

Investigation of Molecular Compounds in Kumquat (*Fortunella* Spp.) Peel via Raman Spectroscopy

Kamkat (*Fortunella* Spp.) Kabuğundaki Moleküler Bileşiklerin Raman Spektroskopisi ile İncelenmesi

Hümeysa Yıldırım^{1,2}®, Isil Tulum³®, Ayse Erol¹®, Fahrettin Sarcan^{1*}®

¹Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey.

²TEBIP High Performers Program, Faculty of Science, Istanbul University, Istanbul, Turkey.

³Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey.

ABSTRACT

In this study, Raman spectroscopy is employed to investigate the chemical compounds of kumquat peels and compared that of orange. Kumquat is a citrus fruit belonging to the genus *Fortunella* in family Rutaceae. It is observed that kumquat peel has 3 main Raman active characteristic vibration modes specified to carotenoids, which is dominated by β -carotene at 1007, 1158 and 1526 cm^{-1} , as it is well known for orange. The carotenoid distribution within the cross-section of kumquat is also investigated. The carotenoid-related Raman vibration modes are relatively stronger on the peel of kumquat, which is an important finding especially for the fruits that can be eaten with its peel. Our results pave the way to take an attention for the importance of kumquat as being a fruit that can be grown up in different climates compared to orange, which grow in warm climates.

Key Words

Kumquat, citrus peels, functional components, raman spectroscopy, spectral mapping, carotenoid.

Öz

Bu çalışmada, Raman spektroskopisi kullanılarak kamkat kabuklarının kimyasal bileşenleri araştırılmış ve portak kabukları ile karşılaştırılmıştır. Kamkat, Rutaceae familyasından *Fortunella* cinsine ait bir turuncigil meyvesidir. Kamkat kabuğundan, portak için iyi bilindiği gibi 1007, 1158 ve 1526 cm^{-1} de β -karoten tarafından domine edilen karotenoidlere özgü 3 ana Raman aktif karakteristik titreşim moduna sahip olduğu gözlemlenmiştir. Kamkatın enine kesiti içindeki karotenoid dağılımı da araştırılmıştır. Karotenoid ile ilişkili Raman titreşim modları kamkatın kabuğunda nispeten daha güçlündür, bu da özellikle kabuğuya yenebilen meyveler için önemli bir bulgudur. Sonuçlarımız, sıcak iklimlerde yetişen portakala kıyasla kamkatın farklı iklimlerde yetişebilen bir meyve olmasının önemine dikkat çekmektedir.

