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Abstract: This paper deals with the problem of the global asymptotic stability of the class of Takagi-

Sugeno Fuzzy Cohen-Grossberg neural networks with multiple time delays. By constructing a suitable 

fuzzy Lyapunov functional, we present a new delay-independent sufficient condition for the global 

asymptotic stability of the equilibrium point for delayed Takagi-Sugeno Fuzzy Cohen-Grossberg neural 

networks with respect to the Lipschitz activation functions. The obtained condition simply relies on the 

network parameters of the neural system. Therefore, the equilibrium and stability properties of the neural 

network model considered in this paper can be easily verified by exploiting some basic properties of some 

certain classes of matrices. 

 

Keywords: T-S Fuzzy Neural Networks, Delayed Systems, Lyapunov Functionals, Matrix Theory 

 

Takagi-Sugeno Bulanık Cohen-Grossberg Tipi Zaman Gecikmeli Yapay Sinir Ağlarında Kararlılık 

Analizi 

 

Öz: Bu çalışma çoklu zaman gecikmeli Takagi-Sugeno Bulanık Cohen-Grossberg tipi yapay sinir 

ağlarının global asimtotik kararlılık problemi ile ilgilenmektedir. Uygun bulanık Lyapunov 

fonksiyonelleri kullanılarak ve aktivasyon fonksiyonlarının Lipschitz olduğu dikkate alnarak, gecikmeli 

Takagi-Sugeno Bulanık Cohen-Grossberg yapay sinir ağlarında denge noktasının global asimtotik 

gecikme parametrelerinden bağımsız olarak, yeni yeterli bir kararlılık koşulu sunulmuştur. Elde edilen 

koşul sadece sinir ağının sistem parametrelerine bağlı olarak ifade edilmiştir. Bu nedenle, bu çalışmada 

çalışılan  yapay sinir ağı modelinin denge ve kararlılık özellikleri, bazı özel matris sınıflarının  temel 

özellikleri kullanarak kolaylıkla doğrulanabilir. 

 

Anahtar Kelimeler: T-S Bulanık Sinir Ağları, Gecikmeli Sistemler, Lyapunov Fonksiyonelleri, Matris 

Teorisi 

 

1. INTRODUCTION 

 

In the recent years, Cohen-Grossberg neural networks (CGNNs) introduced in Cohen and 

Grossberg (1983) has been successfully applied to solve some practical engineering problems 

such as combinatorial optimization, image and signal processing, pattern recognition, 

associative memory design and control systems. In such applications, determining the 

equilibrium and stability properties of the equilibrium point of the designed neural network is of 
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great importance. In particular, if this class of neural networks neural is to be applied to the 

problems of parallel computation, neural control and optimization, then,  these neural networks 

must be globally asymptotically stable. Therefore, the stability analysis of dynamical neural 

networks is of great importance in both designs and applications. However, in real time 

hardware applications of neural networks, during the electronic implementation of analog neural 

networks, when neurons process and transmit the signals, due to the finite switching speed of 

amplifiers, some transmission delays occur which may change the dynamics of the network 

behaviors.  Therefore, it is important to consider the effects of the time delay parameters on the 

stability of neural networks. Recently, some papers have studied the global asymptotic stability 

of the equilibrium point for Cohen-Grossberg neural networks with delay parameters and 

reported some useful global stability conditions  establishing various relationships among the 

network parameters of this class of neural networks (Arik and Orman 2005; Cohen and 

Grossberg, 1983; Nie et. al. 2015; Zheng et. al. 2013). On the other hand, it has been pointed out  

Takagi and Sugeno (1983) that the fuzzy logic theory can be exploited to express neural 

networks in different mathematical models, which may make a positive impact on the complex 

dynamical behaviors of neural networks. For this purpose, the authors of Takagi and Sugeno 

