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Abstract. Let B be a ring of the form B = A+J where A is a subring of B, J

is an ideal of B such that J ∩ A = 0 and 1 + J ⊆ U(B) the set of units of B.
Let C be a subring of B containing A. We prove that purely-maximal ideals of
C are exactly IC where I ranges over purely-maximal ideals of A. We deduce
that C is semi-Noetherian if and only if A is semi-Noetherian. We show that
Tarizadeh and Aghajani’s conjecture holds in C if and only if it holds in A.
As an application, we generalize all results in [N. Ouni and A. Benhissi, Beitr.
Algebra Geom., 65(1)(2024), 229-240] and we study purely-maximal ideals of
an amalgamation ring along an ideal.
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1. Introduction

Throughout this paper all rings are commutative with identity. Let R be a ring
and I an ideal of R. I is called pure if for every a ∈ I, there exists b ∈ I such
that a = ab [2, page 141]. The ideal I is called purely-maximal if it is maximal
(under inclusion) in the lattice of proper pure ideals of A [2, page 156]. The ideal
I is called purely-prime if it is proper and if for any pure ideals I1, I2 of R with
I1∩ I2 ⊆ I, then I1 ⊆ I or I2 ⊆ I [2, page 156]. In [5], the authors studied the pure
spectrum of a commutative ring R, denoted Spp(R) which consists of all purely-
prime ideals. They build a new topological framework that complements the usual
Zariski spectrum (there is a canonical correspondence between the idempotents
of a ring and the clopens of its pure spectrum Spp(R)) and they found algebraic
characterizations of key classes of rings (notely, Gelfand rings/reduced mp-rings)
through the behavior of their pure spectrum.

Tarizadeh and Aghajani conjectured that each purely-prime ideal is purely-
maximal [5, Conjecture 5.8] and they called a ring R to be semi-Noetherian if
every pure ideal of R is finitely generated [5, page 834]. In [4], the authors studied
purely-maximal ideals of power series rings of the form A+XB[[X]] (where A is a
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subring of a ring B), polynomial rings of the form A + XB[X], rings of the form
A+I[[X]] (also A[X]+I[X]) and Nagata idealization ring. They also studied when
each of the aformentioned ring is semi-Noetherian and they studied Tarizadeh and
Aghajani’s conjecture. The aim of this paper is to study purely-maximal ideals of
the ring of the form B = A+ J where A is a subring of B, J is an ideal of B such
that J ∩ A = 0 and 1 + J ⊆ U(B) the set of units of B. Let C be a subring of B
containing A. We prove that purely-maximal ideals of C are exactly IC where I

ranges over purely-maximal ideals of A (Theorem 2.7). We deduce that C is semi-
Noetherian if and only if A is semi-Noetherian. Also we prove that Tarizadeh and
Aghajani’s conjecture holds in C if and only if it holds in A (Theorem 2.7). As an
application, we deduce and generalize all results in [4] (Corollary 3.1 and Corollary
3.2). As another application, we study the case of an amalgamation ring along an
ideal with respect to an homomorphism. Let A,B be two rings, J an ideal of B,
f : A −→ B be a ring homomorphism and A ▷◁f J = {(a, f(a) + j)|a ∈ A, j ∈ J}
be the amalgamation ring of A with along J with respect to f . Let C be a subring
of A ▷◁f J containing A. Assume that J ⊆ Jac(B) the Jacobson radical of B. We
prove that purely-maximal ideals of the ring C are precisely IC where I ranges over
purely-maximal ideals of A (Corollary 3.3). We deduce that C is semi-Noetherian
if and only if A is semi-Noetherian. Also we show that Tarizadeh and Aghajani’s
conjecture holds in C if and only if it holds in A (Corollary 3.3).

2. Purely-maximal ideals of rings of the form A+ J

Let B be a ring of the form B = A+ J where A is a subring of B, J is an ideal
of B such that J ∩A = 0 and 1 + J ⊆ U(B) the set of units of B.

