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This study examines a simulation-based testing platform designed to 

enhance the quality control processes of Resistance Spot Welding (RSW), 

a technology widely used in the automotive industry. A virtual testing 

environment was developed to eliminate the need for physical prototypes. 

The platform was assembled by placing ESP32-CAM-based virtual 

cameras on a vehicle chassis obtained from the RoboDK library within the 

simulation environment. A dataset of approximately 1,000 real RSW 

images from Kaggle was labeled using Roboflow and converted into a 

format compatible with YOLO(You Only Look Once) architecture. 

During image processing and object recognition, YOLOv3-s and 

YOLOv5-m models were utilized. The models’ classification 

performance was evaluated using metrics such as F1 score, precision, 

recall, mean average precision (mAP), and Confidence Score (CS). Both 

models required low hardware requirements; however, YOLOv5-m 

displayed overall superior performance. Notably, the YOLOv5-m model 

achieved higher confidence scores in detecting critical welding defects 

classified as Class 2 (explosion weld); an approximate increase of 8–9% 

was observed in experimental results, reaching a CS of around 0.58. In 

addition, the F1 score for Class 2 (explosion weld) improved by 

approximately 5–6%, reaching a value of around 0.85. This simulation-

based method has made RSW quality control faster, more cost-effective, 

and reliable. Consequently, robotic welding systems can be thoroughly 

tested for accuracy and safety in a virtual environment before being 

integrated into the production line. 
 Keywords: Automotive Industry, Deep Learning, Image Processing, Resistance Spot 

Welding, RoboDK, YOLO 
 

1. Introduction 

Resistance spot welding (RSW) has become 

one of the most widely used joining methods 

within the framework of Industry 4.0 within 

the automotive industry, due to its advantages 

in high-speed operation, energy efficiency, and 

structural integrity [1]. In this process, two 

metal sheets are fused by a short-duration, 

high-intensity electric current. However, the 

quality of this process is directly influenced by 

numerous parameters such as the applied 
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current, duration, electrode pressure, and 

mechanical stability [2]. Especially in mass 

production lines, maintaining consistent and 

repeatable weld quality is essential for both 

product safety and manufacturing efficiency 

[3]. 

In typical spot welding systems, the lower jaw 

(lower electrode) remains stationary, while the 

upper jaw (upper electrode) is equipped with 

pneumatic, servo-motor-driven, or—less 

commonly—hydraulic actuators to allow 

mobility. During the welding process, these 

electrode structures may adversely affect 

system performance under certain unfavorable 

conditions; therefore, the detection and 

monitoring of such conditions are of utmost 

importance for ensuring process reliability and 

maintaining weld quality. In particular, 

malfunctions in the control of the upper 

electrode may lead to a non-uniform pressure 

distribution at the weld zone, thereby 

compromising the overall quality of the weld 

joint [4][5]. 

In this context, Figure 1 illustrates the working 

principle of a spot welding machine. In the 

diagram, the movable upper electrode 

functions as the anode (positive pole), while 

the fixed lower electrode serves as the cathode 

(negative pole). The material to be welded is 

positioned between these two electrodes, held 

in place by the applied pressure, and an electric 

current is passed through the contact point. The 

resistance generated at the contact region 

produces heat, which in turn facilitates the 

fusion of the materials. The stylized 

representation of multi-layered lines in spot 

welds symbolically depicts both the magnitude 

of the applied force and the path through which 

the current flows. 

 
Figure 1. Working principle of spot welding 

The evaluation and analysis of resistance spot 

welding (RSW) quality is a crucial step in 

enhancing process efficiency [6]. Today, a 

variety of CAD-based welding simulation 

software tools are employed as powerful 

instruments for generating digital twins of 

materials used in manufacturing processes [7]. 

In this context, RoboDK stands out by 

enabling the seamless integration of spot 

welding machines from various brands into the 

simulation environment, thanks to its extensive 

libraries of robots and equipment. 

Furthermore, the platform allows for the 

realistic visualization of weld seam 

appearances on a digital chassis following the 

welding operation. Utilizing RoboDK’s 

camera interface, welding programs can be 

developed without the need for actual field 

tests. In addition, advanced rendering settings 

available within the simulation environment 

enhance the visual quality of the data, enabling 

virtual welding defects to be represented with 

greater realism. 

