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Abstract 

 
In this study, we proposed a marginalized multilevel random effects model for analysis of longitudinal semi-continuous 

data. We investigated the performance of the proposed model through a Monte Carlo simulation study under scenarios. 

The results of the simulation study showed that the proposed model has some favourable statistical properties. 

Keywords: Augmented zeros; correlated random effects; marginalized models. 

 
Öz 

 
Uzunlamasına kısmi-sürekli veri için marjinalleştirilmiş çok seviyeli rastgele etkili bir model 

 

Bu çalışmada, uzunlamasına kısmi-sürekli veri için marjinalleştirilmiş çok seviyeli rastgele etkili bir model önerdik. 

Önerilen yöntemin başarısını farklı senaryolar altında bir Monte Carlo benzetim çalışmasıyla inceledik. Benzetim 

çalışmasının sonuçları önerilen modelin yeterli istatistiksel özelliklere sahip olduğunu göstermiştir. 

Anahtar sözcükler: Artırılmış sıfırlar; ilişkili rastgele etkiler; marjinalleştirilmiş modeller. 

1. Introduction  

A semi-continuous response variable is a mixture of zeros and positive continuous outcomes that often 

tend be right-skewed. The semi-continuous response variable can be observed in many disciplines from 

medical cost studies to insurance claim studies. For example, it is well-known that cost claim data in 

insurance studies has a semi-continuous nature where the data is divided into two parts: i) whether a claim 

is occurred or not (resulting in a considerable number of zeros) and ii) the amount of claims given the 

occurrence of the claim (resulting in a positive valued continuous data). 

 

While traditional regression models working under normal distribution assumption cannot be realistic for 

semi-continuous data (e.g., may lead to negative predictions), transformation techniques can be used to 

make the semi-continuous data normally distributed to be able to use these models. However, since 

transformation changes the scale of the data, this approach may result in lack of interpretation. 

Furthermore, some commonly used transformations such as a square root transformation leave zeros 

unchanged and a log-transformation cannot be applied on zeros. Other approaches may be omitting the 

zeros from the data analysis, which may result in efficiency loss, and adding small positive values to 

zeros. To avoid from these problems, the recent literature focused on two-part regression models which 
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accommodate both zero and non-zero values. Recent literature review in this context is available in 

Neelon et al. [10], Neelon et al. [11], Farewell et al. [2], and Smith et al. [14]. 

 

Within the framework of analysis of longitudinal semi-continuous data, where data is collected over time, 

Olsen and Schafer [12] proposed a two-part random effects model. In their seminal paper, the first part of 

the model is for predicting the probability of presence of a zero value and the second part of the model is 

for predicting the mean of non-zero values. Each part of the model is linked to each other via including 

normally distributed and correlated random effects into the whole model. Following Olsen and Schafer 

[12], Tom et al. [17] (as a rejoinder of Su et al. [16]) proposed a two-part random effects model, where the 

first-part of the model (a logistic regression for presence of a zero) now includes a random intercept from 

a bridge distribution and the second-part of the model (a linear regression for the mean of non-zero values) 

includes a random intercept from normal distribution. Rodrigues-Motta et al. [13] proposed a two-part 

random effects model, where the first-part of the model (logistic part for presence of a zero) includes a 

random intercept from a normal distribution and the second part of the model (linear model for the mean 

of non-zero) takes form from a broader class of distributions such as Weibull, gamma, log-normal 

conditionally on a normally distributed random-intercept. Smith et al. [15] also proposed a two-part 

random effects model, where the first-part of the model (logistic part for presence of a zero) includes a 

random intercept from a normal distribution and the second part of the model now models the overall 

mean of zero and non-zero values conditionally on a normally distributed random intercept via a 

regression model with log link function. 

 

The development of a new regression model may depend on the question of interest as well as the 

characteristics of the motivating data. In this study, we take the marginalized multilevel models (MMMs) 

with random effects (Heagerty [5], Heagerty and Zeger [6]) under investigation since they build separate 

regression models for longitudinal mean and associations of responses to combine the strengths of 

marginal and conditional models. As a consequence of this model building structure, MMMs take the 

population-averaged interpretation and robustness of marginal regression parameters from marginal 

models, whereas they take likelihood-based inference capabilities and flexible specifications for 

longitudinal associations from conditional models (Griswold et al. [4]). Several extensions of MMMs for 

longitudinal binary, count, and non-Gaussian continuous data are available in literature. Its extension to 

longitudinal count data with excess zeros has been discussed by Lee et al. [9] and Kassahun et al. [8] (with 

a rejoinder by Inan [7]), however, to the best of our knowledge, there is no currently published work on 

marginalized multilevel models for analysis of longitudinal semi-continuous data except the one by Zhang 

et al. [18], where they extend the model of Smith et al. [15] to longitudinal semi-continuous data with an 

overall marginal mean inference.  

