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Abstract — Soft sets provide a comprehensive mathematical framework for tackling uncertainty. Soft
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1. Introduction

Many researchers have introduced different mathematical approaches to address and model complex issues of
uncertainty, vagueness, and ambiguity across various fields, such as engineering, economics, social sciences,
and healthcare. Molodtsov [1] highlighted certain limitations within these frameworks, for instance, fuzzy set
theory [2] often faces difficulties in defining an appropriate membership function, while probability theory
requires numerous trials to determine the existence of a mean value.

To address these challenges, Molodtsov [1] introduced soft set theory, a new mathematical framework, and
explored its applicability in diverse areas, such as probability theory, game theory, and operations research.
Unlike classical models, soft set theory offers a more flexible structure as it avoids constraints related to
approximate descriptions. Following the application of soft sets to decision-making by Maji et al. [3], several
scholars [4—10] expanded on this foundation by proposing advanced decision-making techniques rooted in soft
set theory. Cagman and Enginoglu [11] introduced a notable soft set-based decision-making approach. They
presented the concept of soft matrices [12] and formulated decision-making strategies based on OR, AND,
AND-NOT, and OR-NOT operations on these matrices. These strategies were applied to effectively tackle
real-world problems involving uncertainty. The versatility of soft set theory has led to its extensive use in
decision-making contexts [13—-24], encompassing a wide range of developments, such as bijective soft sets,
exclusive disjunctive soft sets, generalized uni-int decision-making frameworks, soft approximations, the
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impact of various operators on decision processes, reduced soft matrices, cardinality inverse matrix concepts,
semantics in soft sets, as well as mean operators and generalized operations on fuzzy soft matrices, and soft
set-valued mappings.

In recent years, many researchers have explored the foundational aspects of soft set theory. Maji et al. [25]
conducted a detailed theoretical analysis, addressing concepts, such as soft subsets and supersets, soft set
equality, and fundamental operations, including union, intersection, AND-product, and OR-product. Pei and
Miao [26] explored how soft sets relate to information systems and offered revised definitions for the
intersection operation and soft subsets. Ali et al. [27] contributed by introducing new operations, including
restricted union, restricted intersection, restricted difference, and extended intersection operations. Subsequent
studies [28—41] delved into soft set operations and the algebraic frameworks governing collections of soft sets.
These works proposed innovative methods and corrected conceptual misunderstandings in earlier literature.
Progress in soft set research has been particularly notable in recent years, especially on soft set operations.
Various new operations have since been formulated and rigorously studied [42—49].

Soft equal relations and soft subsets represent two fundamental notions in soft set theory. Maji et al. [25] were
the first to introduce a reasonably precise definition of soft subsets. Building upon this foundation, Pei and
Miao [26] and Feng et al. [29] expanded the idea by offering a more comprehensive formulation that can be
viewed as an evolution of Maji's original concept. Qin and Hong [50] proposed two novel forms of congruence
and soft equality relations within the framework of soft sets. To refine Maji's distributive laws, Jun and Yang
[51] incorporated broader categories of soft subsets. They developed an enhanced version of soft equal
relations, referred to as J-soft equal relations for consistency. Their work explored generalized distributive
properties involving soft product operations. Inspired by Jun and Yang's contributions [51], Liu et al. [52]
presented a concise study on soft L-subsets and soft L-equal relations. A notable outcome of their research is
that distributive laws are not universally valid across all soft equality types discussed in prior literature.

Building upon the work presented in [52], Feng et al. [53] advanced the research by concentrating on various
forms of soft subsets and the soft product operations initially introduced in [25]. Their study explored different
classifications of soft subsets and the algebraic properties of soft product operations. In addition to discussing
fundamental principles, such as commutativity, associativity, and distributivity, topics previously explored by
multiple researchers, they conducted a detailed theoretical analysis of soft products, such as the AND-product
and OR-product, within the context of soft L-subsets. Their work addressed and resolved several incomplete
findings related to soft product operations in earlier literature, comprehensively investigating them through J-
equality and L-equality. Furthermore, they demonstrated that soft L-equal relations form congruence relations
in free soft algebras, and that the resulting quotient structures are commutative semigroups. For expanded
discussions on other forms of soft equalities, including generalized soft equality, soft lattice structures,
generalized operations under relaxed parameter constraints, g-soft and gf-soft equality, and T-soft equality,
see [54-58].