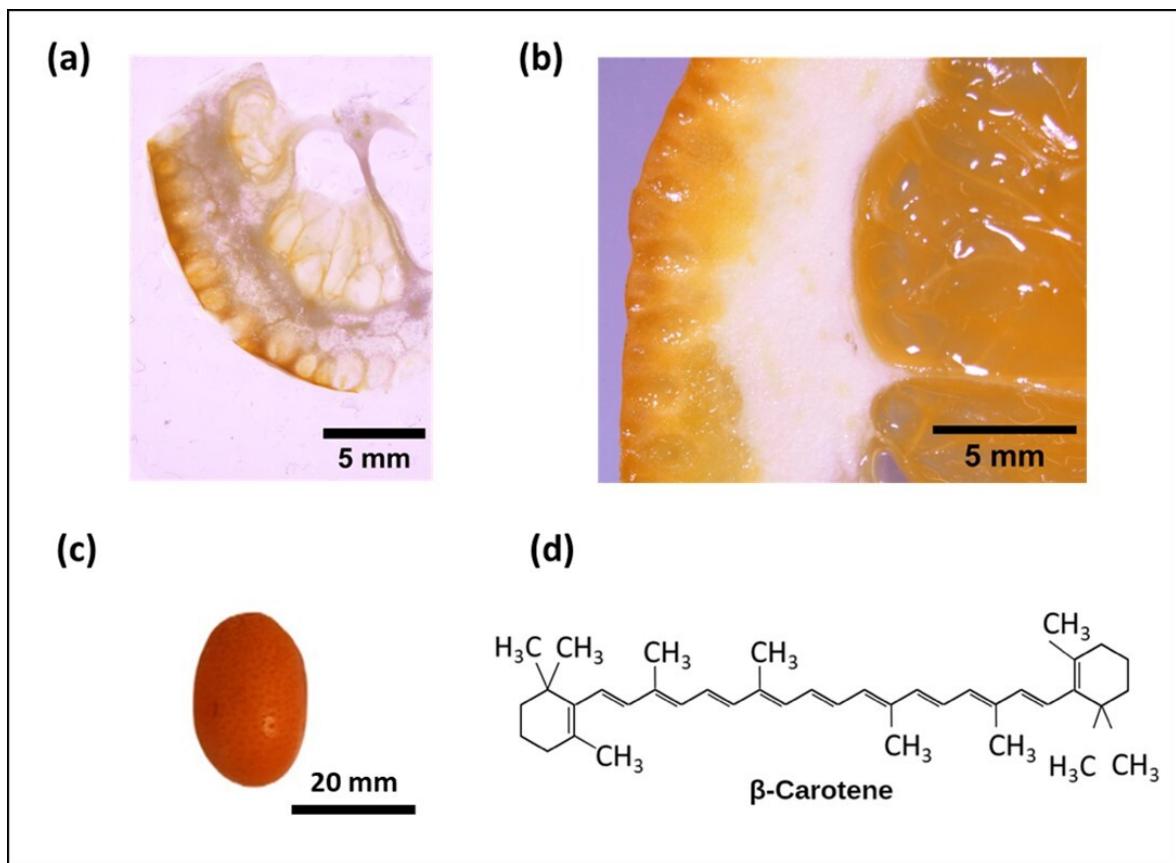
Anahtar Kelimeler

Kamkat, turuncigil kabukları, fonksiyonel bileşenler, raman spektroskopisi, spektral haritalama, karotenoid.

Article History: Received: Jun 30, 2025; Accepted: Aug 14, 2025; Available Online: Dec 30, 2025.

DOI: <https://doi.org/10.15671/hjbc.1729832>

Correspondence to: F. Sarcan, Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey.


E-Mail: fahrettin.sarcan@istanbul.edu.tr

INTRODUCTION

Kumquat is a citrus fruit belonging to the genus *Fortunella* of the Rutaceae family. It is also known as golden orange in Türkiye. Up to date, Kumquat is classified into four main types: *Fortunella japonica*, *Fortunella margarita*, *Fortunella crassifolia* and *Fortunella hindsii* [1]. Kumquat fruits exhibit an orange-yellow hue, an elliptical shape and measuring approximately 2 cm in diameter, and it is regarded as one of the smallest citrus fruits [2]. Kumquats have numerous advantages, such as cold resistance, an eatable peel, small size, and adaptability to various soil types [3-4]. These advantageous make them easy to care for and ideal for smaller spaces, offering a versatile citrus option suitable for diverse environments, ranging from greenhouses to terraces, and as a cold-tolerant citrus fruit [4].

Compared to other citrus fruits, kumquat can be consumed whole with its peel, which provides an advantage

in the intake of bioactive substances. While the pulp part of the fruit is sour, the peel part has a characteristic aroma due to flavonoids and terpenoids, which are important in the essential oil composition [5-6]. Because of its acidic taste and soft peel, kumquat is used in products such as jams, pickles and sauces, in addition to its natural consumption [7-8]. Besides, considering its use in the food industry, kumquat contains a variety of phytochemicals, including carotenoids, essential oils, ascorbic acid and flavonoids. These components are small molecules that are not essential for the survival of plants but represent pharmacological activity [9]. Kumquat is becoming increasingly important in traditional medicine because it contains many beneficial phytochemicals with diverse biological effects [5-10]. Phytochemicals are known to have beneficial biological effects. These include antibacterial, anti-oxidative, anti-inflammatory, anti-cancer, as well as cardiovascular protective effects [12-13]. For example, carotenoids, an important component in citrus peel, have the ability to detoxify

Figure 1. Optical microscope image of a) kumquat and (b) orange. c) Image of kumquat and d) Chemical structures of β -carotene (Mortensen & Skibsted, 1997).