(1983) has introduced the class of Takagi-Sugeno (T-S) fuzzy model and proved the fuzzy logic 

theory can be used to transform a nonlinear system into a set of T–S linear models. The 

advantage of this approach is that it is able to express some certain nonlinear complex systems 

in the form of overall fuzzy linear T-S models, which simplifies the stability analysis of 

complex nonlinear systems. In a recent paper Hou et. al. (2007), by employing the Lyapunov 

stability theory, the authors of Hou et. al. (2007) derived some new sets of sufficient conditions 

ensuring the global asymptotic stability of the equilibrium point for the class of T-S fuzzy 

neural networks in the presence time delays and with respect to the Lipschitz activation 

functions. The results obtained in Hou et. al. (2007) paved the way to conduct further studies 

into the stability analysis of T-S fuzzy neural networks.  In Ahn (2011); Balasubramaniam and 

Ali (2011); Bao et. al. (2012); Bao (2016); Chandran and Balasubramaniam (2013); Gan et. al. 

(2010); Gan (2013); He and Xu (2008); Huang et. al. (2005); Jiang and Jiang (2017); Li et. al. 

(2010); Mathiyalagan et. al. (2014); Senan (2018); Tseng et. al. (2012); Xie and Zhu (2015); 

Yamamoto and Furuhashi (2001); Yang (2014); Zheng et. al. (2016), various classes of delayed 

fuzzy neural network models have analyzed to derive new sufficient conditions for the global 

asymptotic stability of the equilibrium point. In the current paper, we carry out a further analysis 

of the stability of problem of Takagi-Sugeno fuzzy Cohen-Grossberg neural networks with 

multiple time delays and present a novel sufficient condition for the global asymptotic stability 

of delayed fuzzy Cohen-Grossberg neural networks. 

 

2. DELAYED T-S FUZZY COHEN-GROSSBERG NEURAL NETWORKS AND 

STABILITY ANALYSIS 

Dynamical behavior of a Cohen-Grossberg neural network model with multiple time delays 

is governed by the following sets of differential equations: 

 

�̇�𝑖(𝑡) = 𝑑𝑖(𝑥𝑖(𝑡)) [−𝑐𝑖(𝑥𝑖(𝑡)) + ∑ 𝑎𝑖𝑗𝑓𝑗 (𝑥𝑗(𝑡))

𝑛

𝑗=1

+ ∑ 𝑏𝑖𝑗𝑓𝑗 (𝑥𝑗(𝑡 − 𝜏𝑖𝑗))

𝑛

𝑗=1

+ 𝑢𝑖] (1) 

 

where 𝑛 is the number of the neurons in the neural system, 𝑥𝑖 denotes the state of the 𝑖th neuron, 

𝑑𝑖(𝑥𝑖) represent the amplification functions, and 𝑐𝑖(𝑥𝑖) represent the behaved functions. The 

constants  𝑎𝑖𝑗 are the interconnection parameters of the neurons within the neural system, the 

constants 𝑏𝑖𝑗 are interconnection parameters of the neurons with time delay parameters 𝜏𝑖𝑗.The 

𝑓𝑖(. ) denote the activation functions of neurons. The constants 𝑢𝑖 are some external inputs. In 
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system (1), 𝜏𝑖𝑗 ≥ 0 are constant time delays with 𝜏 = max(𝜏𝑖𝑗) , 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Accompanying 

the neural system  (1) is an initial condition of the form: 𝑥𝑖(𝑡) = 𝜙𝑖(𝑡) ∈ 𝐶([−𝜏, 0]), 𝑅), where 

𝐶([−𝜏, 0]), 𝑅) denotes the set of all continuous functions from [−𝜏, 0] to 𝑅. 

 

The assumptions on the functions 𝑑𝑖(𝑥), 𝑐𝑖(𝑥) and 𝑓𝑖(𝑥) in (1)  are defined to be as 

follows:  

 

𝐻1: The  functions 𝑑𝑖(𝑥), (𝑖 = 1, 2, … , 𝑛) satisfy the conditions 

 

0 < 𝜇𝑖 ≤ 𝑑𝑖(𝑥) ≤ 𝜌𝑖, ∀𝑥 ∈ 𝑅 
 

where 𝜇𝑖 and 𝜌𝑖are some positive constants. 