RoboDK, a simulation program that offers free 

access for academic research, is compatible 

with various software platforms. It enables 

seamless integration with applications based 

particularly on SolidWorks and OpenCV, 

facilitating the transfer of design data into 

robotic applications [8]. Through its API 

support, accessible via the Python 

programming language, RoboDK allows users 

to develop customized scenarios and 

dynamically control robot movements. Thanks 

to its versatile capabilities, RoboDK proves to 

be an effective tool not only for creating 

realistic robot motion simulations but also for 

modeling and analyzing welding applications 

based on camera integration and image 

processing. 

Among artificial intelligence–based object 

detection algorithms, YOLO (You Only Look 

Once) stands out in image processing 

applications within the automotive industry, 

particularly due to its detection capabilities 

when implemented with Python [9]. This 

algorithm performs both classification of weld 

images and prediction of bounding boxes using 

a single neural network. It operates by dividing 

the image into S × S grids, where each grid cell 

predicts parameters such as the center 

coordinates (x, y), width (w), height (h), and 
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confidence score of the bounding boxes, along 

with an F1 score that ranges between 0 and 1 

[10]. 

This deep learning–based approach enables the 

detection and analysis of various weld defects 

that may occur during the resistance spot 

welding (RSW) process. Such defects can be 

so minor that they are undetectable by manual 

inspection methods in automated production 

lines, potentially posing serious risks to 

production reliability [11]. In this study, the 

objective is to perform classification tasks, 

identify potential welding defects, and visually 

present the results using pre-existing datasets 

of the RSW process on a realistic simulation 

platform. 

2. Material and Methods 

In this study, the imaging system employed 

within both the simulation and practical 

application environments is based on a camera 

module suitable for low-cost and embedded 

systems projects. This module was modeled in 

three dimensions using SolidWorks software 

and subsequently integrated into the RoboDK 

platform for use within the simulation 

environment. The representative hardware 

used in the simulation—shown in Figure 2—is 

a compact, cost-effective ESP32-based camera 

module with approximate dimensions of 

70×30×25 mm, including its protective 

enclosure. 

 
Figure 2. ESP 32-CAM module used in the simulation 

tests 

Equipped with an integrated OV2640 image 

sensor, the module supports wireless 

communication via built-in Wi-Fi and 

Bluetooth functionalities. These features 

enable effective use of the system even in real-

time visual monitoring applications [12]. The 

hardware architecture is particularly well-

suited for simulation applications with spatial 

constraints. Owing to its wireless connectivity 

and capability to operate with an external 

battery, this camera does not require any cable 

carrier system when mounted on an RSW 

machine. As a result, it minimizes restrictions 

on robotic movements and eliminates the risk 

of cable entanglement, thereby significantly 

enhancing the system’s overall reliability and 

operational usability. For the RoboDK 

simulation experiments presented in this 

article, two ESP32-CAM camera units were 

utilized. 

In deep learning–based object detection 

models such as YOLO, the datasets used 

during training play a critical role in 

determining the model’s accuracy, 

generalization capability, and real-world 

performance [13]. Factors such as dataset 

diversity, image quality, class balance, and 

accurate labeling are essential for enabling the 

model to correctly identify objects across 

varying scenarios [14]. In this study, a pre-

existing dataset consisting of approximately 

1,000 real RSW (Resistance Spot Welding) 

images was utilized. 

 
Figure 3. Kaggle dataset prepared for RSW 

applications [15] 

The visual datasets presented in Figure 3 are 

employed in image processing and deep 

learning–based classification studies. Since 

these datasets—comprising images from 

various angles—are not sufficient on their own 

for accurate classification, proper labeling of 

the data is required. In this context, the data 

were annotated according to three distinct class 
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IDs, and corresponding label files (label ID 

files) were created accordingly. 

To carry out the labeling process, all images in 

the dataset were uploaded to the Roboflow 

platform, where each real image was manually 

labeled. As illustrated in Figure 4, this process 

was completed step by step for each image on 

the platform. Thus, objects related to resistance 

spot welding were identified and enclosed 

within appropriate bounding boxes. 

