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Abstract

This paper develops and analyzes a deterministic SEIHR (Susceptible-Exposed-Infectious-Hospitalized-
Recovered) model to investigate the transmission dynamics of cerebrospinal meningitis (CSM) and
evaluate optimal control strategies. The framework incorporates three time-dependent control vari-
ables: mass vaccination of susceptible individuals, enhanced treatment for hospitalized patients,
and public awareness campaigns. Using Pontryagin’s Maximum Principle, we formulate an optimal
control problem to minimize the number of infected individuals and the costs associated with the
interventions. The basic reproduction number (R0) is derived, and its sensitivity to key parameters
is analyzed. Numerical simulations, using data relevant to the Yobe State context, demonstrate that
a combined strategy of early, intensive vaccination, sustained treatment efforts, and effective public
awareness is the most effective approach to mitigate the burden of a CSM outbreak. These findings
provide quantitative support for evidence-based public health policies aimed at controlling meningitis
in high-risk regions.
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1 Introduction

Cerebrospinal Meningitis (CSM) remains a formidable global health challenge, defined by its
potential to cause devastating, fast-moving epidemics with high fatality rates. The World Health
Organization (WHO) has recognized its severe impact by launching the "Defeating Meningitis
by 2030" global roadmap, a testament to the international commitment required to control this
disease [1]. CSM, an inflammation of the membranes surrounding the brain and spinal cord, is
caused by various pathogens, but its bacterial form is primarily driven by agents like Neisseria
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meningitidis and Streptococcus pneumoniae is the most life-threatening, capable of causing death
within 24 hours of symptom onset [2, 3]. Survivors often face lifelong disabilities, including
hearing loss, neurological damage, and limb loss, imposing a heavy socioeconomic burden on
communities and healthcare systems.
The epicenter of the global meningitis burden is the "African meningitis belt," a vast region
stretching across sub-Saharan Africa where the disease is hyperendemic. Historically, this region
was plagued by massive epidemics of serogroup A meningococcus. While the introduction of the
MenAfriVac® conjugate vaccine led to a dramatic decline in serogroup A cases, the epidemiological
landscape has since evolved [4, 5]. Recent years have seen a concerning rise in outbreaks caused
by other serogroups, such as C, W, and X, demonstrating the pathogen’s adaptive capacity and the
ongoing need for vigilant surveillance and responsive control strategies. Nigeria, located at the
heart of this belt, is particularly vulnerable. The country experiences recurrent seasonal outbreaks,
typically between December and April, when the dry, dusty Harmattan winds are thought to
facilitate the transmission of respiratory pathogens [6]. The early 2024 outbreaks in Yobe and
Gombe States, which resulted in over a thousand suspected cases and dozens of deaths, serve
as a stark reminder of this persistent threat and underscore the urgency of reinforcing control
measures [7–9].
In response to such complex public health challenges, mathematical modeling has emerged as an
indispensable tool for dissecting disease transmission dynamics and prospectively evaluating in-
tervention strategies [10]. A significant body of literature has applied these methods to meningitis.
For instance, Agusto and Leite used an optimal control framework to analyze the 2017 meningitis
outbreak in Nigeria, focusing on vaccination and treatment [11]. Others, like Crankson et al., have
modeled the specific impact of vaccination on transmission [12]. While these national-level models
are invaluable, disease dynamics are often highly localized, and strategies must be tailored to
specific regional contexts. More locally, Madaki et al. developed a model for bacterial meningitis
dynamics within a hospital in Yobe State [13]. However, their work was primarily descriptive
and did not employ optimal control theory to determine the most cost-effective, time-dependent
intervention policies for the entire population. This distinction is crucial, as optimal control
provides a prescriptive framework for resource allocation, moving beyond predicting outcomes to
actively shaping them [14].
Despite these contributions, a critical gap remains: the development of an optimal control frame-
work specifically tailored to the epidemiological context of the most recent CSM outbreaks in
Nigeria’s high-risk states, such as the 2024 Yobe event. This study aims to fill this gap by proposing
and analyzing a novel SEIHR (Susceptible-Exposed-Infectious-Hospitalized-Recovered) model.
The inclusion of a distinct Hospitalized (H) compartment is a key feature, allowing for a more
nuanced analysis of the healthcare burden and the direct impact of treatment-based interventions.
We introduce three time-dependent control functions representing mass vaccination of susceptible
individuals, enhanced treatment for hospitalized patients, and public awareness campaigns to re-
duce contact rates. The primary objective is to determine the optimal, synergistic implementation
of these three controls to minimize both the number of infections and the associated intervention
costs. By calibrating our model with parameters relevant to the Yobe State context, this research
seeks to provide quantitative, data-driven recommendations that can directly inform public health
authorities in managing current and future CSM outbreaks.
The paper is organized as follows: Section 2 presents the model formulation and its basic prop-
erties. Section 3 covers the mathematical analysis, including equilibrium points, stability, and
sensitivity analysis. Section 4 includes the construction of the optimal control problem formulation.
Section 5 presents numerical simulations and a discussion of the results. Finally, Section 6 provides
conclusions and policy recommendations.
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2 Model formulation