 

In this study, we propose a marginalized multilevel random effects regression model for analysis of 

longitudinal semi-continuous data. The rest of the paper is organized as follows. In Section 2, we present 

the proposed model and we assess the performance of the proposed method in Section 3. Concluding 

remarks are given in Section 4. 

 

2. Proposed model 

Let itY denote the response of ith subject (i = 1,.., N) at tth time point (t = 1,…, in ) such that itY takes any 

value within the interval [0, + ∞). Then the distribution of itY  is assumed to follow a mixture of the 

degenerate distribution at zero and of gamma distribution in the following form: 

  

                                                                          

                                                                       (1)                                                                                                 
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where 0,itp is the probability of observing a zero value  and the probability density function (pdf) of a non-

zero response variable is assumed to follow a mean parameterized Gamma distribution of form: 

 

it
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it it it it it

it it

1
f(Y = y | , ) = (y ) e ,  for y  > 0,

y ( )

c
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 

 
                                                                          (2) 

 

where c

it  ( c

it 0  ) is the (conditional) mean of the gamma distribution, (.) denotes the gamma function, 

and 
1




  (  > 1)  is the inverse precision parameter, which is held constant across subjects and within 

the measurements of a subject (e.g., it   for all i and t) for simplicity.   

 

Under marginalized multilevel random effects regression models framework, a logistic regression model 

for the marginal mean of zero-part and a gamma regression model with a random-intercept for the 

(conditional) mean of non-zero part are assumed, respectively, as follows: 

 

 
T

0,it 0,it
c

it it i

logit(p ) = γ

log(μ ) = Δ + b ,

X
                                                                                                                                       (3) 

 

where logit(.) and log(.) denote the logit and log link functions, respectively, T

0,it 0,it1 0,itp(X ,...,X )X  is the 

p × 1 vector of covariates associated with probability of observing a zero value,  and T

1 pγ = (γ ,...,γ ) is the 

corresponding vector of regression coefficients.  

 

The term itΔ in the non-zero part of (3) is a subject and time specific connector function, which will be 

clarified later. The logarithm of the mean of the non-zero part is conditioned on the subject-specific 

random-intercept ib , which is assumed to capture the heterogeneity between the subjects and to follow a 

standard normal distribution with mean 0 and variance
2 . Conditional on the random effects ib , all 

measurements of each subject are assumed to be independent of each other. Note that although more 

random effects (e.g., random slopes) can be included into the model, a random intercept form of model is 

assumed here for simplicity. Furthermore, to avoid from over-parameterization and to obtain 

computational easiness in the derivation of itΔ , the logistic regression model for 0,itp  is assumed to be 

free from random effects as in Bandyopadhyay et al. [1] and Galvis et al. [3]. 

 

Then the marginal distribution of itY is assumed to follow a mixture of the degenerate distribution at zero 

and of gamma distribution in the following form: 

 

                                                                                                   

                                                                                     

                                                                     (4)                                                                                                                                  

 

where 0,itp is as defined above and 
m

itμ  is the marginal mean of non-zero part defined as follows: 

 

 
                                                                                                                                    (5)                                                                                                              
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where T

cont,it cont,it1 cont,itp(X ,...,X )X  is the r × 1 vector of covariates associated with the marginal mean of 

non-zero part and T

1 pβ = (β ,...,β ) is the corresponding vector of regression coefficients which have 

population-based inferences. 