Cagman and Enginoglu [11] revised the concept of soft sets proposed by Maji et al. [25] and the soft set
operations to enhance their practical applicability. Besides, they introduced four distinct product operations
within soft set theory: the AND-product, OR-product, AND-NOT-product, and OR-NOT-product, along with
the uni-int decision function. Leveraging these definitions, they formulated a unified decision-making
framework to select optimal elements from a given set of alternatives. They illustrated their method's
effectiveness through a practical example addressing uncertainty-related problems. Later, Sezgin et al. [59]
conducted a theoretical analysis of the AND-product, which has been widely recognized as a fundamental
operation in soft set-based decision-making. Although various researchers have investigated the AND-product
in the context of different soft equalities, including soft L-equality and soft J-equality, Sezgin et al. [59] offered
a comprehensive study of its algebraic characteristics. Their analysis encompassed key properties, including
idempotency, commutativity, and associativity, and compared these with earlier findings involving soft F-
subsets, soft M-equality, soft L-equality, and soft J-equality.
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The concept of the soft union product was introduced for rings in [60], for semigroups in [61], and for groups
in [62] earlier, and its basic properties were studied. Besides, soft union ring, soft union semigroup, and soft
union group theory have been built upon this definition. Similarly, the concept of the soft intersection product
was introduced for groups in [63], for semigroups in [64], and for rings in [65] earlier, and its basic properties
were studied. Besides, soft intersection group, soft intersection semigroup, and soft intersection ring theory
have been built upon this definition. However, due to the differences in the algebraic structures of semigroups
and rings compared to groups, the definition and traits of the soft union product and soft intersection product
adapt accordingly. In particular, since each group contains a unit element and every member possesses an
inverse, the definitions of the soft union product and soft intersection product for groups have their own
characteristics.

Although soft L-subsets/equality and soft J-subsets/equality were introduced for soft sets defined by Maji et
al. [25], they have not been proposed for soft sets defined by Cagman and Enginoglu [11]. In this paper, firstly,
we conveyed these concepts for the revised soft set concept proposed by Cagman and Enginoglu [11].
Furthermore, we defined some new soft subsets and equalities called soft S-subsets/equality and soft A-subsets
and provided concrete examples to illustrate these concepts. Besides, we presented the relations between them.
This paper introduces a novel product for soft sets whose parameter sets are groups, referred to as the "soft
symmetric difference-difference-product,” developed in the framework of the definition of soft sets by Cagman
and Enginoglu [11]. We conducted a detailed investigation into its basic algebraic characteristics, considering
various soft subsets and equality relations to inspire future studies in which a new soft group theory can be
built on this concept. The paper is structured as follows: Section 2 reviews key concepts in soft set theory.
Section 3 introduces new soft subsets and soft equalities and explores their relations. Section 4 proposes a new
soft-set product, the soft symmetric difference-difference product, and explores its complete algebraic structure
regarding various soft subsets and equalities. The final section summarizes the findings herein.

2. Preliminaries

In this section, we review some fundamental definitions and characteristics to be required for the next section.
Soft sets were initially introduced in [1]; however, we adopt the definitions and notations as in [11] throughout
this paper.

Definition 2.1. [11] Let E be a parameter set, U be a universal set, P(U) be the power set of U, and ¥ € E.
Then, the soft set f,, over U is a function such that fi: E = P(U), where forall x € ¥, fi-(x) = @. That is,

fr = {(x fr(0): x € E}

Definition 2.2. [11] Let f3; be a soft set over U. If f3:(x) = @, for all x € E, then f3 is called a null soft set
and indicated by @, and if f3(x) = U, for all x € E, then f3 is called an absolute soft set and indicated by
Ug.

Definition 2.3. [11] Let f3; and fy be two soft sets over U. If f3;(x) S fx(x), for all x € E, then f3 is a soft
subset of fi and indicated by f3; € fx. If for(x) = fx(x), for all x € E, then f, is called soft equal to fyx and
denoted by f3r = fx.