 𝐻2: The  functions 𝑐𝑖(𝑥), (𝑖 = 1, 2, … , 𝑛) satisfy the conditions 

 
𝑐𝑖(𝑥) − 𝑐𝑖(𝑦)

𝑥 − 𝑦
=

|𝑐𝑖(𝑥) − 𝑐𝑖(𝑦)|

|𝑥 − 𝑦|
≥ 𝛾𝑖 > 0, 𝑖 = 1, 2, … , 𝑛, ∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ≠ 𝑦  

 

where 𝛾𝑖are some positive constants. 

 𝐻3: The  functions 𝑓𝑖(𝑥), (𝑖 = 1, 2, … , 𝑛) satisfy the conditions 

 

|𝑓𝑖(𝑥) − 𝑓𝑖(𝑦)| ≤ ℓ𝑖|𝑥 − 𝑦|, 𝑖 = 1, 2, … , 𝑛, ∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ≠ 𝑦 

 

where ℓ𝑖are some positive constants. 

 For the sake of simplicity of the proofs, we will transfer the equilibrium point 𝑥∗ of Cohen-

Grossberg neural network model (1) to the origin. By using the transformation 𝑧(𝑡) = 𝑥(𝑡) −
𝑥∗, neural system (1) can be expressed as follows: 

 

�̇�𝑖(𝑡) = 𝛼𝑖(𝑧𝑖(𝑡)) [−𝛽𝑖(𝑧𝑖(𝑡)) + ∑ 𝑎𝑖𝑗𝑔𝑗 (𝑧𝑗(𝑡))

𝑛

𝑗=1

+ ∑ 𝑏𝑖𝑗𝑔𝑗 (𝑧𝑗(𝑡 − 𝜏𝑖𝑗))

𝑛

𝑗=1

] (2) 

 

 For this new transformed system defined (2), the functions 𝑑𝑖(𝑧), 𝑐𝑖(𝑧) and 𝑓𝑖(𝑧)  are in 

the form: 

 

𝛼𝑖(𝑧𝑖(𝑡)) = 𝑑𝑖(𝑧𝑖(𝑡) + 𝑥𝑖
∗), 𝑖 = 1, 2, … , 𝑛 

 

𝛽𝑖(𝑧𝑖(𝑡)) = 𝑐𝑖(𝑧𝑖(𝑡) + 𝑥𝑖
∗) − 𝑐𝑖(𝑥𝑖

∗), 𝑖 = 1, 2, … , 𝑛 

 

𝑔𝑖(𝑧𝑖(𝑡)) = 𝑓𝑖(𝑧𝑖(𝑡) + 𝑥𝑖
∗) − 𝑓𝑖(𝑥𝑖

∗), 𝑖 = 1, 2, … , 𝑛 

 

 In Senan (2018), the T-S fuzzy Cohen-Grossberg neural network with multiple time delays 

is stated  by the following sets of differential equations: 

 

Plant Rule r: 

IF {𝜃1(𝑡) 𝑖𝑠 𝑀𝑟1} and … and {𝜃𝑝(𝑡) 𝑖𝑠 𝑀𝑟𝑝} 

THEN 
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�̇�𝑖(𝑡) = 𝛼𝑖
(𝑟)

(𝑧𝑖(𝑡)) [−𝛽𝑖
(𝑟)

(𝑧𝑖(𝑡)) + ∑ 𝑎𝑖𝑗
(𝑟)

𝑔𝑗 (𝑧𝑗(𝑡))

𝑛

𝑗=1

+ ∑ 𝑏𝑖𝑗
(𝑟)

𝑔𝑗 (𝑧𝑗(𝑡 − 𝜏𝑖𝑗))

𝑛

𝑗=1

] (3) 

 

where 𝜃𝑙(𝑡) (𝑙 = 1, 2, … , 𝑝) are the premise variables. 𝑀𝑟𝑙  (𝑟 ∈ {1, 2, … , 𝑚}, 𝑙 ∈ {1, 2, … , 𝑝} are 

the fuzzy sets and 𝑚 is the number of IF-THEN rules. 