 

 

2.1. Calculation of itΔ  

 

Since any conditional expectation can be written in terms of marginal expectation, it is possible to link the 

conditional mean of the non-zero part of the model to the marginal mean model of that via integrating the 

conditional expectation over the distribution of random effects such that: 

 

                                                                                                                                           

                                                                                                             (6)                                                                                                               

 

 

where if(b ) is the standard normal distribution with mean 0 and variance 2 . Substituting marginal and 

conditional means in (3) and (5), respectively, into (6) gives the following expression: 

 

 

 (7) 

 

                                                                                                                                     

 

Solving (7) for itΔ  provides the following closed-form expression: 

 

 

                                                                                                                                   (8) 

 

Apparently, itΔ is a function of both β  from marginal part and 2σ  from conditional part and connects both 

levels two each other. The detailed information on derivation of itΔ  is available in the Appendix.  

 

 

2.2. Likelihood formulation 

 

Let θ = (β, γ, ν) denote the unknown parameters in the proposed model. The joint marginal likelihood of 

the data 1 NY = (Y ,...,Y )  with 
ii i1 inY  = (Y ,...,Y )  can be defined as follows: 

 
i
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where I(.) denotes the indicator function, 0,itp  and 
c

itμ  are as defined in (3) along with itΔ  in (8), and 

if(b ) is the standard normal distribution with mean 0 and variance 
2σ . The maximum likelihood 

estimation of the model parameters will be achieved via SAS NLMIXED procedure. 
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3. Simulation study 
 

3.1 Simulation design 
 

We carried out a Monte Carlo simulation study for assessment of proposed model. In this sense, we 

assumed two different sample sizes (N=100 and 200) with three different probability of observing a zero 

value ( zerop = 10%, 15%, and 20%).  

 

We assumed the following marginalized multilevel random effects model as the true model: 

 

0,it 0 1 i1
2

c

it 0 1 i1 i

logit(p ) = γ + γ x

σ
log(μ ) = β + β x  -  + b ,

2

                                                                                                                 (10) 

 

where t = 1,2,3,4 indicating that in = 4 for each i (i = 1,…,100 or 200), i1x is the subject-specific (time-

invariant) covariate generated from standard normal distribution and i b is the subject-specific random 

intercept generated from normal distribution with mean 0 and variance 2σ  = 0.4. The true values of β = 

(1,-0.2) and υ = 8 are assumed to be fixed across all scenarios. The true values of γ = (-2.3, 0.5), (-1.7, 

0.5) and (-2.4, 0.5) are for zerop = 10%, 15%, and 20%, respectively. For each scenario, 500 data sets are 

generated based on (10) and the proposed model is fitted using the log of the likelihood defined in (9) via 

SAS NLMIXED procedure. Under each scenario, bias and mean squared error (MSE) values are 

computed for each parameter and the results are displayed in Tables 1-3. 

 

3.1 Simulation results 

 

The simulation results are displayed in Tables 1-3. All the results in the tables confirms that the MSE 

values of all parameters decreases when the sample size increases from 100 to 200. Specifically, the 

results show that γ  parameters are estimated with lower MSEs when the percentage of zeros in the data 

set is 20%. This means the more zeros in the data, the more precise the γ  parameters. The results also 

show that the MSE values of β parameters are not affected by the percantage of zeros in the data set. On 

the other hand, since there is only one random intercept term in the model, the variance parameter 
2σ always results in lower MSEs indicating that the data is rich enough to estimate this parameter.  

 

 

Table 1. Simulation results when zerop = 10%. 

  N = 100 N = 100 N = 200 N = 200 

Parameter True value Bias MSE Bias MSE 

0γ  -2.3 0.08 0.04 -0.02 0.02 

1γ  0.5 -0.37 0.17 -0.21 0.06 

0β  1.0 0.03 0.01 0.05 0.01 

1β  -0.2 -0.03 0.01 0.04 0.00 

2σ  0.4 -0.03 0.00 0.04 0.00 

υ  8.0 -0.79 1.00 -0.26 0.28 
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Table 2. Simulation results when zerop = 15%. 

  N = 100 N = 100 N = 200 N = 200 

Parameter True value Bias MSE Bias MSE 

0γ
 

-1.7 -0.04  0.02  -0.11  0.02  

1γ
 

0.5 -0.17   0.05  -0.15   0.03  

0β
 

1.0 0.03  0.01  0.06   0.01  

1β
 

-0.2 -0.02  0.01  0.05   0.00  

2σ  
0.4 -0.02  0.00  0.04  0.00  

υ  8.0 -0.69 0.90 -0.17 0.20 

 

 

Table 3. Simulation results when zerop = 20%. 