Note that:

• If a+ b = a′ + b′, then a = a′ and b = b′, for all a, a′ ∈ A and b, b′ ∈ J .
• If I, I ′ are ideals of A, then I ⊆ I ′ if and only if IB ⊆ I ′B.
• IB ⊆ I + J for each ideal I of A.

Lemma 2.1. Let I be a proper pure ideal of B and I = {a ∈ A | a + c ∈
I for some c ∈ J}. Then I is a proper pure ideal of A and I ⊆ IB.

Proof. I is a proper ideal of A because 1+ t is a unit of B for each t ∈ J . If a ∈ I,
then a+c ∈ I for some c ∈ J . Since I is pure, a+c = (a+c)(r+b) for some r+b ∈ I
(where r ∈ A and b ∈ J). So r ∈ I and a − ar = −c + ab + c(r + b) ∈ J ∩ A = 0.
Thus a = ar and so I is a pure ideal of A. Let x ∈ I. Since I is pure, x = xy

for some y ∈ I. Let a, r ∈ A and c, b ∈ J such that x = a + c and y = r + b.
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Thus a, r ∈ I and so it suffices to show that c ∈ IB. Since c = ab + c(r + b),
c(1− b) = ab+ rc ∈ IB. But 1− b is a unit of B and then c ∈ IB. □

Recall that each ideal I of a ring R contains a largest pure ideal (i.e., the sum
of all pure ideals contained in I), denoted ν(I) (see [5, page 825]) (also denoted I◦

in [2, Chapter 7-Proposition 8]). Note that if R is a subring of a ring S and H is
a purely-prime ideal of S, then ν(H ∩R) is a purely-prime ideal of R ([2, Chapter
7-Lemma 62], [5, Theorem 2.6]).

Lemma 2.2. Let I be an ideal of A.

(1) IB is a proper pure ideal of B if and only if I is a proper pure ideal of A. In
this case, for each x ∈ IB, x = xa for some a ∈ I (and hence IB ∩A = I).

(2) IB is purely-prime in B if and only if I is purely-prime in A.
(3) IB is purely-maximal in B if and only if I is purely-maximal in A.

Proof. (1) Assume that I is a proper pure ideal of A. By [4, Lemma 2.2], IB is a
proper pure ideal of B. Conversely, assume that IB is a proper (so is I) pure ideal
of B and let a ∈ I ⊆ IB. Let x ∈ IB such that a = ax. Let a1, . . . , an ∈ I and
x1, . . . , xn ∈ B such that x = a1x1 + · · ·+ anxn. Each xi = ri + yi for some ri ∈ A

and yi ∈ J . Since J ∩ A = 0 and a = ax, a = ar where r = a1r1 + · · ·+ anrn ∈ I.
Thus I is pure. By [2, Chapter 7-Proposition 11], for each x ∈ IB, x = xa for some
a ∈ I.
(2) Assume that I is a purely-prime ideal of A and let I1, I2 be two pure ideals
of B such that I1I2 ⊆ IB. For each i, Ii ⊆ IiB for some proper pure ideal Ii

of A, I1I2 ⊆ IB ∩ A = I and so Ii ⊆ I for some i. Then Ii ⊆ IiB ⊆ IB.
Conversely, assume that IB is purely-prime. By (1) and [2, Chapter 7-Lemma 62],
I = ν(I) = ν(IB ∩A) is a purely-prime ideal of A.
(3) Assume that I is a purely-maximal ideal of A. By (1), IB is a proper pure ideal
of B. Let I be a proper pure ideal of B such that IB ⊆ I. By Lemma 2.1, I ⊆ I ′B

for some proper pure ideal I ′ of A. Thus IB ⊆ I ′B and so I ⊆ I ′. Therefore
I = I ′. So IB = I. Conversely, assume that IB is a purely-maximal ideal of B.
By (1), I is a proper pure ideal of A. Let I ′ be a proper pure ideal of A such that
I ⊆ I ′. Then IB ⊆ I ′B. Thus IB = I ′B. It follows that I = I ′ and then I is a
purely-maximal ideal of A. □

Theorem 2.3. Purely-maximal ideals of the ring B are exactly IB where I ranges
over purely-maximal ideals of A.