We formulate a deterministic compartmental model that describes the transmission dynamics of
Cerebrospinal Meningitis (CSM) by dividing the total population, N(t), into five compartments:
Susceptible S(t), Exposed X(t), Infectious I(t), Hospitalized H(t), and Recovered R(t). The total
population is given by

N(t) = S(t) + X(t) + I(t) + H(t) + R(t).

Recruitment into susceptible subpopulation is generated at a constant rate Λ and decreases due to
natural death at a rate µ, vaccination or other protective measures at a rate (ϵu1 + θ), and infection,
which moves individuals to the exposed class at a rate of β(1−ηu3)SI

N . Individuals in the exposed
compartment, X(t), have been infected but are not yet infectious; this population decreases as
individuals become infectious at a rate αX or through natural death at a rate µX. The infectious
group, I(t), is populated by these newly infectious individuals and decreases as individuals are
hospitalized at a rate ρϕI, recover without hospitalization at a rate (1 − ρ)γI, die from the disease
at a rate dI, or die from natural causes at a rate µI. The hospitalized compartment, H(t), increases
as infectious individuals are admitted and decreases as they recover at a rate (ω + ψu2)H or
through natural death at a rate µH. Finally, the recovered population, R(t), is increased by the
recovery of both non-hospitalized and hospitalized individuals, as well as by the vaccination or
protection of susceptible individuals. The recovered population decreases solely through natural
death at a rate µR.

Model assumptions

The formulation of the CSM model is based on the following set of assumptions:

i. New individuals are recruited into the susceptible population at a constant rate, Λ.
ii. The model assumes a natural death rate, µ, which is constant across all compartments.

iii. The disease is transmitted through direct contact between susceptible and infectious individ-
uals. The model uses a standard incidence rate, given by βSI

N , where β is the effective contact
rate.

iv. It is assumed that the population mixes homogeneously, meaning every individual has an
equal chance of coming into contact with any other individual.
v. After infection, susceptible individuals first enter an exposed (latent) period, where they are
infected but not yet infectious, before progressing to the infectious class at a rate α.

vi. Infectious individuals may die from the disease at a rate d.
vii. A proportion, ρ, of infectious individuals are hospitalized at a rate ϕ, while the remaining

fraction, (1 − ρ), recovers without hospitalization at a rate γ.
viii. Hospitalized individuals recover at a rate ω.

ix. Recovery from the infection confers permanent immunity, and there is no subsequent return
to the susceptible class.
x. Susceptible individuals can become immune without being infected through vaccination or
other protective measures at a rate (ϵu1 + θ).

xi. The model incorporates three time-dependent control strategies: u1(t) for vaccination/protection,
u2(t) for treatment of hospitalized individuals, and u3(t) for measures that reduce disease trans-
mission (e.g., social distancing, masks). The parameters ϵ, ψ, and η represent the effectiveness
of these respective controls.

xii. All parameters used in the model are assumed to be non-negative constants.
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A schematic diagram of the model is shown in Figure 1.

Figure 1. Schematic flow diagram of the CSM transmission dynamics

Model equations

Based on the given assumptions and the flow diagram, the model is described by the following
system of nonlinear ordinary differential equations (ODEs):

dS
dt

= Λ −
β(1 − ηu3(t))SI

N
− (ϵu1(t) + θ)S − µS, (1)

dX
dt

=
β(1 − ηu3(t))SI

N
− (α + µ)X, (2)

dI
dt

= αX − (ρϕ + (1 − ρ)γ + d + µ)I, (3)

dH
dt

= ρϕI − (ψu2(t) + ω + µ)H, (4)

dR
dt

= (ϵu1(t) + θ)S + (1 − ρ)γI + (ψu2(t) + ω)H − µR. (5)

The state variables and parameters are described in Table 1. The control functions u1(t), u2(t), and
u3(t) represent the time-dependent efforts for mass vaccination, enhanced treatment, and public
awareness campaigns, respectively. They are bounded such that 0 ≤ ui(t) ≤ 1 for i = 1, 2, 3. A
value of 0 indicates no control effort, while 1 indicates maximum effort.