Definition 2.4. [11] Let f3; and f be two soft sets over U. Then, the union of f3; and fy is the soft set f3; U fx,
where (fzr U fo)(wW) = frr(w) U fy(w), forallw € E.

Definition 2.5. [11] Let f3; and fyx be two soft sets over U. Then, the intersection of f3; and fy is the soft set
fre O fx, where (fzr 0 f)(W) = frr(w) N fy(w), forallw € E.

Definition 2.6. [11] Let f3; and f be two soft sets over U. Then, the symmetric difference of f3; and fy is the
soft set fyrAfy, where (fscAfy)(W) = fr (W)Afx(w), for allw € E.
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Definition 2.7. [11] Let f3; be a soft set over U. Then, the complement of f;; denoted by f3:°, is defined by
the soft set f3:: E = P(U) such that f3:°(e) = U\fy(e), foralle € E.

From now on, A represents the classical symmetric difference operation, which is commutative and associative,
in classical set theory. Then, the symmetric difference of the family 8 = {C;: i € I} such that ] is an index set,
is denoted by

A=A c, =cc,A..Ac,
i€l
Definition 2.8. [66] Let f; and g, be two soft sets over U, where G is a group. Then, the soft symmetric
difference-union product f;®s/, g is defined by

(fe®sug6)®) = A (fe 0V go()), .2 €6

forallx € G.

Definition 2.9. [66] Let f; and g, be two soft sets over U, where G is a group. Then, the soft union-difference
product fc®y,/ag¢ is defined by

(fo®uaga)®) = | | (e 0\ 9e@), v.2€6
xX=yz
forall x € G.

For additional information on soft algebraic structures and soft products, we refer to [67-78].
3. Some New Types of Soft Subsets and Soft Equalities

This section defines some new types of soft subsets and soft equalities and explores their relations. The
concepts of soft L-subsets/equality and soft J-subsets/equality proposed in [51, 52] were conveyed for the
revised soft set definition in [11].

Throughout this section, let K and W be two subsets of the parameter set E.

Definition 3.1. Let f; and gy, be two soft sets over U. Then, fy is called a soft L-subset of gy, denoted by
fx €L gw, if, for all e € E, there exists at least one A € E such that fx(e) = gy (h). Moreover, two soft sets
fx and gy, are said to be soft L-equal, denoted by fx =, gw., if fx €. gw and gw S, fx.

It is evident that if fy €, gy holds in the sense of Liu et al. [52], then it also holds in the sense of Definition
3.1, provided that W is a proper subset of E.

Definition 3.2. Let f; and gy, be two soft sets over U. Then, fy is called a soft J-subset of gy, denoted by
fx € gw. if, for all e € E, there exists at least one h € E such that fi(e) S gy (7). Moreover, two soft sets

fx and gy are said to be soft J-equal, denoted by fx =; gw., if fx E; gw and gw &, fx.

It is obvious that fi €; gy holds under Definition 3.2, which is based on the soft set definition of Cagman
and Enginoglu [11], if and only if it holds under the definition of J-subsets introduced by Jun and Yang [51],
which relies on the soft set definition of Maji et al. [25].

Definition 3.3. Let fx and gy, be two soft sets over U. Then, f is called a soft A-subset of gy, denoted by
fx €4 9w, if, foreach x, y € E, fx (x) S gw ().

In Definition 3.3, if W is a proper subset of E, then fx €, gy if and only if fx = @f.
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Definition 3.4. Let fi and gy, be two soft sets over U. Then, fy is called a soft S-subset of gy, denoted by
fx Es gw.,if, foralle € E, fy(e) = Aand gy, (e) = B, where A and B are two fixed sets and A € B. Moreover,
two soft sets fx and gy are said to be soft S-equal, denoted by fx =s gw. if fx Es gw and gy Es fx.

It is obvious that if fx =5 gw, then fx and gy, are the same constant function, that is, for all e € E, fx(e)=
gw(e) = A, where A is a fixed set.