By inferring from the fuzzy models, the mathematical model of system (3) takes the form 

Senan (2018): 

�̇�𝑖(𝑡) = ∑ ℎ𝑟(𝜃(𝑡))

𝑚

𝑟=1

{𝛼𝑖
(𝑟)

(𝑧𝑖(𝑡)) [−𝛽𝑖
(𝑟)

(𝑧𝑖(𝑡)) + ∑ 𝑎𝑖𝑗
(𝑟)

𝑔𝑗 (𝑧𝑗(𝑡))

𝑛

𝑗=1

+ ∑ 𝑏𝑖𝑗
(𝑟)

𝑔𝑗 (𝑧𝑗(𝑡 − 𝜏𝑖𝑗))

𝑛

𝑗=1

]} 

(4) 

 

where 𝜃(𝑡) = [𝜃1(𝑡), 𝜃2(𝑡), … , 𝜃𝑝(𝑡) ]
𝑇

, 𝜔𝑟(𝜃(𝑡)) = ∏ 𝑀𝑟𝑙(𝜃1(𝑡))
𝑝
𝑙=1  and ℎ𝑟(𝜃(𝑡)) =

𝜔𝑟(𝜃(𝑡))

∑ 𝜔𝑟(𝜃(𝑡))𝑚
𝑟=1

  denote the weight and averaged weight of each fuzzy rule, respectively. The term 

𝜔𝑟𝑙(𝜃𝑙(𝑡)) is the grade membership of 𝜃𝑙(𝑡) in 𝜔𝑟𝑙. It is assumed that 𝜔𝑟(𝜃(𝑡)) ≥ 0, 𝑟 ∈
{1, 2, … , 𝑚}, implying that ∑ ℎ𝑟(𝜃(𝑡))𝑚

𝑟=1 = 1 for all 𝑡 ≥ 0. 

In the light of the fuzzy logic theory, the general assumptions 𝐻1, 𝐻2 and 𝐻3 are restated 

for the model of T-S fuzzy neural system (4) as follows: 

 

0 < 𝛼𝑖
(𝑟)

(𝑧𝑖(𝑡)) ≤ 𝜌𝑖
(𝑟)

, 𝑖 = 1, 2, … , 𝑛 

 

𝑧𝑖(𝑡)𝛽𝑖
(𝑟)

(𝑧𝑖(𝑡)) ≥ 𝛾𝑖
(𝑟)

𝑧𝑖
2(𝑡) ≥ 0, 𝑖 = 1, 2, … , 𝑛 

 

|𝑔𝑖(𝑧𝑖(𝑡))| ≤ 𝑘𝑖|𝑧𝑖(𝑡)|, 𝑧𝑖(𝑡)𝑔𝑖(𝑧𝑖(𝑡)) ≥ 0, 𝑖 = 1, 2, … , 𝑛 

 

3. STABILITY OF DELAYED TAKAGI-SUGENO FUZZY COHEN-GROSSBERG 

NEURAL NETWORKS 
 

In this section, we  present the main  the stability result of this paper, which is stated in the 

following theorem: 

Theorem 1: For the neural system (4),   assume that 𝐻1, 𝐻2 and 𝐻3 hold. Then,  the origin 

of the delayed T-S fuzzy Cohen-Grossberg neural network model (4) is globally asymptotically 

stable if the following condition is satisfied: 

 

𝛿 =
𝜇𝛾

𝜌ℓ
− ∑‖𝐴𝑟‖2

𝑚

𝑟=1

− ∑ √‖𝐵𝑟‖1‖𝐵𝑟‖∞

𝑚

𝑟=1

> 0 

 