3 Model analysis

For the model to be epidemiologically meaningful, we must show that all state variables remain
non-negative and that the total population is bounded for all time t ≥ 0.

Theorem 1 (Positivity and Boundedness) Given non-negative initial conditions S(0) ≥ 0, X(0) ≥ 0,
I(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0, the solutions (S(t), X(t), I(t), H(t), R(t)) of the system (1)–(5) remain
non-negative for all t > 0. Furthermore, the total population N(t) is bounded.

Proof From Eq. (1), when S = 0, we have dS
dt

∣∣
S=0 = Λ > 0. This implies that S(t) cannot

become negative. Similarly, examining Eqs. (2)–(5) at the boundaries where each state variable
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Table 1. Description of model state variables and parameters

Symbol Description Unit
State Variables
S(t) Susceptible individuals Number of persons
X(t) Exposed (latently infected) individuals Number of persons
I(t) Infectious individuals Number of persons
H(t) Hospitalized individuals Number of persons
R(t) Recovered individuals Number of persons
N(t) Total population Number of persons
Parameters

Λ Recruitment rate into susceptible population persons/day
β Effective contact rate for transmission 1/day
µ Natural death rate 1/day
d Disease-induced death rate for infectious 1/day
α Progression rate from exposed to infectious 1/day
ρ Proportion of infectious individuals hospitalized dimensionless
ϕ Rate of hospitalization for infectious individuals 1/day
γ Recovery rate for non-hospitalized infectious 1/day
ω Baseline recovery rate for hospitalized individuals 1/day
θ Rate of routine immunization 1/day

Control Parameters
ϵ Maximum rate of mass vaccination campaign 1/day
ψ Maximum rate of enhanced treatment for hospitalized 1/day
η Maximum effectiveness of awareness on contact rate dimensionless

u1(t) Control effort for vaccination dimensionless
u2(t) Control effort for treatment dimensionless
u3(t) Control effort for public awareness dimensionless

equals zero shows that the derivatives are non-negative, preventing the solutions from leaving the
non-negative orthant. Thus, all state variables remain non-negative for all t > 0.

For boundedness, we sum Eqs. (1)–(5) to find the rate of change of the total population N(t):

dN
dt

= Λ − µN − dI.

Since dI ≥ 0, we have

dN
dt

≤ Λ − µN.

Solving this differential inequality yields

N(t) ≤ Λ
µ
+

(
N(0)−

Λ
µ

)
e−µt.

As t → ∞, we have N(t) → Λ
µ . Thus, the total population is bounded, and the feasible region for

the model is:

Ω =

{
(S, X, I, H, R) ∈ R5

+ : S + X + I + H + R ≤ Λ
µ

}
.

The set Ω is positively invariant and attracts all solutions in R5
+.
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Disease-free equilibrium

The disease-free equilibrium (DFE) represents a state where the disease is absent from the pop-
ulation. To find the DFE, denoted by E0 = (S0, X0, I0, H0, R0), we set the disease compartments
to zero (X = I = H = 0) and the system to a steady state (all derivatives equal to zero), with no
emergency controls (u1 = u2 = u3 = 0).

Setting dS
dt = 0 and dR

dt = 0 with X = I = H = 0, we obtain:

Λ − (θ + µ)S0 = 0, (6)

θS0 − µR0 = 0. (7)

From the first Eq. (6), we solve for S0:

S0 =
Λ

θ + µ
.

From the second Eq. (7), we solve for R0:

R0 =
θS0

µ
=

θ

µ

(
Λ

θ + µ

)
=

Λθ

µ(θ + µ)
.

Thus, the disease-free equilibrium is:

E0 =

(
Λ

θ + µ
, 0, 0, 0,

Λθ

µ(θ + µ)

)
.

The total population at DFE is

N0 = S0 + R0 =
Λ

θ + µ
+

Λθ

µ(θ + µ)
=

Λ
µ

.

Basic reproduction number

The basic reproduction number, R0, is derived using the next-generation matrix method [15]. We
consider the infected compartments, X and I. The equations for new infections (F ) and transitions
(V) are:

F =

(
βSI
N
0

)
, V =

(
(α + µ)X
−αX + kI I

)
,

where kI = ρϕ + (1 − ρ)γ + d + µ.

The Jacobians of F and V evaluated at the DFE (E0) are:

F =

(
0 βS0

N0

0 0

)
, V =

(
α + µ 0
−α kI

)
.
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We calculate the inverse of V:

V−1 =

(
1

α+µ 0
α

(α+µ)kI

1
kI

)
.