Note 3.5. In Definition 3.4, if W is a proper subset of E, then fx &g gy ifand only if fx = gy = @. Besides,
if K is a proper subset of E and W = E, then fyx &g g5 if and only if g is any constant function from E to
P(U). Furthermore, if K is a proper subset of E and fx Eg gy, then fx = @. In addition, in Definition 3.4, if
K or W is a proper subset of E, then fx =g gy if and only if fx = gy = Of.

Definition 3.6. Let f; and gy, be two soft sets over U. Then, g is called a soft S-complement of gy, denoted
by fx =s (gw)S, if, for all e € E, fx(e) = A and gy, (e) = B, where A and B are two fixed sets and A = B".
Here, B'= U\B.

Note 3.7. In Definition 3.6, if K is a proper subset of E, then fx =5 (gw)’ if and only if fx = @ and gy, =
Ug. Similarly, if W is a proper subset of E, then fx =5 (gy )’ if and only if gy, = @ and fx = Us.

The following theorem can be observed from the related definitions.
Theorem 3.8. Let fx, g, f5, and gg be four soft sets over U. Then,
i fe Es 9= fe Cage = fe € gk

i fx € gw = fx S gw

iii. fx €1 gw = fx §] 9w

. fg =s 9g = f& = 9k

v. fk = 9w = fx =1L 9w = fx =) 9w

However, the converses may not be true.

Example 3.9. Let E={r;,5,,53,54,55} be a parameter set, K={ry,r,} and W={r,,5,,75} be two subsets of E, and
U = {21,%2,33,34,35} be a universal set. Moreover, let

fe = {051, {21, 33}), (74, {22, 73, 35})},
9w = {(51, {21, 83}), Ga, {22, 23}), (55, {21, 2, 23, 25} }
hw = {(51,{%2, 23, 35}), (54, {1, 23} ), (+5, {21, 22, 33, 55 D},
tx ={(51, {21, 23}), (64, {23, 241},
Zg = {( r1.{21, 23, 34}), (52,{31, 33, 34, B5}), (3, {%1, 33, B4, 35}), (54, {31, 23, B4} ), (75, {31, 32, B3, 24})},
e = {(71, {21, 33, 35}), (52, {21, 23, B4, 35}), (93, {22, 33, 24}), (54, {22, 33, 35} ), (55, {22, 33, 54, Z5})},
mg = {(11,{(22,23}), (0, {23}), (13, {22}), (14, (313 ), (5, {21, 21D}
Ve = {(r1.{81, 22, 23], (7, {21, 32, 33}), (73, {21, B2, 33}), (74, {21, B2, 23} ), (55, {21, B2, B3 1)},
and
dg = {(r1, {31, 22,33, 34}), (r,, {21, 32, 23, 34}), (53, {31, 22, 33, 24}), (54, {21, B2, 33, B4} ), (5, {21, B2, B3, B4 })}
be soft sets over U.

Since fx(r1) € gw (1), (or fx (1) € gw(¥s)), fx (1) € gw(s), fk(2) = fk(r3) = fk(rs) = @, and the
empty set is a subset of any set, it is obvious that fi €; gy . However, since fi(rs) # gw (1), fx () #
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gw(2), fx(a) # gw(@3), fe(a) # gw(ra), and fx (54) # gw(rs), we can deduce that fx &; gy . Since
fx(r1) = hw(xa), fx (2) = hyw (53), fic (r3) = hy (32), fx (r4) = hy (51), and fx (r5) = hy (52), it is obvious
that fx €, hyy.

Since tx(r) € zg(ry), tx(ry) € zg(rp), tx(ry) € zg(r3), tx(ry) € zg(ry), tx(ry) € zg(rs), tg(ry) €
zg (1), tg(ry) € zg(32), tx(ry) € zg(33), ty (1) € zg(r4), tx (1) € z(r5), tx(12) = tx(r3) = tx(rs) =

@, and the empty set is a subset of any set, ty 4 zz. However, since tx(r;) & 75 (r3), then ty &, 75.