Where 𝜇 = 𝑚𝑖𝑛 {𝜇𝑖
(𝑟)

} , 𝜌 = 𝑚𝑎𝑥 {𝜌𝑖
(𝑟)

} and 𝛾 = 𝑚𝑎𝑥 {𝛾𝑖
(𝑟)

}, ℓ = 𝑚𝑎𝑥{ℓ𝑖} 𝑖 = 1, 2, … , 𝑛, 𝑟 =

1, 2, … , 𝑚, 𝐴𝑟 = (𝑎𝑖𝑗
(𝑟)

)𝑛𝑥𝑛 and 𝐵𝑟 = (𝑏𝑖𝑗
(𝑟)

)𝑛𝑥𝑛. 

Proof: In order to prove the result of Theorem 1, we use the Lyapunov stability approach. 

Now, construct the following positive definite Lyapunov functional: 
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𝑉(𝑧(𝑡)) =
1

2
∑ 𝑧𝑖

2(𝑡)

𝑛

𝑖=1

+
1

2
𝜌ℓ ∑ 𝜉𝑟

𝑚

𝑟=1

∑ ∑ ∫ |𝑏𝑖𝑗
(𝑟)

| 𝑧𝑗
2(𝜁)𝑑𝜁

𝑡

𝑡−𝜏𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+ 𝜀 ∑ ∑ ∫ 𝑧𝑗
2(𝜁)𝑑𝜁

𝑡

𝑡−𝜏𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

  (5) 

 

where the 𝜉𝑟, 𝜀 and 𝜎 are some positive constants to be determinated later. When calculating the 

time derivative of 𝑉(𝑥(𝑡)) defined by (5) along the trajectories of system (4) yields, we get 

�̇�(𝑧(𝑡)) = ∑ 𝑧𝑖(𝑡)�̇�𝑖(𝑡)

𝑛

𝑖=1

+
1

2
𝜌ℓ ∑ 𝜉𝑟

𝑚

𝑟=1

∑ ∑ |𝑏𝑖𝑗
(𝑟)

| 𝑧𝑗
2(𝑡)

𝑛

𝑗=1

𝑛

𝑖=1

                    

−
1

2
𝜌ℓ ∑ 𝜉𝑟

𝑚

𝑟=1

∑ ∑ |𝑏𝑖𝑗
(𝑟)

| 𝑧𝑗
2(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

                

+ 𝜀 ∑ ∑ 𝑧𝑗
2(𝑡)

𝑛

𝑗=1

𝑛

𝑖=1

− 𝜀 ∑ ∑ 𝑧𝑗
2(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

             

 = − ∑ ℎ𝑟(𝜃(𝑡))

𝑚

𝑟=1

∑ 𝑧𝑖(𝑡)𝛼𝑖
(𝑟)

(𝑧𝑖(𝑡))𝛽𝑖
(𝑟)

(𝑧𝑖(𝑡))

𝑛

𝑖=1

     

          + ∑ ℎ𝑟(𝜃(𝑡)) ∑ ∑ 𝛼𝑖
(𝑟)

(𝑧𝑖(𝑡))𝑎𝑖𝑗
(𝑟)

𝑧𝑖(𝑡)𝑔𝑗(𝑧𝑗(𝑡))

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑟=1

 

                     + ∑ ℎ𝑟(𝜃(𝑡)) ∑ ∑ 𝛼𝑖
(𝑟)

(𝑧𝑖(𝑡))𝑏𝑖𝑗
(𝑟)

𝑧𝑖(𝑡)𝑔𝑗(𝑧𝑗(𝑡 − 𝜏𝑖𝑗))

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑟=1

 

                                            +
1

2
𝜌ℓ ∑ 𝜉𝑟

𝑚

𝑟=1

∑ ∑ |𝑏𝑖𝑗
(𝑟)

| 𝑧𝑗
2(𝑡)