Subsequently, the labeled dataset was exported 

in YOLO-compatible format for model 

training. 

Within the scope of this study, visual data 

related to RSW found in the literature were 

subjected to preliminary image processing 

steps. The resulting quality classifications 

were grouped under three main categories: 

Good, Bad, and Explosion class. 

• The Good class (Class 1) refers to 

cases where the welding process has been 

carried out under optimal parameters, resulting 

in a properly formed weld nugget and a 

mechanically sound joint between the parts. 

• The Explosion class (Class 2) typically 

results from parameter-related errors such as 

excessive heat, high pressure, or overly strong 

welding current. In this case, molten metal 

abruptly and uncontrollably ejects from the 

weld zone. Such welds often result in severe 

spatter, surface deformation, or even hole 

formation on the welded parts. 

• The Bad class (Class 3) represents 

substandard outcomes in which the nugget 

formation is insufficient or the joint quality is 

low; however, some level of fusion between 

the parts is still present. 

A study in the literature reported that 

composite plates exhibiting explosion welding 

defects showed the presence of micro-voids 

and micro-cracks at the weld interface, 

emphasizing the severe implications of such 

defects for weld quality [16]. In another similar 

study, the applicability of the RSW method in 

the automotive and related industries was 

evaluated. It was noted that the explosion 

welding defects encountered in this context led 

to various geographical limitations and raised 

serious safety concerns [17]. Accordingly, 

welds classified under the Explosion category 

should not pass through quality control 

processes. Given the critical importance of this 

class for both operational safety and weld 

integrity in the automotive industry, the data 

quantity pertaining to this category may be 

increased using various data augmentation 

techniques, depending on the current 

availability of test samples. 

 
Figure 4. Dataset Creation for Model Training in 

Roboflow Software 

In YOLO-based image processing 

applications, computer hardware plays a 

critical role in terms of model training duration 

and real-time performance [18]. The use of 

GPUs in particular enables faster and more 

efficient training of deep learning models, 

while components such as sufficient RAM and 

SSDs help optimize data processing and access 

times. Therefore, proper hardware selection is 

taken into serious consideration, especially 

regarding its impact on model performance 

with large datasets. In this study, an RTX 2050 

graphics card—offering advantages for image 

processing via CUDA technology—and a 

12th-generation Intel i5-12500H processor 

were utilized. 

 
Figure 5. Integration of realistic materials from the 

RoboDK library into the simulation platform 

As shown in Figure 5, the KUKA KR 210 

R2700 extra B industrial robot and the servo-

motor controlled C-type OBARA spot welding 

machine were selected from the RoboDK 

equipment library and virtually modeled 

within the simulation environment. These 
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components were integrated into the RoboDK 

platform to ensure that the robot was 

mechanically prepared in terms of mobility 

within the welding cell and accessibility to 

welding points. As a result, it becomes possible 

to effectively analyze and observe operational 

validation and cycle time optimization before 

any physical implementation. 

The welding torches and clamping 

mechanisms used in spot welding applications 

typically possess substantial mass. In this 

context, the payload capacity of the KR 210 

robot enables the secure handling of heavy 

welding equipment, making it suitable for 

integration with the OBARA spot welding 

machine employed in the simulation study. 

Additionally, its 2700 mm reach provides easy 

and effective access to weld points, 

particularly in the large-scale chassis structures 

commonly used in the automotive industry. 

This capability enhances the system's 

flexibility and overall operational efficiency 

[19]. 

The YOLO algorithm offers significant 

improvements in detection accuracy and 

speed, particularly in complex object detection 

scenarios where overlaps and small-scale 

defects must be handled effectively [20]. 

YOLOv3 is a lightweight and fast deep 

learning model optimized for object detection 

tasks on systems with limited hardware 

resources [21]. Built on the Darknet 

framework, this architecture is simplified to 

include fewer layers and parameters, thereby 

achieving high processing speed even under 

low computational power. Compared to the 

standard YOLOv3 architecture, it features a 

more compact design. 

However, this simplicity also introduces 

certain drawbacks. The model may yield a high 

number of false negatives—objects present in 

the scene but not correctly detected—and may 

produce relatively low confidence scores [22]. 

