Similarly, surface 
roughness values increased with greater cutting depth, 
a result frequently reported in the literature. In the 
experimental setup using a cutting tool with a 0.8 mm 
nose radius, where optimum surface roughness values 
were achieved, increasing the depth of cut from 0.2 
mm to 0.4 mm resulted in a 65.28% increase in surface 
roughness. This phenomenon is primarily due to the 
increased chip volume and enhanced friction between 
the cutting tool and the workpiece surface [39]. In the 
experimental setup using a cutting tool with a 0.8 mm 
nose radius, where optimum surface roughness values 
were obtained, increasing the feed rate from 0.2 mm/
rev to 0.4 mm/rev caused a 147.93% increase in surface 
roughness. However, an exception was noted in the test 
conducted with a tool tip radius of 0.8 mm, a feed of 0.4 
mm/rev, and a cutting speed of 40 m/min. In this case, 
increasing the depth of cut from 0.2 mm to 0.4 mm led 
to a reduction in surface roughness. This arises from 
the concentration of plastic deformation in the cutting 
direction, which reduced lateral flow and surface de-
fects, stabilized the cutting process, and minimized vi-
bration—collectively resulting in improved surface fin-
ish. The minimum surface roughness was observed in 
the experiment conducted with a 0.8 mm tip radius, 60 
m/min cutting speed, 0.2 mm depth of cut, and 0.2 mm/
rev feed. Conversely, the maximum surface roughness 
occurred with a 0.4 mm tip radius, 0.4 mm/rev feed, 0.4 
mm cutting depth, and 40 m/min cutting speed. 

Figure 5. Graphical representation of surface roughness values.

▶Figure 6 displays the regression decision tree devel-
oped for surface roughness. As with the decision tree 
for cutting force, the letter H denotes a 0.8 mm tip ra-
dius, while L indicates a 0.4 mm tip radius. In ▶Figure 
6a, both increasing and decreasing trends in surface 
roughness due to cutting speed are evident. Specifical-
ly, in the experiments conducted with a 0.8 mm tip ra-
dius tool, the cutting speed of 40 m/min corresponds 
to a node value of 9, while 60 m/min corresponds to a 
value of 8. This decrease suggests that higher cutting 
speeds may reduce surface roughness. Thus, the model 
confirms that cutting speed may have both positive and 
negative impacts on surface roughness depending on 
the conditions. In ▶Figure 6b, experiments with a 0.4 
mm tip radius tool and varying feed rates show that the 

lower feed rate corresponds to a node value of 2, while 
the higher feed rate corresponds to 3.5. This reflects the 
trend seen in the graphical evaluation, where surface 
roughness increased with higher feed rates. ▶Figure 6c 
presents results for the 0.8 mm tip radius tool under 
different cutting depths. The lower depth of cut cor-
relates with a node value of 0.5 and the higher depth 
with a value of 3, reaffirming the graphical analysis: 
surface roughness increases with greater cutting depth. 
The regression tree results closely match the graphical 
evaluations, reinforcing the validity and accuracy of the 
machine learning model. 

▶Figure 7 presents the heatmap for surface rough-
ness correlations. Shades of red correspond to positive 
correlations, while shades of blue represent negative 
correlations, and darker tones in both colors signify 
stronger correlations. As in the decision tree, H denotes 
tests with a 0.8 mm tip radius, while L denotes those 
with 0.4 mm. The strongest positive correlation was ob-
served between RaH3 and RaH1. In these experiments, 
increases in both cutting depth and cutting speed led 
to higher surface roughness, suggesting a direct rela-
tionship among these parameters. A similar positive 
correlation was observed between RaL1 and RaL4. 
The most significant negative correlation appeared be-
tween RaL4 and RaH2. Another strong negative cor-
relation was found between RaL2 and RaL3, indicating 
that surface roughness increased as cutting speed de-
creased. These results confirm that cutting speed can 
have varying impacts on surface roughness depending 
on the experimental conditions, consistent with the 
graphical and decision tree evaluations. 

4. Conclusions

The current research, the impacts of varying indepen-
dent variables on cutting force and surface roughness 
in the course of dry turning of Toolox 33 material, was 
investigated in order to assess the machinability of the 
workpiece material. The key findings are summarized 
below:

• The cutting tool with a 0.8 mm tip radius demon-
strated more efficient performance in machining 
Toolox 33 compared to the 0.4 mm tip radius tool, 
yielding optimal results in terms of both force and 
roughness. 

• Cutting force values decreased with ascending cut-
ting speed, while increases in feed rate and depth of 
cut led to higher forces. 

• Surface roughness exhibited both increasing and 
decreasing trends with speed changes. However, 
increases in feed and depth of cut consistently hurt 
surface quality, leading to increased surface rough-
ness values.

• The results obtained from machine learning meth-
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Figure 6. Regression decision tree model for surface roughness parameter.

Figure 7. Heat map model for surface roughness parameter.
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ods (regression decision trees and heatmaps) corre-
sponded well with the findings from graphical eval-
uations for both cutting force and roughness. 

• Using a tool with a 0.8 mm nose radius as the base-
line optimum condition, a reduction in nose radi-
us to 0.4 mm caused the cutting force to rise by 
29.87%. Increasing the feed rate to 0.4 mm/rev 
doubled the cutting force, while raising the depth of 
cut to 0.4 mm led to a 62.33% increase. Conversely, 
elevating the cutting speed from 40 m/min to 60 m/
min resulted in a 44.20% decrease in cutting force.

• Physical testing revealed that raising the cutting 
speed from 40 to 60 m/min contributed to a reduc-
tion in surface roughness (Ra) ranging between ap-
proximately 5% and 22%. In contrast, increasing 
the cutting depth from 0.2 mm to 0.4 mm and the 
feed rate from 0.2 mm/rev to 0.4 mm/rev caused Ra 
to increase by 65.28% and 147.93%, respectively. 
Furthermore, the application of a tool with a 0.8 
mm nose radius—compared to a 0.4 mm radius 
tool—achieved optimal surface finish, improving 
surface roughness by 34.80%.

• In future studies, it is anticipated that machine 
learning techniques, particularly decision tree al-
gorithms and heatmaps, will be increasingly em-
ployed for the optimization of cutting parameters 
in machinability research. In real-time and multi-
variate manufacturing environments, these meth-
ods will enable more effective analysis of the effects 
of process parameters on outputs such as surface 
quality, cutting force, and tool life. The integration 
of visualization tools like heatmaps and correlation 
analyses will facilitate the understanding of com-
plex relationships among parameters and improve 
model accuracy. Consequently, data-driven deci-
sion support systems will be developed for manu-
facturing processes, enhancing both the speed and 
precision of machinability evaluations. Ultimate-
ly, machine learning-based approaches will play a 
crucial role in optimizing cutting parameters and 
improving process efficiency, offering significant 
quality and cost benefits in advanced manufactur-
ing technologies.

• 
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