The next-generation matrix is K = FV−1:

K =

(
αβS0

(α+µ)kI N0

βS0
kI N0

0 0

)
.

The basic reproduction number R0 is the spectral radius (largest eigenvalue) of K:

R0 = ρ(K) =
αβS0

(α + µ)kI N0
.

Substituting S0 = Λ
θ+µ , and N0 = Λ

µ , we obtain S0
N0

= µ
θ+µ , giving:

R0 =
αβµ

(α + µ)(θ + µ)(ρϕ + (1 − ρ)γ + d + µ)
. (8)

Endemic equilibrium

An endemic equilibrium (EE), E∗ = (S∗, X∗, I∗, H∗, R∗), exists when I∗ > 0. At the endemic steady
state, the effective reproduction number equals unity, which gives R0

S∗
S0

= 1, implying:

S∗ =
S0

R0
=

Λ
(θ + µ)R0

.

The force of infection at equilibrium is λ∗ = βI∗
N∗ . From the steady-state equation for S:

Λ − λ∗S∗ − (θ + µ)S∗ = 0,

which gives S∗ = Λ
λ∗+θ+µ .

Equating the two expressions for S∗:

Λ
λ∗ + θ + µ

=
Λ

(θ + µ)R0
,

λ∗ + θ + µ = (θ + µ)R0,

λ∗ = (θ + µ)(R0 − 1).

Since λ∗ must be positive for an endemic state to exist, we require R0 > 1. This confirms that a
unique endemic equilibrium exists if and only if R0 > 1.

Stability analysis of the model

Theorem 2 (Local Stability of DFE) The disease-free equilibrium E0 is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1.

Proof The stability of E0 is determined by the eigenvalues of the Jacobian matrix of the system
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evaluated at E0. The Jacobian has a block structure. Three eigenvalues corresponding to the S, H,
and R equations are λS = −(θ + µ), λH = −(ω + µ), and λR = −µ, all of which are negative.

The stability is therefore determined by the eigenvalues of the 2 × 2 submatrix for the infected
compartments (X, I), given by JXI = F − V:

JXI =

(
−(α + µ) βS0

N0

α −kI

)
.

The characteristic equation is:

λ2 + (α + µ + kI)λ + (α + µ)kI(1 − R0) = 0.

By the Routh-Hurwitz criterion, the roots have negative real parts if and only if all coefficients are
positive. We have a1 = α + µ + kI > 0 and a0 = (α + µ)kI(1 − R0). Thus, a0 > 0 requires R0 < 1.
If R0 > 1, then a0 < 0, and the DFE is unstable.

Global stability of the disease-free equilibrium (DFE)

The Disease-Free Equilibrium is given by E0 = (S0, X0, I0, H0, R0) =
(

Λ
µ , 0, 0, 0, 0

)
. Its global

stability is determined by the basic reproduction number, R0. The DFE is globally asymptotically
stable if R0 ≤ 1.

Theorem 3 The Disease-Free Equilibrium (E0) is globally asymptotically stable in the feasible region if
R0 ≤ 1.

Proof To prove the global stability of the DFE, we construct a Lyapunov function. Consider the fol-
lowing candidate Lyapunov function, which is a linear combination of the infected compartments:

L = αX + k1 I.

This function is clearly positive for any non-zero value of the infected compartments (X > 0, I > 0)
and L = 0 only at the DFE.

Now, we compute the time derivative of L along the solution trajectories of the system:

dL
dt

= α
dX
dt

+ k1
dI
dt

.

Substituting the expressions for dX
dt and dI

dt from the model equations:

dL
dt

= α

(
βSI
N

− k1X
)
+ k1(αX − k2 I)

=
αβSI

N
− αk1X + αk1X − k1k2 I

=

(
αβS
N

− k1k2

)
I.

Since the total population is bounded, S(t) ≤ N(t) and S(t) ≤ S0 = Λ
µ in the feasible region.
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Therefore, we can write:

dL
dt

≤
(

αβS0

N
− k1k2

)
I.

We can factor out k1k2:

dL
dt

≤ k1k2

(
αβS0

Nk1k2
− 1
)

I.

By definition, R0 = αβS0

Nk1k2
. Substituting this into the inequality gives:

dL
dt

≤ k1k2(R0 − 1)I.

If R0 ≤ 1, then (R0 − 1) ≤ 0. Since k1, k2, and I are all non-negative, this implies that dL
dt ≤ 0.