𝑛

𝑗=1

𝑛

𝑖=1

−
1

2
𝜌ℓ ∑ 𝜉𝑟

𝑚

𝑟=1

∑ ∑ |𝑏𝑖𝑗
(𝑟)

| 𝑧𝑗
2(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 

 +𝜀 ∑ ∑ 𝑧𝑗
2(𝑡)

𝑛

𝑗=1

𝑛

𝑖=1

− 𝜀 ∑ ∑ 𝑧𝑗
2(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

       
(6) 

 

Under the Assumptions 𝐻1, 𝐻2 and 𝐻3, we can easily derive the following inequalities: 

 

− ∑ ℎ𝑟(𝜃(𝑡))

𝑚

𝑟=1

∑ 𝑧𝑖(𝑡)𝛼𝑖
(𝑟)

(𝑧𝑖(𝑡))𝛽𝑖
(𝑟)

(𝑧𝑖(𝑡))

𝑛

𝑖=1

≤ −𝜇𝛾 ∑ 𝑧𝑖
2(𝑡)

𝑛

𝑖=1

 

                                                                                                    = −𝜇𝛾‖𝑧(𝑡)‖2
2 (7) 

  

∑ ℎ𝑟(𝜃(𝑡)) ∑ ∑ 𝛼𝑖
(𝑟)

(𝑧𝑖(𝑡))𝑎𝑖𝑗
(𝑟)

𝑧𝑖(𝑡)𝑔𝑗(𝑧𝑗(𝑡))

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑟=1

= ∑ ℎ𝑟(𝜃(𝑡))

𝑚

𝑟=1

𝑧𝑇(𝑡)𝛼𝑟(𝑧(𝑡))𝐴𝑟𝑔(𝑧(𝑡)) 
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                                                                                        ≤ ∑‖𝛼𝑟(𝑧(𝑡))‖
2

‖𝐴𝑟‖2‖(𝑧(𝑡))‖
2

‖𝑔(𝑧(𝑡))‖
2

𝑚

𝑟=1

 

                                                     ≤ 𝜌ℓ ∑‖𝐴𝑟‖2‖𝑧(𝑡)‖2
2

𝑚

𝑟=1

 (8) 

 

∑ ℎ𝑟(𝜃(𝑡)) ∑ ∑ 𝛼𝑖
(𝑟)

(𝑧𝑖(𝑡))𝑏𝑖𝑗
(𝑟)

𝑧𝑖(𝑡)𝑔𝑗(𝑧𝑗(𝑡 − 𝜏𝑖𝑗))

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑟=1

 

≤ 𝜌 ∑ ∑ ∑ |𝑏𝑖𝑗
(𝑟)

| |𝑧𝑖(𝑡)||𝑔𝑗(𝑧𝑗(𝑡 − 𝜏𝑖𝑗)|

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑟=1

 

≤ 𝜌ℓ ∑ ∑ ∑ |𝑏𝑖𝑗
(𝑟)

| |𝑧𝑖(𝑡)||𝑧𝑗(𝑧𝑗(𝑡 − 𝜏𝑖𝑗)|

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑟=1

 

       ≤
1

2
𝜌ℓ ∑ ∑ ∑

1

𝜉𝑟
|𝑏𝑖𝑗

(𝑟)
| 𝑧𝑖

2(𝑡)

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑟=1

+
1

2
𝜌ℓ ∑ ∑ ∑ 𝜉𝑟 |𝑏𝑖𝑗

(𝑟)
| 𝑧𝑗

2(

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑟=1

𝑡 − 𝜏𝑖𝑗)    (9) 

 

Inserting (7)-(9) into  (6) results in 

 

�̇�(𝑧(𝑡)) ≤ −𝜇𝛾‖𝑧(𝑡)‖2
2 +  𝜌ℓ ∑‖𝐴𝑟‖2‖𝑧(𝑡)‖2

2

𝑚

𝑟=1

                                                