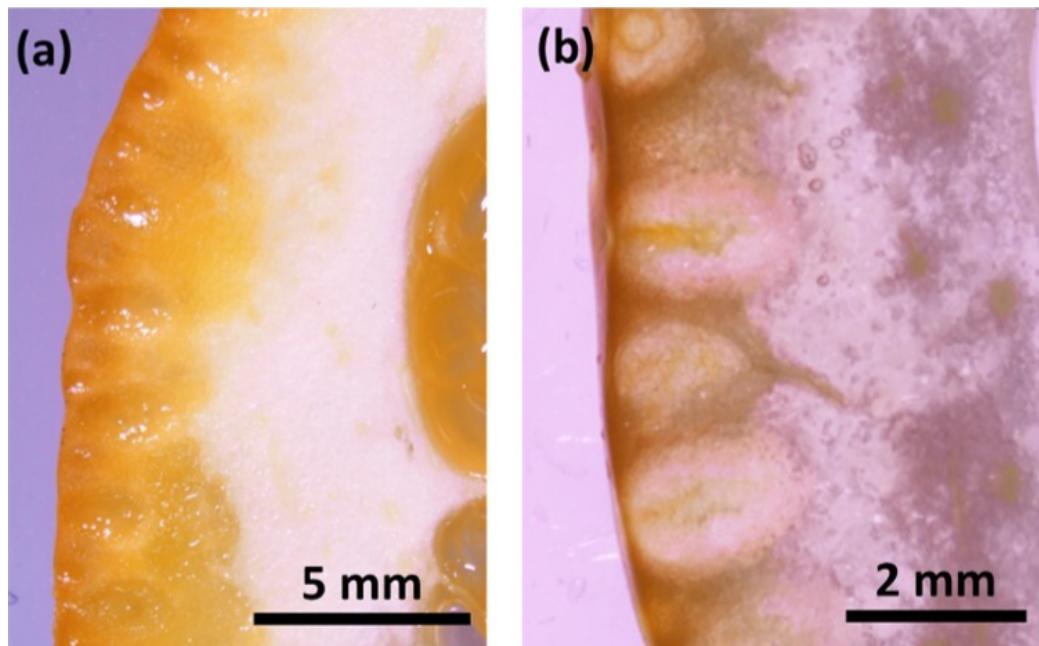
free radicals in cells. An important feature of carotenoids is that they are precursors of vitamin A. The body can convert certain carotenoids into active vitamin A [14]. Carotenoids are used as nutraceuticals in various diseases such as eye diseases, cardiovascular diseases, neurodegenerative diseases and cancer [15]. It is crucial to find and analyse bioactive compounds in citrus peels. Many methods such as Gas Chromatography-Mass Spectrometry, High-Performance Liquid Chromatography, Fourier Transform Infrared Spectroscopy are used for biocomponent analysis of citrus peel [16-17-18]. These methods for component analysis have the advantages of high sensitivity and accuracy, but also disadvantages such as complexity and time-consuming for sample preparation [19]. In this study Raman spectroscopy, which is a non-destructive method, is employed to determine and analyse the compounds of kumquat peel. Raman spectroscopy is an analytical technique where inelastic scattered photons is used to measure the vibrational energy modes of a molecules. When photons interact with a substance, the frequency of most of the scattered light does not change, which is called Rayleigh scattering. However, inelastic light scattering processes can also occur due to molecular vibrations, so-called Raman scattering [20-21-22]. The spectrum of scattered photons in Raman spectroscopy is fingerprint of the investigated material therefore allows easy identification of the molecule of interest. Raman spectroscopy has many advantages such as ease of sample preparation, non-destructive and the ability to work with aqueous samples. Because of these advantages, Raman spectroscopy has become a powerful alternative tool to other commonly used techniques. Accordingly, Raman spectroscopy has been used as a promising analytical tool in recent years as it provides a chemical fingerprint for molecular identification [22-23]. Raman spectroscopy is becoming increasingly popular in research on food, environment, medicine and many other fields. In various application areas such as pesticide detection [24], pathogen detection in food [25], water pollution [26] and neurodegenerative disease diagnosis [27].