Since  mp(r1) € yp(r1), mp(1) S ye(2), me(r) S yp(rs), me(r) € ye(ry), mp(y) € yp(6s),
mg(r2) € yp(r1), me(rz) € ye(rz), mp(r2) € ye(rs), me(r2) S yp(ra), me(r2) S ye(rs), mp(r3) &
(1), mp(3) € yp(2), me(rs) S ye(r3), me(rs) € yp(ra), me(rs) € ye(rs), mg(ry) € ye(ry),
mg (1) € yp(2), me(rs) € ye(r3), me(ry) € ye(ra), me(ry) € ye(rs), mg(rs) S yp(ry), mp(s)
Ve (r2), me(rs) € yp(r3), mg(rs) € yg(r4), and mp(rs) S yp(rs), then my €, yg. Thus, by Theorem 3.8,
mg € yg andmg §; yg.

Furthermore, since yr and dg are constant functions such that yg(e) = {z1,3,,%3} = A and dg(e) =
{31,%2,%3,3,} = B, forall e € E, where A € B, it is obvious that yz & dj.

Example 3.10. Let E={r;,5,,53,5,,55} be a parameter set, K={r,,5,} and W={r,,5,,75} be two subsets of E,
and U = {31,%,,%3,%34,35} be a universal set. Moreover, let

fx = {(51.{z1,33}), (4, {71, 52, 73, 25 1)},
9w = {(51,{31, 32, 33}), (74, {31, 72, 73, 35}), (+5, {zZ1 )}
xg = {(51,{21, 22, 243), (52, {21, 32, 24}), (53,{21, 32, 54}), (54, {21, B2, 343} ), (35, {21, 22, 24 D)},
de = {(51,{z1, 22, 24}), (52,{21, 32, 24}), (53, {21, 32, 24}), (54, {1, B2, 34} ), (55, {21, 22, 24 D)},
hg = {(51,{23,25}), (52, {23, 35}), (53,{23, 25}), (54, {23, 25} ), (+5, {23, 35 )},
nw = {(51,{22,33}), (54, {21, 25} ), (&5, {74 1)},
and
lw = {(51,{82,23}), (74, {1, 35} ), (55, {74 1)}

be soft sets over U.

Since fx(r1) # gw (1), fk(r1) # gw (32), fx (1) # gw(53), fr (1) # gw(r4), and fx(51) # gw (¥5), it is
obvious that fx #; gw. However, since fx(r1) € gw(r1), fx(a) € gw(rs), and fr () = fr(r3) =
fx(rs) = @, we can deduce that fx €; gy . Moreover, since gy (r1) € fi(ra), gw(ra) € fi(a), gw(rs) S

fx (1), and gy (52) = gw(r3) = @, we can conclude that gy, &, fi. Therefore, fy =; gw.

Since xy and dg are constant functions such that xz(e) = dg(e) = {31, 32,24} = A, forall e € E, it is obvious
that xg =g dg. Thus, xz = dg. Moreover, since xgz and hy are constant functions such that xz(e) =
{21,%2,34} = A and hg(e) = {33,35} = B, for all e € E, where A = B’, it is obvious that xg =g (hg)°. It is
clear that ny, = lj; however, ny, #s Ly .

4. Soft Symmetric Difference-Difference Product

In this section, we present a new product for soft sets whose parameter sets are groups, called the soft
symmetric difference-difference product for soft sets. We thoroughly investigate its algebraic properties,
focusing on various types of soft equalities and soft subsets and providing illustrative examples.

From now on, G denotes a group, S; (U) is the collection of all soft sets over U, whose parameter sets are G,
and all soft sets in this section are elements of S; (U).
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Definition 4.1. Let f; and g; be two soft sets over U. Then, the soft symmetric difference-difference product
f6®s/agc is defined by

(fe®s/ag6)®) = A (fe 0\ 96(), %2€6

forallx € G.

Note here that since G is a group, there always exist ¥, 2 € G such that x = yz, for all x € G. Let the order of
the group G be n, that is, |G| = n. Then, it is obvious that there exist n different combinations of writing styles
for each x € G such that x = yz, where y, 3 € G.