                                        +
1

2
𝜌ℓ ∑ ∑ ∑

1

𝜉𝑟
|𝑏𝑖𝑗

(𝑟)
| 𝑧𝑖

2(𝑡)

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑟=1

+
1

2
𝜌ℓ ∑ ∑ ∑ 𝜉𝑟 |𝑏𝑖𝑗

(𝑟)
| 𝑧𝑗

2(

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑟=1

𝑡 − 𝜏𝑖𝑗)    

 

                                    +
1

2
𝜌ℓ ∑ 𝜉𝑟

𝑚

𝑟=1

∑ ∑ |𝑏𝑖𝑗
(𝑟)

| 𝑧𝑗
2(𝑡)

𝑛

𝑗=1

𝑛

𝑖=1

−
1

2
𝜌ℓ ∑ 𝜉𝑟

𝑚

𝑟=1

∑ ∑ |𝑏𝑖𝑗
(𝑟)

| 𝑧𝑗
2(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 

 +𝜀 ∑ ∑ 𝑧𝑗
2(𝑡)

𝑛

𝑗=1

𝑛

𝑖=1

− 𝜀 ∑ ∑ 𝑧𝑗
2(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

                        

               = −𝜇𝛾‖𝑧(𝑡)‖2
2 +  𝜌ℓ ∑‖𝐴𝑟‖2‖𝑧(𝑡)‖2

2

𝑚

𝑟=1

                                                

                             +
1

2
𝜌ℓ ∑

1

𝜉𝑟
∑ ∑ |𝑏𝑖𝑗

(𝑟)
| 𝑧𝑖

2(𝑡)

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑟=1

+
1

2
𝜌ℓ ∑ 𝜉𝑟 ∑ ∑ |𝑏𝑗𝑖

(𝑟)
| 𝑧𝑖

2(

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑟=1

𝑡)    

 

 

 (10) 

 

From the basic norm properties of the matrices, we can obtain the following: 

 

                                               ∑ ∑ |𝑏𝑖𝑗
(𝑟)

| 𝑧𝑖
2(

𝑛

𝑗=1

𝑛

𝑖=1

𝑡) ≤ ‖𝐵𝑟‖∞‖𝑧(𝑡)‖2
2                                                 (11) 

 

and 

                                   +𝜀 ∑ ∑ 𝑧𝑗
2(𝑡)

𝑛

𝑗=1

𝑛

𝑖=1

− 𝜀 ∑ ∑ 𝑧𝑗
2(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1
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                                               ∑ ∑ |𝑏𝑗𝑖
(𝑟)

| 𝑧𝑖
2(

𝑛

𝑗=1

𝑛

𝑖=1

𝑡) ≤ ‖𝐵𝑟‖1‖𝑧(𝑡)‖2
2                                                  (12) 

 

Using (11) and (12) in (10) yields, 

 

�̇�(𝑧(𝑡)) ≤ −𝜇𝛾‖𝑧(𝑡)‖2
2 +  𝜌ℓ ∑‖𝐴𝑟‖2‖𝑧(𝑡)‖2

2

𝑚

𝑟=1

 

                                                          +
1

2
𝜌ℓ ∑

1

𝜉𝑟

‖𝐵𝑟‖∞‖𝑧(𝑡)‖2
2

𝑚

𝑟=1

+
1

2
𝜌ℓ ∑ 𝜉𝑟‖𝐵𝑟‖1‖𝑧(𝑡)‖2

2

𝑚

𝑟=1

   

                                     +𝜀 ∑ ∑ 𝑧𝑗
2(𝑡)

𝑛

𝑗=1

𝑛

𝑖=1

− 𝜀 ∑ ∑ 𝑧𝑗
2(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

  
     

(13) 

 

If we choose 𝜉𝑟 =
√‖𝐵𝑟‖∞

√‖𝐵𝑟‖1
,    𝑟 = 1, 2, … , 𝑚 then, (13) can be written as 

 