In 2017, Yang et al. used Raman spectroscopy for chemical mapping of functional compounds in citrus peels. The relative amount and distribution of essential oils, carotenoids and flavonoids in citrus peels at different locations (flavedo, albedo and longitudinal section) were studied [19]. To the best of our knowledge, there is no study that uses Raman spectroscopy for the deter-

mination of functional components on kumquat fruit. In this study, carotenoids were determined in different locations (flavedo, albedo and crosssection) of kumquat fruit peel without any extraction process and a comparison was made between two kinds of citrus fruits (orange and kumquat). The fact that kumquat fruit can be consumed with its peel unlike other citrus fruits thanks to the terpenoids and flavonoids in the peel composition makes our research valuable. Kumquat is becoming increasingly important in food and pharmacology due to its nutritional and phytochemical content [11]. Therefore, a rapid and non-destructive determination of shell composition is very critical. The results obtained in our research are valuable in terms of advances in the use of Raman spectroscopy for the detection of biocomponents in citrus peels.

MATERIALS and METHODS

Sample Preparation


Kumquats and oranges from Verita (Verita, İstanbul, Türkiye) were soaked in saline for 10 min. The fruits were then washed three times with distilled water to remove the chemicals in the peel. Citrus peels were peeled. Pieces were cut for the Flavedo and Albedo parts. Cross-sectional pieces were also taken to understand the component distribution. Samples were adhered to the slide with double-sided tape and measured.

Raman Spectroscopy

Raman spectroscopy measurements was carried out using a free space custom modular micro-spectroscopy set-up equipped a thermoelectric cooled CCD (Newton BEX2-DD, Andor) with a 1800 grooves/mm of grating in a spectrometer (Shamrock 500i, Andor). To excite the samples, a 532 nm CW laser (Gem532, Novanta Photonics) was used, and the excitation laser beam is focused to a spot of 1.2 m in diameter and on the devices placed on a XYZ sample stage. Raman spectra from the samples were collected *via* a 50x objective (NA = 0.42) [29, 30].