The derivative dL
dt = 0 if and only if R0 = 1 or I(t) = 0. If I(t) = 0 for all t, then from the equation

for dI
dt , we must have αX(t) = 0, which implies X(t) = 0 (since α > 0). If X(t) = 0 and I(t) = 0,

then from the equation for dH
dt , we get dH

dt = −k3H, which means H(t) → 0 as t → ∞. When all
infected compartments are zero, the system converges to the DFE, E0.

By LaSalle’s Invariance Principle, since dL
dt ≤ 0 and the largest invariant set where dL

dt = 0 is the
singleton {E0}, the DFE is globally asymptotically stable for R0 ≤ 1.

Global stability of the endemic equilibrium (EE)

When R0 > 1, the model has a unique Endemic Equilibrium E∗ = (S∗, X∗, I∗, H∗, R∗), where all
components are positive. Its global stability implies that the disease will persist in the population.

Theorem 4 If R0 > 1, the Endemic Equilibrium (E∗) is globally asymptotically stable in the interior of
the feasible region.

Proof To prove the global stability of the EE, we use a more complex nonlinear Lyapunov function,
often of a Goh-Volterra type, which measures the deviation of the state variables from their
endemic equilibrium values. Consider the function V:

V(t) =
(

S − S∗ ln
S
S∗

)
+

(
X − X∗ ln

X
X∗

)
+

k1

α

(
I − I∗ ln

I
I∗

)
+

ρϕk1

αk3

(
H − H∗ ln

H
H∗

)
.

This function is positive definite for all S, X, I, H > 0 and is zero only at the endemic equilibrium
E∗.

The time derivative of V(t) is:

dV
dt

=

(
1 −

S∗

S

)
dS
dt

+

(
1 −

X∗

X

)
dX
dt

+
k1

α

(
1 −

I∗

I

)
dI
dt

+
ρϕk1

αk3

(
1 −

H∗

H

)
dH
dt

.
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At the endemic equilibrium E∗, the derivatives are zero:

Λ =
βS∗ I∗

N
+ (ϵu1 + θ)S∗ + µS∗,

βS∗ I∗

N
= k1X∗,

αX∗ = k2 I∗,

ρϕI∗ = k3H∗.

Substituting the derivatives and using the equilibrium conditions:(
1 −

S∗

S

)
dS
dt

=

(
1 −

S∗

S

)(
Λ −

βSI
N

− (ϵu1 + θ)S − µS
)

=

(
1 −

S∗

S

)(
βS∗ I∗

N
+ (ϵu1 + θ)S∗ + µS∗ −

βSI
N

− (ϵu1 + θ)S − µS
)

,(
1 −

X∗

X

)
dX
dt

=

(
1 −

X∗

X

)(
βSI
N

− k1X
)

,

k1

α

(
1 −

I∗

I

)
dI
dt

=
k1

α

(
1 −

I∗

I

)
(αX − k2 I).

Combining these terms leads to significant algebraic simplification. The key idea is to group terms
in a way that exploits the properties of geometric and arithmetic means. After a detailed expansion
(which is quite lengthy), one can show that the terms group into forms like

(
2 − S∗

S − SI
S∗ I∗

I∗
I

)
,

which are less than or equal to zero by the AM-GM inequality (e.g., x + 1/x ≥ 2).

The final result of the derivative calculation is:

dV
dt

=(µ + ϵu1 + θ)S∗
(

2 −
S
S∗ −

S∗

S

)
+

βS∗ I∗

N

(
3 −

S∗

S
−

X∗ IS
XI∗S∗ −

XI∗

X∗ I

)
≤0.

The inequality holds because S
S∗ + S∗

S ≥ 2 and S∗
S + X∗ IS

XI∗S∗ + XI∗
X∗ I ≥ 3 by the AM-GM inequality.

Equality, dV
dt = 0, occurs only when S = S∗, X = X∗, I = I∗, and H = H∗. This means the only

invariant set where dV
dt = 0 is the endemic equilibrium singleton {E∗}.

Therefore, by LaSalle’s Invariance Principle, the endemic equilibrium E∗ is globally asymptotically
stable whenever it exists (i.e., when R0 > 1).

Sensitivity analysis

The normalized forward sensitivity index of R0 with respect to a parameter p measures the
proportional change in R0 for a proportional change in p:

ΥR0
p =

∂R0

∂p
× p

R0
.

Using Eq. (8), we calculate the sensitivity indices for key parameters:
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• Transmission rate β:

ΥR0
β = +1.

• Progression rate α:

ΥR0
α =

µ

α + µ
> 0.

• Routine immunization rate θ:

ΥR0
θ = −

θ

θ + µ
< 0.

• Disease-induced death rate d:

ΥR0
d = −

d
kI

< 0.