Note 4.2. The soft symmetric difference-difference product is well-defined in S;(U). In fact, let
fG,gG,mg, kG € SG (U) Such that (fG'gG) = (mG,kG). Then, fG = Mmg and 9dc = kG, lmplylng that fG(x) =
mg(x) and gg (x) = kg (x), for all x € G. Thereby, forall x € G,

(fe®s/aga) () = A (fo 1)\ 96(2))
= A (me 1)\ k(=)

= (mG®S/de)(x)
Hence, f;®s/a9c = M®s/ake-

Example 4.3. Consider the group G = {a, b} with the following operation:

a a b

b b a

Let f; and g be two soft sets over U= D, = {< x,y >: x2 = y% = e, xy = yx} = {e, x,y, yx} as follows:
fe = {(a,{e,x,yx}), (b, {x,yx}} and g¢ = {(a,{e,y,yx}), (b,{e,y})}
Since a = aa = bb, (f;Q®s/a9¢)(@) = (fz(a) \ gs(@))A(fz(b) \ g¢ (b)) = {yx}, and since b = ab = ba,
(f6®5/a96)(B) = (f6(@) \ ge®))A(fs(b) \ gs(@)) = {yx} is obtained. Hence,
f6®s/ag96 = {(a,{yx}), (b, {yx}}

Proposition 4.4. The set S; (U) is closed under the soft symmetric difference-difference product. That is, if f;
and g are two soft sets over U, then so is f;&®s/q96-

Proor. It is obvious that the soft symmetric difference-difference product is a binary operation in S;(U).
Thereby, S;(U) is closed under the soft symmetric difference-difference product.

Proposition 4.5. The soft symmetric difference-difference product is not associative in S¢ (U).
Proor. Let f;, g, and hg be three soft sets over U = {e, x, y, yx} such that
fe = {(a,{e,yx}), (b, {x,y}},
ge = ((a{e, x,y}), (b, {e, yx})},
and

he = {(a, {y,yx}), (b, {y})}
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Since fc®s/a9c = {(a, {x,y,yx}), (b, #)}, then
(fG ®s/dg(;)®s/dh6 = {(a, {x}), (b, {x,yx})}
Moreover, since g ®s/qhe = {(a, {x, yx}), (b, {x})}, then
f6®s/a (gG®s/th) ={(a,{e,y}), (b,{e,y,yx})}
Thereby, (f5®s/496)®s/ahe # f6®s/a(96®s/ahe)-
Proposition 4.6. The soft symmetric difference-difference product is not commutative in S; (U).
Proor. Consider the soft sets f; and g; in Example 4.3. Then,
f6®ssa9c = {(a, {yx}), (b,{yx}} and gc®,afc = {(a,{e}), (b, {e})}
implying that f¢®s/a96¢ # 96 ®s/afc-
Proposition 4.7 The soft symmetric difference-difference product is not idempotent in S; (U).
Proor. Consider the soft set f; in Example 4.3. Then,
f6®ssafe = {(a, 0), (b, {e})}
implying that fc®s/afc # fc-
Proposition 4.8. @ is the left absorbing element of the soft symmetric difference-difference product in S; (U).

Proor. Let x € G. Then,

(96®s/afe) ) = A (96 0\ fa(2)

= A (0\fs(2)
= 06 (x)
Thus, Q)G@s/dfG = @¢.

Proposition 4.9. @ is not the right absorbing element of the soft symmetric difference-difference product in
Sc(U).

Proor. Consider the soft set f; in Example 4.3. Then,
f6®s/aP6 = {(a,{e}), (b, {e})}
implying that f®;/40¢ # D¢-
Remark 4.10. @, is not the absorbing element of the soft symmetric difference-difference product in S; (U).