RESULTS and DISCUSSION

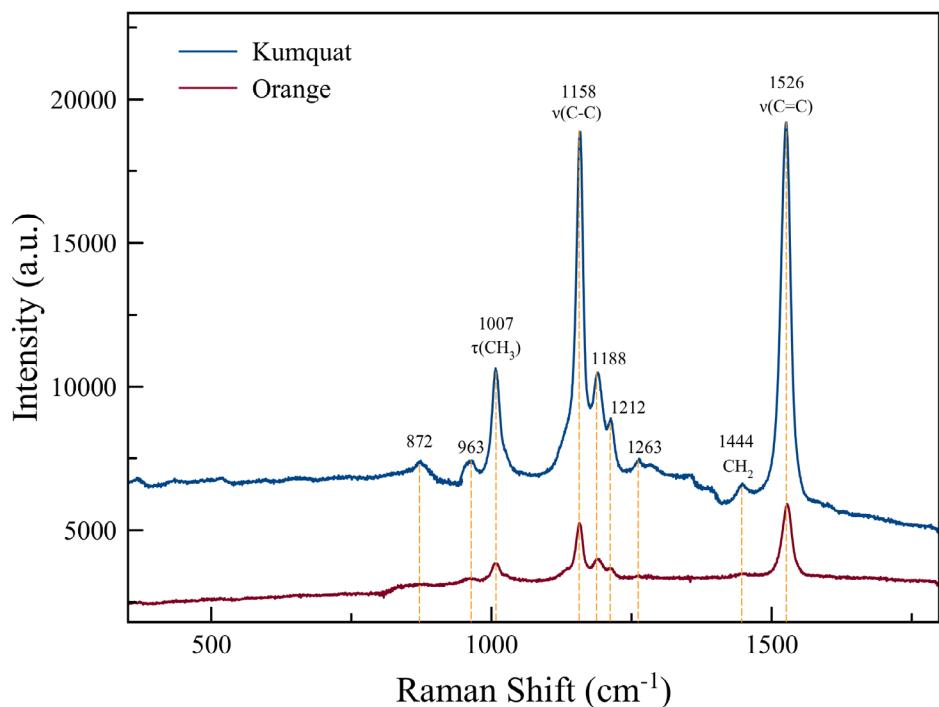

The flavedo and albedo structures of kumquat and orange fruits were observed by optical microscope (Figure 2). It was noted that the flavedo layer of the kumquat (N~1,5 mm) was 2.5 times thinner than that of the orange (N~4 mm).

Figure 2. Cross-sectional optical microscope images of a) orange and b) kumquat.

The thinner flavedo part makes the kumquat fruit eatable with its peel. In addition to that the thinner flavedo layer of kumquat compared to orange is important

for obtaining a higher concentration of beneficial components from a smaller part of the fruit.

Figure 3. Raman Spectra of Orange and Kumquat.

Table 1. Wavenumbers of v₁, v₂ and v₃ modes (cm⁻¹) of the predominant carotenoids obtained from several products by Raman spectroscopy.

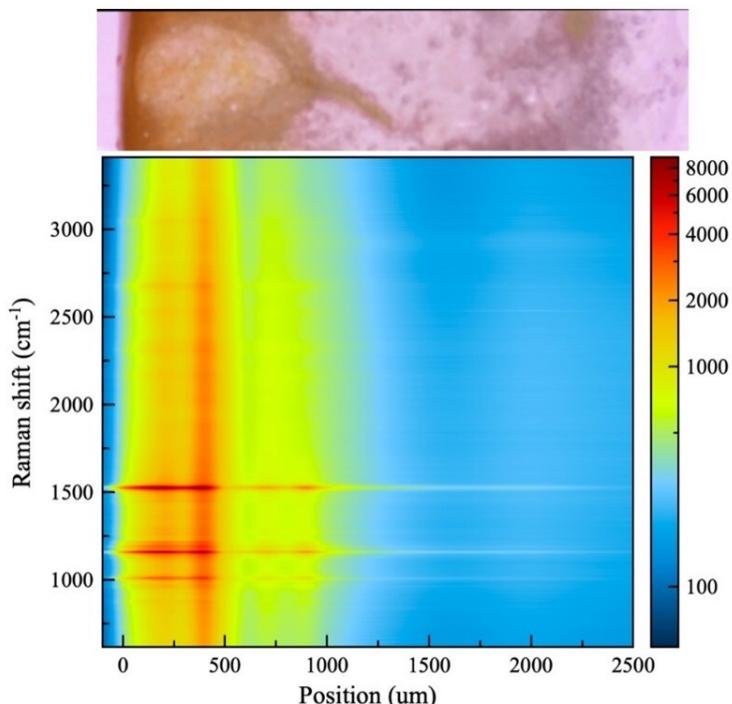

Sample	v ₁ (C=C)	v ₂ (C-C)	v ₃ (C-CH ₃)	
Citrus	1528	1156	1010	Yang et al. 2017
Tomato	1510	1156	1005	Baranska et al. 2006
Carrot	1520	1156	1007	Schulz et al. 2005
Pumpkin	1527	1157	1008	Oliveira et al. 2009
Kumquat	1526	1158	1007	This work

Figure 3 shows the Raman spectra of kumquat and orange peel. The strong Raman peaks were observed at 1007, 1158 and 1526 cm⁻¹ as well as the relatively weak peaks were observed at 872, 963, 1188, 1212 and 1263 cm⁻¹ (Figure 3). Peaks at 1007, 1158 and 1526 cm⁻¹ are assigned to carotenoids, a vitamin A precursor according to previous literature data [19] β -carotene containing 9 conjugated double bonds (Figure 1d) has been detected by Raman spectroscopy in foods such as tomatoes, carrots and pumpkin in previous studies. The bands attributed to carotenoids in the studies are shown in the Table 1.