Therefore, in applications requiring higher 

accuracy and reliability, the use of YOLOv5 or 

more recent versions is recommended. 

Although the advanced versions of YOLO 

offer significant advantages in terms of 

accuracy and reliability, they also introduce 

certain limitations in specific cases. Due to 

increased model complexity, training times 

tend to be longer, and YOLO models trained 

on large datasets require more computational 

power to achieve optimal performance. As the 

quality and scope of the training data improve, 

the accuracy of object detection 

correspondingly increases. 

Table 1. Class-wise distribution of Kaggle RSW data 

Class ID Test Validation Train 

Class 1 63 76 320 

Class 2 49 57 238 

Class 3 32 38 117 

All classes 144 171 675 

In the literature, optimizing key 

hyperparameters is considered critical for 

enhancing the performance of the YOLOv3 

model [23]. The learning rate (LR), which 

determines the step size for updating model 

weights, must be carefully tuned; an 

excessively high learning rate can lead to 

instability, whereas a very low learning rate 

may slow down the training process. 

Additionally, activation functions such as 

Leaky ReLU are commonly employed in 

YOLO architectures, as they mitigate the 

“dying neuron” problem by allowing a small 

gradient when inputs are negative, thereby 

facilitating more effective learning. 

Furthermore, in this study, the weld images 

were resized to 480×480 pixels to ensure 

compatibility with the YOLO architectures and 

to enhance processing efficiency. Higher-

resolution images, while containing more 

detail, impose additional load on GPU 

memory, leading to extended training times 

and less efficient utilization of hardware 

resources. 

In both model variants—YOLOv3-s and 

YOLOv5-m—the dataset was divided into 

three subsets: 68% for training, 17% for 

validation, and 15% for testing. The numerical 

distribution of samples for each class in these 

subsets is presented in Table 1. During the 

training phase, conducted in a Python-based 

development environment, each model 

underwent 50 epochs with a learning rate (LR) 

set to 0.005. Adam optimizer was selected to 

update the model weights, utilizing its adaptive 

learning rate and momentum features to ensure 

stable and efficient training. The optimizer is 

also favored by practitioners new to deep 

learning, especially when training models like 



175           International Journal of Automotive Engineering and Technologies, IJAET 14 (3) 170-180 

 

 

 

YOLOv3, for its ease of use and stability. [24]. 

Since the application involved real-time data 

processing, a batch size of 1 was selected. As 

a result, two distinct weight files were 

generated: v3sbest.pt and v5mbest.pt. These 

weight files enabled the test data to be 

processed at the millisecond level, and 

performance metrics such as recall and 

precision could be calculated rapidly following 

the classification task. 

 
Figure 6. The six fundamental stages of the YOLO 

algorithm 

In real-world conditions, imaging systems can 

be significantly affected by factors such as 

variations in ambient lighting, sensor noise, 

reflections, and shadows [25]. These external 

influences may reduce the accuracy of deep 

learning–based object detection algorithms, 

potentially leading to misclassification or 

missed detection of small or low-contrast 

welding defects. To minimize such adverse 

effects, various filtering and preprocessing 

techniques are applied to the images, ensuring 

that YOLO models receive more consistent 

and higher-quality input data. The YOLO-

based image processing approach, illustrated 

in Figure 6, involves multiple stages and 

utilizes a variety of filtering techniques. One 

such technique, blurring, is used in 

preprocessing to soften the image and reduce 

detail. This filter is applied to the background 

areas, allowing foreground objects to become 

more prominent. Specifically, blurring 

smooths the background using the Gaussian 

method, reducing distractions caused by noise, 

texture, or complex patterns. The sharpening 

technique emphasizes edges and details within 

the image, which helps make object boundaries 

clearer, particularly in low-quality images. 

Meanwhile, noise reduction techniques help 

minimize unwanted random distortions. In this 

study, the bilateral filter effectively reduced 

noise while preserving object boundaries, and 

the Non-Local Means filter, despite increasing 

computational load, contributed to improved 

detection accuracy. 

Intersection over Union (IoU), frequently 

used in object detection tasks, is calculated as 

the ratio of the area of overlap between the 

predicted bounding box and the ground truth 

box to the area of their union [26]. The F1 

score is the harmonic mean of precision and 

recall, representing the balance between false 

positives and false negatives [27]. mAP, Mean 

Average Precision, provides a comprehensive 

measure of overall detection performance by 

averaging the Average Precision (AP) scores 

obtained under different threshold values. 