Proposition 4.11. Let f; and g; be two soft sets over U. If one of the following assertions is satisfied, then
fG®s/dgG = @g:

i fo €4 9o

ii. g¢ s f¢ and |G| = k, where k is a positive even integer

iii. f¢ =s g

iv. fe =5 (g¢)€ and |G| = k, where k is a positive even integer

V. 9g =UG
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Proor. Let f; and g be two soft sets over U.

i. Suppose that f; €4 gg. Then, f;(a) € gg(b), foreach a,b € G. Thus, for all x € G,
(fa®s/ag9a)®) = A (fe0)\ go(2) = 0 = 05

Thereby, f:Qs/a9¢ = 6.

ii. Let gg s f; and |G| = k, where k is a positive even integer. Hence, forall a € G, f;(a) = A and g;(a) =
B, where A and B are two fixed sets and B € A. Thus, for all x € G,

(f6®s/ag6)(x) = x:Ayz(fG(Y) \QG(Z)) = (A\B)A(A\B)A ...A(A\B) =0 = @s(x)

k times A\B, where k is even

Hence, f®s/a96 = D-

iii. Let fz =5 g¢. Then, for all x € G, f;(x) = A and g;(x) = B, where A and B are two fixed sets and A =
B. Thus, forall x € G,

(fa®s/ag9a)®) = A (fe0)\ go(2) = 0 = 050
Hence, f®s/a96 = De-

iv. Let f =5 (g¢)€ and |G| = k, where k is a positive even integer. Then, for all x € G, f;(x) = A and
g (x) = B, where A and B are two fixed sets and A = B’. Thus, for all x € G,

(fa®s/ag90)) = A (fe0)\ ga())

= AAAA ...AA

k times A, where k is even
= 0c(x)
Thereby, fG®s/dgG = @¢.
v. Let g¢ = Ug.Then, for all x € G, g;(x) = U.Thus, forall x € G,

(fe®s/a98)() = A (fe()\ go(2))

A 0\ Us()
A 00\ )

X=Yz

= 0 (%)

Hence, f®s/a96 = De-
Proposition 4.12. Let f; and g be two soft sets over U. Then, f;®;/a9¢ € Q. /a96-

Proor. Let f; and g be two soft sets over U. Then, for all x € G,

(fa®s/aga)®) = B (fe0)\ go(2)

c |\ 9:@)

x=yz

= (f6®ujagc)(x)
Thus, fG®s/dgG c f6®u/dgG'
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Proposition 4.13. Let f; and g; be two soft sets over U. If one of the following assertions is satisfied, then
f6®s/a9¢ = fc®usadc:

i fo €4 9o

ii. g¢ s f¢ and |G| = k, where k is a positive odd integer
1il. G =S gG

Proor. Let f; and g; be two soft sets over U.

i. Assume that f; €4 gg. Then, f;(a) S gg(b), foreacha,b € G. Thus, for all x € G,
(fa®s/aga)®) = B (fe0)\ 9o(2)
=0
= | (e 0\ 9:)

X=yz
= (f6®uagc)(x)
Hence, f6®s/a9¢ = f6®u/a9e-

ii. g¢ s f; and |G| = k, where k is a positive odd integer. Hence, for all a € G, f;(a) = A and g;(a) = B,
where A and B are two fixed sets and B € A. Thus, for all x € G,

(fa®s/aga)®) = B (fe0)\ go(2)

- | o\ g@)

X=Y3z
= (f6®u/agc)(x)
Then, f6®s/a9¢ = f6Ou/a9s-

iii. Let f; =5 g¢. Thus, forall x € G, f;(x) = A and g;(x) = B, where A and B are two fixed sets and A =
B. Hence, for all x € G,

(fa®s/a98) ) = A (fe()\ go(2))

- o a@)

xX=yz
= (f6®u/agc)(x)
Thereby, f®s/a9¢ = f6®u/ade-

Proposition 4.14. Let f; and g; be two soft sets over U. If one of the following assertions is satisfied,
then f®s/a9¢ = fc®s/ude-

i. fz €5 gg and |G| = k, where k is a positive even integer

ii. g¢ s f¢ and |G| = k, where k is a positive even integer

iii. go = D¢

iv. fe =5 (g¢)€ and |G| = k, where k is a positive even integer

v. g¢ = Ug and |G| = k, where k is a positive even integer
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Proor. Let f; and g be two soft sets over U.

i. Suppose that f; € g; and |G| = k, where k is a positive even integer. Hence, for all a € G, f;(a) = A and
gg(a) = B, where A and B are two fixed sets and A S B. Thus, for all x € G,