Raman spectrum of carrot showed strong bands at 1520, 1156 and 1007 cm⁻¹ assigned to v(C=C), v(C-C) and τ (CH₃) of β -carotene, respectively; in the Raman spectrum of tomato puree, β -carotene was observed with

three intense bands at 1510 (v₁), 1156 (v₂) and 1005 cm⁻¹ (v₃) [31-32]. According to the reported values in the literature, the results obtained confirmed the characteristic Raman bands at 1526 cm⁻¹ and 1158 cm⁻¹ assigned to the in-phase C=C and C-C stretching vibrations of the polyene chain and 1007 cm⁻¹ assigned to the in-plane rocking modes of CH₃ groups attached to the polyene chain joined by C-C bonds [33-34]. In addition, the peak at 1444 cm⁻¹ is assigned to the CH₃-CH₂ bending modes indicates essential oil [35, 36].

In the cross-sectional piece taken from kumquat fruit, the carotenoid content was investigated from the albedo layer to the flavedo layer. Looking at the distribution of carotenoids, it was found that the carotenoid density decreased when going from the albedo layer to the flavedo layer (Figure 4).

Figure 4. Raman spectrum mapping of transverse section of kumquat peel.

The thinner flavedo layer of kumquat compared to orange has significant effects on both the edibility of the fruit with the skin and the concentration of beneficial components inside. It is observed that the Raman peak intensities of both carotenoid and essential oils are 6 times stronger on the kumquat peel compared to that of orange. This makes kumquat a strong alternative for vitamin A intake beyond its advantageous properties such as cold resistance, compatibility with various soil types and edibility with its peel compared to other citrus fruits. In addition, the distribution of carotenoids in kumquat fruit reveals potential differences in the nutrient content of different parts of the fruit.

In conclusion, we have used Raman spectroscopy for a rapid and non-destructive detection of carotenoids in kumquat and compared that of orange peels. Raman spectrum analysis of kumquat peel have revealed distinct characteristic bands at 1007, 1158 and 1526 cm^{-1} associated with carotenoids, particularly dominated by β -carotene. This result indicates the potential of kumquat to be a valuable alternative among citrus fruits for obtaining vitamin A. It has been observed that the concentration of carotenoids is more pronounced in the flavedo part compared to the albedo part. The findings of this study address the differences in the biochemical profiles of citrus fruit peels and highlight the potential health benefits associated with kumquat peel consumption. The information obtained from our study will contribute to the quantitative analysis of the materials in the fruits. Furthermore, the successful application of Raman spectroscopy as a robust analytical tool for non-destructive compositional analysis in the field of food science and nutrition research.

Acknowledgments

This work was supported in part by the Scientific Research Projects Coordination Unit of Istanbul University (FBG-2022-38573, FBG-2021-37896).