• Hospitalization rate ϕ:

ΥR0
ϕ = −

ρϕ

kI
< 0.

These sensitivity indices reveal that R0 is most sensitive to the transmission rate β (with elasticity
+1), and increasing control parameters such as θ, d, or ϕ reduces R0.

4 Optimal control problem

We aim to minimize the number of infectious and hospitalized individuals while also minimizing
the cost of implementing the control strategies. The objective functional to be minimized is:

J(u1, u2, u3) =

∫T

0

(
A1 I(t) + A2H(t) +

C1

2
u2

1(t) +
C2

2
u2

2(t) +
C3

2
u2

3(t)
)

dt,

where A1, A2 are weight constants for the infectious and hospitalized populations, and C1, C2, C3
are weight constants for the costs of vaccination, treatment, and public awareness, respectively.
We seek to find the optimal control triple (u∗

1, u∗
2, u∗

3) such that:

J(u∗
1, u∗

2, u∗
3) = min{J(u1, u2, u3) | ui ∈ U, i = 1, 2, 3},

where

U = {ui(t) | ui(t) is Lebesgue measurable and 0 ≤ ui(t) ≤ 1, ∀t ∈ [0, T]}.

We use Pontryagin’s Maximum Principle [16] to derive necessary conditions for the optimal
controls. The Hamiltonian H is constructed from the objective functional and the state equations:

H = A1 I + A2H +
C1

2
u2

1 +
C2

2
u2

2 +
C3

2
u2

3 +
5∑

i=1

λi fi,
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where fi are the right-hand sides of the state equations and λi(t) for i ∈ {S, X, I, H, R} are the
adjoint (costate) variables associated with each state variable.

The adjoint system

The adjoint system is governed by the set of differential equations derived from the Hamiltonian,
given by dλi

dt = − ∂H
∂xi

, where xi represents the state variables S, X, I, H, R. The derivatives are
calculated as follows:

dλS
dt

= −
∂H
∂S

= −

[
−λS

(
β(1 − ηu3)I

N
+ (ϵu1 + θ) + µ

)
+ λX

(
β(1 − ηu3)I

N

)
+ λR(ϵu1 + θ)

]
= (λS − λX)

β(1 − ηu3)I
N

+ λS(ϵu1 + θ + µ)− λR(ϵu1 + θ), (9)

dλX
dt

= −
∂H
∂X

= − [−λX(α + µ) + λI(α)]

= λX(α + µ)− λIα, (10)

dλI
dt

= −
∂H
∂I

= −

[
A1 − λS

(
β(1 − ηu3)S

N

)
+ λX

(
β(1 − ηu3)S

N

)
− λI(ρϕ + (1 − ρ)γ + d + µ)

+λH(ρϕ) + λR((1 − ρ)γ)]

= −A1 + (λS − λX)
β(1 − ηu3)S

N
+ λI(ρϕ + (1 − ρ)γ + d + µ)− λHρϕ − λR(1 − ρ)γ, (11)

dλH
dt

= −
∂H
∂H

= − [A2 − λH(ω + ψu2 + µ) + λR(ω + ψu2)]

= −A2 + λH(ω + ψu2 + µ)− λR(ω + ψu2), (12)

dλR
dt

= −
∂H
∂R

= − [−λRµ]

= λRµ. (13)

This system is solved with the terminal conditions (transversality conditions):

λS(T) = λX(T) = λI(T) = λH(T) = λR(T) = 0.

Characterization of the optimal controls

The optimal controls u∗
1(t), u∗

2(t), and u∗
3(t) are found by minimizing the Hamiltonian with respect

to each control variable on the admissible control set U . The optimality conditions are obtained by
differentiating the Hamiltonian with respect to u1, u2, and u3 and setting the results to zero.
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For u1(t):

∂H
∂u1

= C1u1 − λS(ϵS) + λR(ϵS) = C1u1 − ϵS(λS − λR) = 0.

Solving for u1 gives u∗
1(t) =

ϵS(λS−λR)
C1

.
For u2(t):

∂H
∂u2

= C2u2 − λH(ψH) + λR(ψH) = C2u2 − ψH(λH − λR) = 0.

Solving for u2 gives u∗
2(t) =

ψH(λH−λR)
C2

.
For u3(t):

∂H
∂u3

= C3u3 + λS

(
βηSI

N

)
− λX

(
βηSI

N

)
= C3u3 +

βηSI
N

(λS − λX) = 0.