Accordingly, the values used in calculating the 

F1 score are as follows: 

• True Positive (TP): Refers to 

instances where the model correctly detects the 

presence of an actual object. In other words, 

the model makes a positive prediction that 

aligns with reality. 

• True Negative (TN): Represents cases 

in which the model correctly identifies the 

absence of an object. The model predicts a 

negative outcome, and this matches the actual 

condition. 

• False Positive (FP): Occurs when the 

model incorrectly predicts the presence of an 

object where none exists; commonly referred 

to as a "false detection." 

False Negative (FN): Denotes cases where the 

model fails to detect an existing object—i.e., it 

classifies the instance as negative, even though 

the object is present. 

Recommendation 2: Correction and 

Formatting of Equations 

For these variables, the first two equation 

models are applied, as shown in Eqs. (1) and 

(2). 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × Precision × Recall 

Precision + Recall
            (1) 

𝐶𝑆 = 𝑃(𝑛𝑣) 𝑥 IoUtruth,pred             (2) 

Based on these formulas, precision is 

determined by the values of true positives (TP) 

and false positives (FP), whereas recall relies 

on true positives (TP) and false negatives (FN). 

In the literature, the objectness score, denoted 
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as P(nv), refers to the probability score 

assigned by the neural network for the 

presence of a visual object in the 

corresponding region [28][29]. The P(nv) 

plays a critical role in determining these 

classification outcomes, especially for TP; it is 

a key parameter used in decision making [30]. 

The CS builds upon this concept by 

representing the overall likelihood that a 

predicted bounding box both contains an 

object and correctly identifies its class. In deep 

learning–based object detection models, this 

score is typically calculated by multiplying the 

objectness score with the Intersection over 

Union (IoU) between the predicted and ground 

truth bounding boxes. The numerical 

computation of these related metrics utilized 

the class distribution data presented in Table 2. 

Here, Agt represents the ground truth bounding 

box, a reference area defined by an expert that 

reflects the actual location of the object. Apred 

denotes the area of the predicted bounding box, 

calculated using its width and height as 

estimated by the model. NC refers to the total 

number of classes (categories) the model is 

designed to learn. In this study, three distinct 

classes were defined for the analysis of the 

RSW dataset obtained from the Kaggle 

platform. 𝐀𝐏𝐢 or Average Precision for the i-th 

class, indicates how effectively the model 

detects that class. It is computed as the area 

under the precision-recall curve for the 

corresponding class. 

For these parameters, the last three equation 

models are applied, as shown in Eqs. (3), (4), 

and (5). 

𝑚𝐴𝑃 =  
1

𝑁𝐶
𝑥 ∑ APi

NC
i=1              (3) 

Aint = max(0, 𝑋𝑟𝑖𝑔ℎ𝑡 −

 𝑋𝑙𝑒𝑓𝑡) 𝑥 𝑚𝑎𝑥(0, 𝑦𝑏𝑜𝑡𝑡𝑜𝑚 −  𝑦𝑡𝑜𝑝)             (4) 

IoU =
Aint

Agt + Apred − Aint
             (5) 

In this study, the RoboDK simulation software 

was utilized to integrate real Resistance Spot 

Welding (RSW) images onto a digital vehicle 

chassis model. This approach leverages the 

capability of processing images data to analyze 

post-welding visuals captured from multiple 

camera modules placed at various positions. 

Within this framework, various RSW images 

prepared for testing were evaluated using pre-

trained deep learning weight files. 

Table 2. Calculation of YOLO metrics: Confidence 

score (CS) and F1 score 

Object 

Detection 

Actual 

condition 

P(nv) 

Value 
Result 

Object 

Detected 

Object 

Detected 
0.95 TP 

Object 

Detected 

No Object 

Detected 
0.85 FP 

No Object 

Detected 

Object 

Detected 
0.10 FN 

No Object 

Detected 

No Object 

Detected 
0.05 TN 

As shown in Figure 7, the weld images 

generated by the pressure of the moving upper 

electrode in the RSW process can be monitored 

in real time through the camera window 

located at the upper left corner of the 

simulation interface. 