Proof. By Lemma 2.2, if I is a purely-maximal ideal of A, then IB is a purely-
maximal ideal of B. Conversely, let I be a purely-maximal ideal of B. By Lemma
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2.1, I ⊆ IB for some proper pure ideal I of A. By Lemma 2.2, IB is a proper pure
ideal of B and so IB = I. Again by Lemma 2.2, I is a purely-maximal ideal of
A. □

Tarizadeh and Aghajani proved that a ring is semi-Noetherian if and only if each
purely-maximal ideal is finitely generated [5, Theorem 6.2]. We deduce that:

Corollary 2.4. The ring A is semi-Noetherian if and only if the ring B is semi-
Noetherian.

Proof. The “only if” part follows from Theorem 2.3 and the fact that: if I is a
finitely generated ideal of A, then IB is a finitely generated ideal of B. Conversely,
assume that B is semi-Noetherian and let I be a purely-maximal ideal of A. Note
that a finitely generated pure ideal is principal (see [5, page 834]). Then IB = xB

for some x ∈ IB. By Lemma 2.2, x = xa for some a ∈ I and so IB = aB. Hence
I = IB ∩A = aB ∩A = aA. □

Tarizadeh and Aghajani noticed that in all known rings each purely-prime ideal
is purely-maximal [5]. So, they asked if this fact holds for any ring. The following
shows that Tarizadeh and Aghajani’s conjecture holds in the ring B if and only if
it holds in the ring A.

Corollary 2.5. Every purely-prime ideal of B is purely-maximal if and only if
every purely-prime ideal of A is purely-maximal.

Proof. Assume that every purely-prime ideal of B is purely-maximal and let P

be a purely-prime ideal of A. By Lemma 2.2, PB is a purely-prime ideal of B, so
purely-maximal. Again by Lemma 2.2, P is purely-maximal ideal of A. Conversely,
assume that every purely-prime ideal of A is purely-maximal and let P be a purely-
prime ideal of B. By [2, Chapter 7-Lemma 62], ν(P ∩A) is a purely-prime ideal of
A. By hypothesis, ν(P ∩ A) is a purely-maximal ideal of A. Thus ν(P ∩ A)B is a
purely-maximal ideal of B. Since ν(P ∩ A)B ⊆ P , P = ν(P ∩ A)B and so P is a
purely-maximal ideal of B. □

Lemma 2.6. Let C be a subring of B containing A and I an ideal of A.

(1) IC is a proper pure ideal of C if and only if I is a proper pure ideal of A.
In this case, for each x ∈ IC, x = xa for some a ∈ I (and so IC ∩ A = I,
in particular, IC = IB ∩ C).