References

1. S.N. Lou, C.T. Ho, Phenolic compounds and biological activities of small-size citrus: kumquat and calamondin, *J. Food Drug Anal.*, 25 (2017) 162-175.
2. M.H. Chen, K.M. Yang, T.C. Huang, M.L. Wu, Traditional Small-Size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity, *Medicines (Basel)*, 4 (2017) 28.
3. T.M. Radovich, S.S. Nakamoto, *Twelve Fruits with Potential Value-Added and Culinary Uses*, University of Hawai'i, College of Tropical Agriculture and Human Resources, Honolulu-Hawaii, USA, 2007.
4. A. Palma, S. D'Aquino, *Kumquat—*fortunella japonica**. *Exotic Fruits*, 2018, 271-278.
5. Y. Wang, W. Zeng, P. Xu, Y. Lan, R. Zhu, K. Zhong, Chemical composition and antimicrobial activity of the essential oil of kumquat (*Fortunella crassifolia* Swingle) peel, *Int. J. Mol. Sci.*, 13 (2012) 3382-3393.
6. D. Turgut, M. Gölükçü, H. Tokgöz,, Kamkat (*fortunella margarita* swing.) meyvesi ve reçelinin bazı fiziksel ve kimyasal özellikleri, *Derim*, 32 (2015) 71-82.
7. Choi HS. Characteristic odor components of kumquat (*Fortunella japonica* Swingle) peel oil. *J Agric Food Chem.*, 53 (2005) 1642-1647.
8. A. Pawełczyk, J. Żwawiak, L. Zaprutko, Kumquat fruits as an important source of food ingredients and utility compounds, *Food Rev. Int.*, 39 (2021) 875-895.
9. K. Ogawa, A. Kawasaki, M. Omura, T. Yoshida, Y. Ikoma, M. Yano, 3',5'-Di-C-beta-glucopyranosylphloretin, a flavonoid characteristic of the genus *Fortunella*. *Phytochemistry*, 57 (2001) 737-742.
10. S.N. Lou, Y.C. Lai, Y.S. Hsu, C.T. Ho, Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents. *Food Chem.*, 196 (2015) 1-9.
11. X. Li, M. Meenu, B. Xu, Recent development in bioactive compounds and health benefits of kumquat fruits. *Food Rev. Int.*, 39 (2022) 4312-4332.
12. X. Lv, S. Zhao, Z. Ning, H. Zeng, Y. Shu, Y. Tao, C. Xiao, C. Lu, Y. Liu, Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health, *Chem. Cent. J.*, 9 (2015) 68.
13. A. Abdella, M. Al-Saman, S. Irmak, Antimicrobial and antioxidant activities of different extracts of kumquat (*Citrus japonica* var. *margarita*) fruit. *J. Food Meas. Charact.*, 13 (2019) 1-8.
14. T. Grune, G. Lietz, A. Palou, A.C. Ross, W. Stahl, G. Tang, D. Thurnham, S.A. Yin, H.K. Biesalski, Beta-carotene is an important vitamin A source for humans, *J. Nutr.*, 140 (2010) 2268-2285.
15. R.K. Saini, P. Prasad, V. Lokesh, X. Shang, J. Shin, Y.S. Keum, J.H. Lee, Carotenoids: Dietary sources, extraction, encapsulation, bioavailability, and health benefits—a review of recent advancements, *Antioxidants*, 11 (2022) 795.
16. X. Yu, X. Chen, Y. Li, L. Li, Effect of drying methods on volatile compounds of *Citrus reticulata* Ponkan and Chachi peels as characterized by GC-MS and GC-IMS. *Foods*, 11 (2022) 2662.
17. J. Chen, Y. Shi, Y. Zhong, Z. Sun, J. Niu, Y. Wang, T. Chen, J. Chen, M. Luan, Transcriptome Analysis and HPLC Profiling of Flavonoid Biosynthesis in *Citrus aurantium* L. during Its Key Developmental Stages, *Biology*, 11 (2022) 1078.
18. M. Niluxshun, K. Masilamani, U. Mathiventhan, Green synthesis of silver nanoparticles from the extracts of fruit peel of citrus tangerina, citrus sinensis, and citrus limon for antibacterial activities, *Bioinorg. Chem. Appl.*, (2021) 1-8.
19. Y. Yang, X. Wang, C. Zhao, G. Tian, H. Zhang, H. Xiao, L. He, J. Zheng, Chemical Mapping of Essential Oils, Flavonoids and Carotenoids in Citrus Peels by Raman Microscopy, *J. Food Sci.*, 82 (2017) 2840-2846.