 
Figure 7. Real-Time image monitoring in RoboDK 

software 

Within the RoboDK simulation environment, 

it is possible to calculate the robot’s field of 

view, optimize the camera’s viewing angle, 

and pre-simulate various image processing 

applications by configuring essential camera 

parameters such as focal length, pixel size, 

field of view, and working distance. As 

shown in Figure 8, through the camera settings 

window located on the right side of the 

interface, the camera was configured to operate 

within a viewing range of up to 220 mm. 

Similarly, the white pyramid-shaped area 

displayed on the simulation screen represents 

the physical region detectable by the camera, 

based on the defined parameters. On the left 

side of the interface, Python-based YOLO 

algorithm scripts were inputted, initiating the 

image processing operations. 

3. Test Results and Discussion 

In this study, real-time image processing tests 

were conducted using the YOLOv3-s 



177           International Journal of Automotive Engineering and Technologies, IJAET 14 (3) 170-180 

 

 

 

(v3sbest.pt) and YOLOv5-m (v5mbest.pt) 

model weight files, trained on a total of 675 

images obtained from the Kaggle dataset 

within the RoboDK simulation environment. 

During the test phase, after determining the 

appropriate camera field of view and working 

distance, real RSW (Resistance Spot Welding) 

images placed along the metal plate of a virtual 

car chassis were sequentially analyzed. 

 
Figure 8. Camera Settings in RoboDK Software 

As illustrated in Figures 9 and 10, the weld 

zones in these images were classified by the 

respective deep learning models. The detected 

objects were visualized using bounding boxes 

along with the classification results. These 

boxes were highlighted in red frames within 

the upper and lower camera windows located 

on the right-hand side of the images. 

 
Figure 9. Bottom View and Camera Perspectives of the 

Test Study with YOLOv5-m 

 
Figure 10. Top View and Camera Window 

Perspectives of the Test Study with YOLOv3-s 

In these figures, Class 1 (Good Weld) is 

represented in orange, Class 2 (Explosion 

Weld) in navy blue, and Class 3 (Bad Weld) in 

green. Although Class 1 and Class 2 exhibit 

structural similarities, their training data were 

respectively 173% and 102% more abundant 

than that of Class 3. Similarly, their test data 

were 54% and 95% more numerous compared 

to Class 3. As a result, the YOLO models 

produced higher confidence scores for these 

two classes. The corresponding score tables are 

presented for both YOLOv3-s and YOLOv5-m 

models. 

In this study, classification of RSW data was 

performed using YOLO-based metrics through 

both the YOLOv3-s model, known for its low 

hardware requirements, and the YOLOv5-m 

model, known for its superior accuracy. It was 

observed that both models performed 

effectively and delivered satisfactory results 

even on low-budget hardware systems. The 

image processing result graphs for 144 test 

images processed by each model are presented 

in Figures 11 and 12, respectively. 

 
Figure 11. Class-Based Graph Using the YOLOv3-s 

Model 

 
Figure 12. Class-Based Graph Using the YOLOv5-m 

Model 

Both graphs present a comparative analysis of 

the three different classes (Class 1: Good 

Weld, Class 2: Explosion Weld, Class 3: 

BadWeld) in terms of F1 and confidence 

scores. The YOLOv5-m model demonstrated 

superior performance across all classes, 

producing higher scores in both accuracy (F1) 

and confidence. The particularly high 

performance in Class 1 is directly related to the 
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larger quantity of data available for this class. 

Notably, the model also achieved above-

average classification success and reliable 

outputs for Class 2 (Explosion Weld), which is 

of critical importance for quality control. 