�̇�(𝑧(𝑡)) ≤ −𝜇𝛾‖𝑧(𝑡)‖2
2 +  𝜌ℓ ∑‖𝐴𝑟‖2‖𝑧(𝑡)‖2

2

𝑚

𝑟=1

                                   

                                               +
1

2
𝜌ℓ ∑ √‖𝐵𝑟‖1‖𝐵𝑟‖∞‖𝑧(𝑡)‖2

2

𝑚

𝑟=1

+
1

2
𝜌ℓ ∑ √‖𝐵𝑟‖1‖𝐵𝑟‖∞‖𝑧(𝑡)‖2

2

𝑚

𝑟=1

   

                                               +𝜀 ∑ ∑ 𝑧𝑗
2(𝑡)

𝑛

𝑗=1

𝑛

𝑖=1

− 𝜀 ∑ ∑ 𝑧𝑗
2(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

                                                        

          = − 𝜌ℓ(
𝜇𝛾

𝜌ℓ
− ∑‖𝐴𝑟‖2

𝑚

𝑟=1

− ∑ √‖𝐵𝑟‖1‖𝐵𝑟‖∞

𝑚

𝑟=1

)‖𝑧(𝑡)‖2
2 

    +𝜀𝑛‖𝑧(𝑡)‖2
2 − 𝜀 ∑ ∑ 𝑧𝑗

2(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

                    

         = −𝜌ℓ𝛿‖𝑧(𝑡)‖2
2 + 𝜀𝑛‖𝑧(𝑡)‖2

2 −  𝜀 ∑ ∑ 𝑧𝑗
2(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 

≤ −𝜌ℓ𝛿‖𝑧(𝑡)‖2
2 + 𝜀𝑛‖𝑧(𝑡)‖2

2                                    

= −(𝜌ℓ𝛿 − 𝜀𝑛)‖𝑧(𝑡)‖2
2                                   

  

(14) 

 

In (14), the choice guarantees 𝜀 <
𝜌ℓ𝛿

𝑛
 that �̇�(𝑧(𝑡)) < 0 for all 𝑧(𝑡) ≠ 0. The case where      

𝑧(𝑡) = 0 puts  �̇�(𝑧(𝑡)) in the form: 

 

�̇�(𝑧(𝑡)) = −
1

2
𝜌ℓ ∑ 𝜉𝑟

𝑚

𝑟=1

∑ ∑ |𝑏𝑖𝑗
(𝑟)

| 𝑧𝑗
2(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

− 𝜀 ∑ ∑ 𝑧𝑗
2(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 

≤ −𝜀 ∑ ∑ 𝑧𝑗
2(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

                                             (15) 
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From (15) we can directly conclude that �̇�(𝑧(𝑡)) < 0 if there exists at least one nonzero          

𝑧𝑗(𝑡 − 𝜏𝑖𝑗) and  �̇�(𝑧(𝑡)) = 0 if and only if and 𝑧(𝑡) = 0 for all 𝑧𝑗(𝑡 − 𝜏𝑖𝑗) = 0 otherwise. It is 

easy to validate the radial unboundedness of the Lyapunov functional 𝑉(𝑧(𝑡)) since        

𝑉(𝑧(𝑡)) → ∞ as ‖𝑧(𝑡)‖ → ∞. Hence, it follows from the standard Lyapunov stability theorems 

that the origin of the T-S fuzzy Cohen-Grossberg neural network model (4) is globally 

asymptotically stable. 

 

 

 

4. CONCLUSIONS: 

 

In this paper, by using a new type of fuzzy Lyapunov functional, we  have studied the 

global asymptotic stability of delayed Takagi-Sugeno (T-S) fuzzy Cohen-Grossberg neural 

networks with respect to the Lipschitz activation functions and derived new sufficient condition 

for the global asymptotic stability of the equilibrium point for this class of neural networks. The 

obtained 

stability result can easily verified as it simply imposes some constraint conditions on the norms 

of the interconnection matrices independently of the time delay parameters. 
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