(2) IC is purely-prime in C if and only if I is purely-prime in A.
(3) IC is purely-maximal in C if and only if I is purely-maximal in A.
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Proof. (1) Assume that IC is a proper pure ideal of C. By [4, Lemma 2.2],
IB = (IC)B is a proper pure ideal of B. Then I is a proper pure ideal of A by
Lemma 2.2. Conversely, assume that I is a proper pure ideal of A. By [4, Lemma
2.2], IC is a proper pure ideal of C.
(2) If IC is purely-prime in C, then ν(IC ∩A) is purely-prime in A by [2, Chapter
7-Lemma 62], and I = IC∩A is pure in A. Then I is purely-prime in A. Conversely,
assume that I is a purely-prime ideal of A. Thus IC = IB ∩ C is pure in C. By
Lemma 2.2, IB is purely-prime in B and so ν(IB ∩ C) is purely-prime in C by [2,
Chapter 7-Lemma 62]. Then IC = ν(IC) is purely-prime in C.
(3) Assume that IC is a purely-maximal ideal of C. Let I ′ be a proper pure ideal
of A such that I ⊆ I ′. Then IC ⊆ I ′C which is a pure ideal of C by (1). Thus
IC = I ′C and so I = I ′. Then I is a purely-maximal ideal of A. Conversely,
assume that I is purely-maximal in A. By (1), IC is a proper pure ideal of C. Let
I be a proper pure ideal of C such that IC ⊆ I. By [4, Lemma 2.2], IB is a proper
pure ideal of B and so IB ⊆ I ′B for some proper pure ideal I ′ of A by Lemma 2.1.
Thus I = IC∩A ⊆ I∩A ⊆ I ′B∩A = I ′ and so I = I ′. Then IB ⊆ IB. Therefore,
I ⊆ IB ∩ C = IB ∩ C = IC and so I = IC. Then IC is a purely-maximal ideal
of C. □

Theorem 2.7. Let C be a subring of B containing A.

(1) Purely-maximal ideals of the ring C are precisely IC where I ranges over
purely-maximal ideals of A.

(2) The ring C is semi-Noetherian if and only if the ring A is semi-Noetherian.
(3) Every purely-prime ideal of C is purely-maximal if and only if every purely-

prime ideal of A is purely-maximal.

Proof. (1) By Lemma 2.6, if I is a purely-maximal ideal of A, then IC is a purely-
maximal ideal in C. Conversely, let I be a purely-maximal ideal of C. By [4,
Lemma 2.2], IB is a proper pure ideal of B. So IB ⊆ IB for some proper pure
ideal I of A by Lemma 2.1. Thus I ⊆ IB ∩ C = IC. Since IC is a proper pure
ideal of C, I = IC (I is purely-maximal in A by Lemma 2.6).
(2) We can repeat the same argument used in Corollary 2.4.
(3) If I is a purely-prime ideal of A, then IC is a purely-prime ideal of C. Then
IC is purely-maximal in C and so I is purely-maximal in A. Conversely, let I be a
purely-prime ideal of C. Since ν(I ∩A) is a purely-prime ideal of A, ν(I ∩A) is a
purely-maximal ideal of A and so ν(I ∩A)C is a purely-maximal ideal of C. Since
ν(I ∩ A)C ⊆ (I ∩ A)C ⊆ IC = I (which is proper and pure), I = ν(I ∩ A)C is
purely-maximal in C. □
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3. Applications

Now, we show many consequences of Theorem 2.7. First, we deduce and gener-
alize [4, Theorem 2.4, Corollary 2.6, Corollary 2.7, Corollary 3.3, Corollary 2.4 and
Corollary 3.8] as follows:

Corollary 3.1. Let A be a subring of a ring B, X an indeterminate over B. Let
C be a subring of A+XB[[X]] containing A.

(1) Purely-maximal ideals of the ring C are precisely IC where I ranges over
purely-maximal ideals of A.

(2) The ring C is semi-Noetherian if and only if the ring A is semi-Noetherian.
(3) Every purely-prime ideal of C is purely-maximal if and only if every purely-

prime ideal of A is purely-maximal.

Proof. The ring A +XB[[X]] = A + J where J = XB[[X]] is an ideal of B[[X]]

and J ∩ A = 0. It is well known that, for f ∈ B[[X]], f is a unit of B[[X]] if and
only if the constant term of f is a unit of B [1, Chapitre 1 - Proposition 1.2] (in
this case, the constant term of f−1 is the inverse of the constant term of f). Then
1 + J = 1 +XB[[X]] ⊆ U(B[[X]]). □

Let R be a ring and M be a unitary R-module. We recall that Nagata introduced
the ring extension of R called the idealization of M in R, denoted here by R(+)M ,
as the R-module R⊕M endowed with a multiplicative structure defined by:

(a, x)(b, y) = (ab, ay + bx) for all a, b ∈ R and x, y ∈ M .
We deduce and generalize [4, Theorem 4.4 and Theorem 4.6] as follows:

Corollary 3.2. Let R be a ring and M an R-module. Let C be a subring of R(+)M

containing R.