Table 3. Class-Wise Comparison of Image Processing 

F1 and Confidence Scores for YOLO Models 

Model 
Class 

ID 

F1 

score 
CS IT 

YOLOv3-s 1 0.866 0.534 55.3 ms 

YOLOv5-m 1 0.924 0.605 72.1 ms 

YOLOv3-s 2 0.804 0.536 43.0 ms 

YOLOv5-m 2 0.851 0.584 61.2 ms 

YOLOv3-s 3 0.714 0.484 63.7 ms 

YOLOv5-m 3 0.746 0.520 78.5 ms 

YOLOv3-s all 0.792 0.516 54.1 ms 

YOLOv5-m all 0.837 0.575 69.3 ms 

Table 4. Class-Wise Comparison of Additional Image 

Processing Performance Metrics for YOLO Models 

Model 
Class 

ID 
Precision Recall mAP 

YOLOv3-s 1 0.851 0.892 0.76 

YOLOv5-m 1 0.910 0.930 0.79 

YOLOv3-s 2 0.803 0.826 0.73 

YOLOv5-m 2 0.847 0.868 0.77 

YOLOv3-s 3 0.691 0.749 0.62 

YOLOv5-m 3 0.725 0.772 0.67 

YOLOv3-s all 0.750 0.827 0.68 

YOLOv5-m all 0.813 0.870 0.74 

These graphs further highlight a key factor 

influencing inter-class discrimination 

ability: data diversity and class imbalance. 

During training, imbalances in the dataset can 

limit the model’s ability to generalize—

particularly for underrepresented classes—

resulting in misclassifications. Therefore, the 

relatively lower performance observed in Class 

3 (Bad Weld), which had fewer samples, is a 

direct outcome of this data imbalance. The data 

supporting these results are presented 

comparatively in Tables 3 and 4, along with 

inference times (IT). 

In this study, the mAP@0.5 criterion was 

adopted as the threshold for evaluating 

confidence scores. Accordingly, the YOLOv3-

s model achieved a value of 0.68, while the 

YOLOv5-m model reached 0.74, both 

successfully surpassing the defined threshold. 

Based on the obtained tables, while the 

YOLOv5-m model delivered higher accuracy 

and confidence scores, the YOLOv3-s model 

demonstrated faster inference times. 

4. Conclusion 

In this study, image processing operations 

using YOLO-based deep learning models were 

conducted within a virtual test platform 

developed in the RoboDK simulation 

environment, aiming to detect welding defects 

occurring during the Resistance Spot Welding 

(RSW) process. A comparative evaluation of 

the YOLOv3-s and YOLOv5-m models 

revealed that YOLOv5-m outperformed in 

terms of both classification accuracy and 

confidence scores. Specifically, the F1 score 

improved by 6.7% for Class 1, 5.8% for Class 

2, 4.5% for Class 3, and 5.7% overall. 

Regarding the confidence score, enhancements 

of 13.2% for Class 1, 9.0% for Class 2, 7.4% 

for Class 3, and 10.3% overall were achieved. 

Additionally, with YOLOv5-m, an 

improvement of approximately 7–8% in IoU 

was observed across all classes, reaching a 

value of around 0.70. 

Both YOLO models demonstrated the 

capability to operate on low-end hardware 

while delivering reliable and rapid predictions 

in the simulation environment. This enables 

quality assessments of welding processes 

without requiring physical hardware 

investments, thereby offering significant 

advantages for process engineering and 

predictive maintenance planning. 

In conclusion, the virtual test platform 

developed through this study provides a 

comprehensive solution for the pre-evaluation 

of robotic spot welding applications, 

accessibility analysis, and validation of image 

processing algorithms prior to field 

deployment. The outputs of this research—

including open-access weight files and Python-

based software—are well-suited to contribute 

to the literature and future studies. The 

findings lay the groundwork for the 

development of decision-support mechanisms 

aimed at enhancing weld quality in both 

academic research and industrial automation 

projects. For future work, expanding the 

dataset with a larger number of annotated 

images, particularly targeting 

underrepresented defect classes, will be 

essential to improve model robustness and 

generalization. Additionally, incorporating 

advanced synthetic data augmentation 

techniques such as Generative Adversarial 
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Networks (GANs) can help to diversify the 

training samples and alleviate class imbalance 

issues. Exploring real-world deployment 

scenarios by integrating the virtual test 

platform with actual robotic welding systems 

will further validate the effectiveness of the 

approach. Moreover, investigating adaptive 

learning strategies and real-time feedback 

mechanisms can enhance the system’s ability 

to cope with varying environmental conditions 

and weld quality fluctuations, ultimately 

contributing to more reliable and automated 

quality control in industrial settings. 
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