20. F. Sarcan, O. Dönmez, K. Kara, A. Erol, E. Akalin, M. Cetin Arikán, H. Makhloifi, A. Arnoult, C. Fontaine, Bismuth-induced effects on optical, lattice vibrational, and structural properties of bulk GaAsBi alloys, *Nanoscale Res. Lett.*, 9 (2014) 119.
21. F. Sarcan, N.J. Fairbairn, P. Zotev, T. Severs-Millard, D.J. Gillard, X. Wang, B. Conran, M. Heuken, A. Erol, A.I. Tartakovskii, T.F. Krauss, G.J. Hedley, Y. Wang, Understanding the impact of heavy ions and tailoring the optical properties of large-area monolayer WS₂ using focused ion beam, *NPJ 2D Mater. Appl.*, 7 (2023) 1-10.
22. K.V. Serebrennikova, A.N. Berlina, D.V. Sotnikov, A.V. Zherdev, B.B. Dzantiev, Raman scattering-based biosensing: new prospects and opportunities, *Biosensors*, 11 (2021) 512.
23. K. Dodo, K. Fujita, M. Sodeoka, Raman spectroscopy for chemical biology research. *J. Am. Chem. Soc.*, 144 (2022) 19651-19667.
24. J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, L. Guo, Flexible and Adhesive Surface-Enhanced Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables, *Anal. Chem.*, 88 (2016) 2149-2155.
25. A. Zhu, S. Ali, T. Jiao, Z. Wang, Q. Ouyang, Q. Chen, Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens, *Compr. Rev. Food Sci. Food Saf.*, 22 (2023) 1466-1494.
26. S. Almaviva, F. Artuso, I. Giardina, A. Lai, A. Pasquo, Fast Detection of Different Water Contaminants by Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy, *Sensors*, 22 (2022) 8338.
27. G. Devitt, K. Howard, A. Mudher, S. Mahajan, Raman spectroscopy: an emerging tool in neurodegenerative disease research and diagnosis, *ACS Chem. Neurosci.*, 9 (2018) 404-420.
28. A. Mortensen, L. Skibsted, Importance of carotenoid structure in radical-scavenging reactions, *J. Agric. Food Chem.*, 45 (1997) 2970-2977.
29. E. Kuş, G. Altindemir, Y.K. Bostan, C. Taşaltın, A. Erol, Y. Wang, F. Sarcan, A Dual-Channel MoS₂-Based Selective Gas Sensor for Volatile Organic Compounds, *Nanomaterials*, 14 (2024) 633.
30. F. Sarcan, A.J. Armstrong, Y.K. Bostan, E. Kus, K.P. McKenna, A. Erol, Y. Wang, Ultraviolet-Ozone Treatment: An Effective Method for Fine-Tuning Optical and Electrical Properties of Suspended and Substrate-Supported MoS₂, *Nanomaterials*, 13 (2023) 3034.
31. H. Schulz, M. Baranska, R. Baranski, Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. *Biopolymers*, 77 (2005) 212-221.
32. M. Baranska, W. Schütze, H. Schulz, Determination of lycopene and beta-carotene content in tomato fruits and related products: comparison of FT-Raman, ATR-IR, and NIR spectroscopy. *Anal Chem.*, 78 (2006) 8456-8461.
33. J. Gelder, K. Gussem, P. Vandenameele, L. Moëns, Reference database of Raman spectra of biological molecules, *J. Raman Spectrosc.*, 38 (2007) 1133-1147.
34. M. Park, A. Somborn, D. Schlehuber, V. Keuter, G. Deerberg, Raman spectroscopy in crop quality assessment: focusing on sensing secondary metabolites: a review, *Hortic. Res.*, 10 (2023).
35. H. Schulz, B. Schrader, R. Quilitzsch, B. Steuer, Quantitative analysis of various citrus oils by ATR/FT-IR and NIR-FT Raman spectroscopy. *Appl Spectrosc.*, 56 (2002) 117-124.
36. P. Jentzsch, V. Ciobotă, Raman spectroscopy as an analytical tool for analysis of vegetable and essential oils, *Flavour Fragr. J.*, 29 (2014) 287-295.