Solving for u3 gives u∗
3(t) = −

βηSI
NC3

(λS − λX).
Considering the bounds on the controls, the optimal controls are characterized as follows:

u∗
1(t) = max

{
0, min

{
u1,max,

ϵS(λS − λR)

C1

}}
, (14)

u∗
2(t) = max

{
0, min

{
u2,max,

ψH(λH − λR)

C2

}}
, (15)

u∗
3(t) = max

{
0, min

{
u3,max,−

βηSI
NC3

(λS − λX)

}}
. (16)

The optimal control problem is thus defined by the system of state equations, the system of adjoint
equations, and the characterizations of the optimal controls, subject to the initial conditions on the
state variables and the terminal conditions on the adjoint variables.

5 Numerical simulations and discussion

To illustrate the behavior of the model and the effectiveness of the optimal control strategies, we
perform numerical simulations. The optimality system, consisting of the state equations (1)-(5)
and the adjoint equations (9)-(13) with the optimal control characterizations (14)-(16), is solved
using a forward-backward sweep method [14].

Parameter estimation

The simulation uses parameter values that are chosen to be realistic for Yobe State, Nigeria, based
on existing literature on meningitis modeling [11–13]. The total population is assumed to be
approximately 3.4 million, with a life expectancy of about 55 years. The simulation is run for
a period of T = 150 days to represent a typical meningitis season. The parameter values are
summarized in Table 2.
With these parameter values, the basic reproduction number (without controls) is computed using
Eq. (8):

R0 =
αβµ

(α + µ)(θ + µ)kI
≈ 2.87, (17)
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Table 2. Parameter values used for numerical simulations

Symbol Value Source/Reference
N(0) 3,400,000 Yobe State Population (Estimate)

µ 1/(55 × 365) ≈ 4.98 × 10−5 day−1 Assumed life expectancy
Λ µN(0) ≈ 169 persons/day Assuming stable population
β 0.45 day−1 Assumed/calibrated [11]
α 1/7 ≈ 0.143 day−1 Incubation period (5–10 days)
ρ 0.6 Proportion hospitalized (assumed)
ϕ 1/2 = 0.5 day−1 Rate of hospitalization (assumed)
γ 1/10 = 0.1 day−1 Recovery rate (assumed)
ω 1/14 ≈ 0.071 day−1 Baseline hospital recovery rate
d 0.15 day−1 Disease-induced death rate (assumed CFR)
θ 0.001 day−1 Routine immunization rate (assumed)
ϵ 0.1 day−1 Maximum vaccination campaign rate
ψ 0.2 day−1 Maximum enhanced treatment rate
η 0.5 Maximum awareness effectiveness

Initial Conditions
S(0) 3,398,000
X(0) 1,000
I(0) 500
H(0) 500
R(0) 0
Cost Function Weights

A1 1 Weight for infectious individuals
A2 1 Weight for hospitalized individuals
C1 100 Cost weight for vaccination
C2 200 Cost weight for treatment
C3 50 Cost weight for public awareness

where kI = ρϕ + (1 − ρ)γ + d + µ ≈ 0.49 day−1. Since R0 > 1, the disease will persist and cause
an epidemic without intervention.

Simulation results

We compare four distinct control scenarios to assess the effectiveness of different intervention
strategies:

i. Scenario 1 (No Control): All control efforts are absent, i.e., u1 = u2 = u3 = 0.
ii. Scenario 2 (Strategy A): Optimal vaccination and public awareness only (u∗

1 and u∗
3 active,

u2 = 0).
iii. Scenario 3 (Strategy B): Optimal treatment and public awareness only (u∗

2 and u∗
3 active,

u1 = 0).
iv. Scenario 4 (Strategy C): Optimal implementation of all three controls (u∗

1, u∗
2, and u∗

3 all
active).

The results are presented in Figure 2, Figure 3, Figure 4 and Figure 5.

Cost-effectiveness analysis

The analysis compares the three active intervention strategies (Strategy A, B, and C) against the
baseline scenario of "No Control." We use the following metrics:

• Health Outcome: The primary health outcome is the number of peak infections averted during
the 150-day simulation period, as derived from the results presented in Figure 2.
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Figure 2. Infectious population I(t) under different control strategies

Figure 3. Hospitalized population H(t) under different control strategies

• Costs: The total cost for each strategy is the integrated cost of implementing the controls
(u1, u2, u3). Since the exact monetary values are not calculated in the simulations, we denote
them as Total CostA, Total CostB, and Total CostC. The cost for the "No Control" scenario is $0.

The primary tool for comparison is the Incremental Cost-Effectiveness Ratio (ICER), which quanti-
fies the additional cost per additional health benefit gained.