  N = 100 N = 100 N = 200 N = 200 

Parameter True value Bias MSE Bias MSE 

0γ
 

-1.4 -0.01  0.02  -0.04  0.01  

1γ
 

0.5 -0.20   0.06  -0.19   0.04  

0β
 

1.0 0.03  0.01  0.06   0.01  

1β
 

-0.2 -0.03  0.01  0.04   0.00  

2σ  
0.4 -0.01  0.00  0.05  0.00  

υ  8.0 -0.71 0.96 -0.30 0.34 

 

 

 

4. Conclusion 
 

In this study, we proposed a marginalized multilevel random effects model for analysis of longitudinal 

semi-continuous data. The model provides marginal inference both for zero-part and non-zero part along 

with subject-specific inferences for the non-zero part. The simulation studies show that the model has 

desirable properties. We are currently extending this model to longitudinal proportion data augmented 

with zeros and ones. 
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Appendix 

A. Calculation of itΔ  

Since any conditional expectation can be written in terms of marginal expectation, it is possible to link the 

conditional mean of the non-zero part of the model to the marginal mean model of that via integrating the 

conditional expectation over the distribution of random effects such that: 

 

 

(A1) 

                                                  

 

where if(b )  is the standard normal distribution with mean 0 and variance 
2σ . Substituting marginal and 

conditional means in (3) and (5), respectively, into equation (A1) gives the following expression: 
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Solving (A2) for itΔ provides the following closed-form expression: 
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                                                                                                                    (A3) 

where itΔ is a function of both β  from marginal part and 2σ  from conditional part and connects both 

levels to each other. 

 

B. SAS codes for data generation and model fitting 

/* Data generation */ 

 

data simulated; 

call streaminit(123);  

  

/* Preliminaries */ 

N=200; 

nt=4; 

g0=-1.4; 

g1=0.5; 

b0=1; 

b1=-0.2; 

sigma2=0.4; 

sigma=sqrt(sigma2); 

nu=8; 

 

do i=1 to N; 

/* Generate random effects */ 

b=rand("Normal",0,sigma); 

 

/* Generate predictor variable */ 

x1=rand("Normal",0,1); 

 

/* Define the marginal probability for zero-part */ 

eta_zero_m=g0+g1*x1; 

p_zero_m=exp(eta_zero_m)/(1+exp(eta_zero_m)); 

 

/* Define the marginal probability, delta, and */ 

/* conditional probability for continuous-part */ 

 

eta_cont_m=b0+x1*b1; 

mu_cont_m=exp(eta_cont_m); 

delta_cont=eta_cont_m-(sigma2/2); 

mu_cont_p=exp(delta_cont+b); 

 

/* Generate longitudinal semi-continuous data */ 

 

do j=1 to nt; 

idnum=i; 

time=j; 

y_zero=RAND('BERNOULLI',(1-p_zero_m)); 

y_cont=(mu_cont_p/nu)*RAND('GAMMA',nu) ;  

if y_zero=0 then y_cont=0; 

y=y_cont; 

output; 



G. İnan / İstatistikçiler Dergisi: İstatistik&Aktüerya, 2018, 11, 23-31 

 
31 

end; 

end; 

drop i j; 

run; 

 

data analysis; 

set simulated; 

keep idnum  x1 y; 

run; 

 

proc sort data=analysis; 

by idnum; 

run; 

 

/* Model fitting */ 

 

proc nlmixed data=analysis; 

parms g0=0 g1=0 b0=0 b1=0 sigma2=1 nu=1; 

bounds sigma2>0, nu>0; 

 

eta_zero_m=g0+g1*x1; 

p_zero_m=exp(eta_zero_m)/(1+exp(eta_zero_m)); 

 

eta_cont_m=b0+x1*b1; 

mu_cont_m=exp(eta_cont_m); 

delta_cont=eta_cont_m-(sigma2/2); 

mu_cont_p=exp(delta_cont+b); 

 

if y=0 then ll=log(p_zero_m); 

else ll=log(1-p_zero_m)-log(y)-lgamma(nu)+nu*log(y)+nu*log(nu)-nu*log(mu_cont_p)-

(y*(nu/mu_cont_p)); 

model y~general(ll); 

random b ~normal(0, sigma2) subject=idnum; 

run; 