(1) Purely-maximal ideals of the ring C are precisely IC where I ranges over
purely-maximal ideals of R.

(2) The ring C is semi-Noetherian if and only if the ring R is semi-Noetherian.
(3) Every purely-prime ideal of C is purely-maximal if and only if every purely-

prime ideal of R is purely-maximal.

Proof. We can write R(+)M = A + J where A = R(+)0 (which is a subring of
R(+)M) and J = 0(+)M . Clearly, J ∩ A = 0. Also, J is an ideal of R(+)M

contained in its nilradical (so in its Jacobson radical). Then each element of 1 + J

is a unit of R(+)M . □

We now study the case of an amalgamation ring along an ideal with respect to
an homomorphism. Let A,B be two rings, J an ideal of B, f : A −→ B be a ring
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homomorphism and A ▷◁f J = {(a, f(a) + j)|a ∈ A, j ∈ J} be the amalgamation
ring of A with along J with respect to f . For more informations on the ring A ▷◁f J ,
readers are referred to [3].

Corollary 3.3. Let A,B be two rings, J an ideal of B, f : A −→ B be a ring
homomorphism and A ▷◁f J = {(a, f(a) + j)|a ∈ A, j ∈ J} be the amalgamation
ring of A with along J with respect to f . Let C be a subring of A ▷◁f J containing
A. If J ⊆ Jac(B) the Jacobson radical of B, then:

(1) Purely-maximal ideals of the ring C are precisely IC where I ranges over
purely-maximal ideals of A.

(2) The ring C is semi-Noetherian if and only if the ring A is semi-Noetherian.
(3) Every purely-prime ideal of C is purely-maximal if and only if every purely-

prime ideal of A is purely-maximal.

Proof. Note first that i : A −→ A ▷◁f J is a one-to-one ring homomorphism
defined by i(a) = (a, f(a)) for all a ∈ A (so i is an embedding making A ▷◁f J a
ring extension of A ∼= i(A)). Then A ▷◁f J = i(A) + J̃ where i(A) is a subring of
A ▷◁f J and J̃ = 0 × J is an ideal of A ▷◁f J . Clearly, i(A) ∩ J̃ = 0. It suffices
to show that (1, 1) + (0, j) is a unit of A ▷◁f J for each j ∈ J . Since J ⊆ Jac(B),
1 + j is a unit of B. Let c = −(1 + j)−1j ∈ J . Thus (1, 1 + c) ∈ A ▷◁f J and
(1, 1+j)(1, 1+c) = (1, 1) because (1+j)(1+c) = 1+j+(1+j)c = 1+j−j = 1. □

The following is an explicit example of a purely-maximal ideal:

Example 3.4. Consider the open real interval (0, 1) ⊆ R and A the quotient ring
of the polynomial ring F2

[
(Xr)0<r<1

]
by the ideal H generated by elements of the

form Xr − XrXt with 0 < r < t < 1. Let J(0, 1) be the ideal of A generated
by all (xr)0<r<1 where xr is the class of Xr modulo H. We claim that J(0, 1)

is a purely-maximal ideal of A. For each 0 < r < 1, r < (1 + r)/2 < 1 and
xr = xrx(1+r)/2. Thus J(0, 1) is a pure ideal of A. Let J be a pure ideal of A

such that J(0, 1) ⊆ J ⊆ A. The ideal of F2

[
(Xr)0<r<1

]
generated by all (Xr)0<r<1

is a maximal ideal of F2

[
(Xr)0<r<1

]
. So J(0, 1) is a maximal ideal of A. Thus

J = J(0, 1) or J = A. Hence J(0, 1) is a purely-maximal ideal of A.
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