Step 1: Tabulation of costs and outcomes

First, we summarize the outcomes and costs for each scenario. The peak infections are estimated
from Figure 2 and the summary is presented in Table 3.
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Figure 4. Optimal control profile of implementation of all the controls

Figure 5. Dynamics of susceptible population S(t)

Table 3. Summary of costs and health outcomes for each strategy

Strategy Peak Infections Peak Infections Averted Total Cost (Placeholder)
Scenario 1 (No Control) 45 000 0 $0
Scenario 3 (Strategy B) 25 000 20 000 Total CostB
Scenario 2 (Strategy A) 15 000 30 000 Total CostA
Scenario 4 (Strategy C) 4000 41 000 Total CostC
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Step 2: Rank by effectiveness and eliminate dominated strategies

We rank the strategies in order of increasing effectiveness (more infections averted). A strategy is
considered "dominated" if it is both more costly and less effective than an alternative.
The order of effectiveness is: Strategy C > Strategy A > Strategy B > No Control.
Based on the components of each strategy, it is reasonable to assume the costs are ordered as
follows: Total CostC > Total CostA and Total CostC > Total CostB. Since no strategy is less effective
and more costly than another in this ranking, none are dominated, and all will be included in the
ICER calculation.

Step 3: Calculation of the incremental cost-effectiveness ratio (ICER)

We calculate the ICER for each strategy compared to the next less effective one.

Strategy B vs. No Control
The ICER for implementing Strategy B (treatment and awareness) instead of doing nothing is:

ICERB vs. No Control =
Total CostB − 0

20, 000 − 0
=

Total CostB

20, 000
, [$/infection averted].

Strategy A vs. Strategy B
The ICER for choosing Strategy A (vaccination and awareness) over Strategy B is:

ICERA vs. B =
Total CostA − Total CostB

30, 000 − 20, 000
=

∆CostA-B

10, 000
, [$/additional infection averted].

Strategy C vs. Strategy A
Finally, the ICER for implementing the full combined strategy (Strategy C) over Strategy A is:

ICERC vs. A =
Total CostC − Total CostA

41, 000 − 30, 000
=

∆CostC-A

11, 000
, [$/additional infection averted].

Discussion of results

The decision of which strategy is "best" depends on a willingness-to-pay (WTP) threshold, which
is the maximum price a public health system is willing to pay for each infection averted.

• Strategy B is considered cost-effective if ICERB vs. No Control < WTP.
• Strategy A is preferred over B if ICERA vs. B < WTP.
• Strategy C is the most cost-effective choice if ICERC vs. A < WTP.

As presented by the results, strategy C leads to a "dramatic reduction in total infections" (ap-
proximately 91% reduction in peak cases) and concludes that this approach is likely "highly
cost-effective." This implies a strong qualitative conclusion: the immense health benefit from
averting an additional 11,000 peak infections (and the associated costs of treatment, long-term
disability, and mortality) is expected to far outweigh the additional investment (∆CostC-A).
Therefore, while the precise numerical ICER value depends on the actual costs, the analysis
strongly supports the paper’s conclusion. The synergistic effect of combining vaccination, treat-
ment, and public awareness (Strategy C) not only provides the greatest health benefit but also
represents the most efficient use of resources when considering the full societal and healthcare
costs of a severe CSM epidemic.
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6 Conclusion

This study developed and analyzed a deterministic SEIHR model for Cerebrospinal Meningitis
(CSM) in Yobe State, Nigeria, demonstrating that an integrated control strategy is overwhelmingly
the most effective approach to mitigating outbreaks. The model’s basic reproduction number
(17) (R0 ≈ 2.87) confirmed the potential for a severe epidemic without intervention, a scenario
validated by stability analysis. Using an optimal control framework, numerical simulations
revealed that the synergistic application of all three interventions (vaccination, enhanced treatment,
and public awareness) is profoundly more effective than any partial strategy. This combined
approach (Strategy C) reduced the peak number of infections by an estimated 91% compared to
the baseline scenario with no controls, a result far superior to strategies using only one or two
interventions.
The findings advocate for a dynamic public health response: preventative measures, specifically
vaccination and public awareness, must be deployed immediately and intensively at the start of
an outbreak to curb transmission. Simultaneously, treatment capacity should be scaled to meet
demand as it peaks. This integrated strategy, while requiring upfront investment, is also the most
cost-effective, as it averts the substantial downstream costs associated with widespread infection,
long-term disability, and mortality. Finally, the research provides strong quantitative evidence
that a proactive, multi-component, and dynamically managed strategy is essential for effectively
controlling CSM epidemics and protecting vulnerable populations in high-risk regions.
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