(fa®s/aga)®) = B (fe0)\ go(2)
=0
= A (fe0) U g6(2)
= (fe®s/ugo) ()

Thereby, f6®s/a96 = f6c®s/ude-

ii. Suppose that g; € f; and |G| = k, where k is a positive even integer. Hence, for all a € G, f;(a) = A
and g;(a) = B, where A and B are two fixed sets and B € A. Thus, forall x € G,

(fa®s/aga)®) = B (fe0)\ go(2)
=0
= A (fe0) v g6(2)
= (f6®s/ugs) @)

Thereby, fG®s/dgG = fG®s/ugG'
iii. Let g = Q. Then, for all x € G, g;(x) = @.Thus, for all x € G,

(fa®s/aga)®) = B (fe0)\ go(2)
= A (e0)\ 0:(2)
= A (fe0) v 0:(2))
= A (fe0) U g6(2)

= (fG®s/ugG)(x)

Hence, fG®s/dgG = fG®S/ugG‘

iv. Let f; =5 (g¢)€ and |G| = k, where k is a positive even integer. Then, for all x € G, f;(x) = A and
g (x) = B, where A and B are two fixed sets and A = B’. Thus, for all x € G,

(fa®s/aga)®) = B (fe0)\ go(2)
=0

A (a0 v g5(2)

= (fe®s/ugc) ()

Thereby, f;®s/a9¢ = f6®s/udc-

v. Let g; = U; and |G| = k, where k is a positive even integer. Then, for all x € G, g;(x) = U.Thus, for all
X €EQG,
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(fa®s/aga)®) = B (fe0)\ Us(2)

A () \U)

X=yz
=0
A ()0 Us ()

A (fe0) 0 5(2)

= (fG®s/ugG)(x)

Hence, fG®s/dgG = fG®S/ugG'

Proposition 4.15. The soft symmetric difference-difference product distributes over the soft symmetric
difference operation from the right side.

Proor. Let f;, g¢, and hg be three soft sets over U. Then, for all x € G,

((o96)®s1ahe)® = A (((sB90)0)\ he(2))

=yz

= A ()89 ) \ he(2)
= A ((s0\6@)a(ge ) \ he(2)))

_ [x:Ayz( F20) \ hg (z))] A L:Ayz(ga )\ he (z))]

= (f6®s/ahe) (X)A(g6®s/ahc) (%)
= ((f6®s/ahe)A(96®s/ahe)) (x)
Thus, (feA96)®s/ahe = (f6®s/ahe)B(ge®s/ahe)-
Example 4.16. Consider the soft sets f; and gg in Example 4.3. Let hg be a soft set over U as follows:
he = {(a,{e,yx}), (b, {x,y}}
Since fc®s/ahe = {a, {x,yx}), (b,{e,x,yx})} and g ®s/ahc = {(a,{e,y})(b,{e,y, yx})} then
(fa®s/ahe)A(ge®s/aha) = {(a, U, (b, {x,y}}
Moreover, since fgAge = {(a, {x,y}), (b, U)},
(feBg6)®s/ahe = {(a,U), (b, {x,y}}
Thus, (f6A96)®s/ahe = (f6®s;ahc)B(g6®s/ahe).

5. Conclusion

The concepts of soft L-subsets/equality and soft J-subsets/equality were proposed for the soft sets defined by
Maji et al. [25]; however, they have not been adapted for the revised soft set definition of Cagman and
Enginoglu [11]. In this study, we first conveyed these concepts for the revised soft set definition. Additionally,
we defined some new types of soft subsets and equalities, called soft S-subsets/equality and soft A-subsets,
along with their specific examples to clarify these concepts. We investigated the connections among these new
concepts. This paper further presents an innovative product for soft sets whose parameter sets are groups,
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called the "soft symmetric difference-difference-product”. We thoroughly analyzed its fundamental algebraic
properties, considering various soft subsets and equality relations to inspire future research, which may lead
to a new soft group theory arising from this concept. Future research may focus on proposing additional types
of soft product operations and further investigating the fundamental characteristics of various soft equal
relations, thereby enriching the theoretical and practical understanding of soft sets by proposing new soft group
theory.
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