
Hacettepe Journal of Mathematics and Statistics
Volume 47 (3) (2018), 601 � 613

Oscillation of a �rst order linear impulsive delay
di�erential equation with continuous and piecewise

constant arguments
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Abstract

A class of �rst order linear impulsive delay di�erential equation with
continuous and piecewise constant arguments is studied. Using a
connection between impulsive delay di�erential equations and non-
impulsive delay di�erential equations su�cient conditions for the os-
cillation of the solutions are obtained.
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1. Introduction

In this paper, we consider an impulsive delay di�erential equation with continuous and
piecewise constant arguments of the form

(1.1) x′ (t) + a (t)x (t) + b(t)x(t− τ) + c(t)x([t− 1]) = 0, t 6= ti, t ≥ t0 > 0,

(1.2) ∆x (ti) = bix (ti) , i = 1, 2, ...,

where a ∈ C([0,∞),R), b, c ∈ C([0,∞), [0,∞)), τ ∈ R+ is a �xed constant, [.] denotes
the greatest integer function, {ti} is a sequence of real numbers such that 0 < t0 <
t1 < t2 < ... < tj < tj+1 < ..., and lim

i→∞
ti = ∞, ∆x (ti) = x

(
t+i
)
− x

(
t−i
)
, x
(
t+i
)

=

lim
t→t+i

x (t) , x
(
t−i
)

= lim
t→t−i

x (t) , bi 6= 1, i = 1, 2, ..., are constants.

Since 1980's di�erential equations with piecewise constant arguments have been attracted
great deal of attention of researchers in mathematical and some of the others �elds in
science. Piecewise constant systems exist in a widely expanded areas such as biomedicine,
chemistry, mechanical engineering, physics, etc. These kind of equations such as Eq. (1.1)
are similar in structure to those found in certain sequential-continuous models of disease
dynamics [1]. In 1994, Dai and Singh [2] studied the oscillatory motion of spring-mass
systems with subject to piecewise constant forces of the form f(x[t]) or f([t]). Later, they
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improved an analytical and numerical method for solving linear and nonlinear vibration
problems and they showed that a function f([N(t)]/N) is a good approximation to the
given continuous function f(t) if N is su�ciently large [3].
In 1984, Cooke and Wiener [4] studied oscillatory and periodic solutions of a linear
di�erential equation with piecewise constant argument and they note that such equa-
tions are comprehensively related to impulsive and di�erence equations. After this work,
oscillatory and periodic solutions of linear di�erential equations with piecewise constant
arguments have been dealt with by many authors [5, 6, 7] and the references cited therein.
On the other hand, in 1994, the case of studying discontinuous solutions of di�erential
equations with piecewise continuous arguments has been proposed as an open problem
by Wiener [8]. Due to this open problem, some impulsive di�erential equations with
piecewise constant arguments have been studied [9, 10, 11]. Moreover, the monographs
[12, 13] include many results on the theory of di�erential equations with piecewise con-
stant arguments.
Now, our aim is to consider the Wiener's open problem for the equation (1.1)-(1.2).
Moreover, as we know there is only one work on nonimpulsive delay di�erential equa-
tions with continuous and piecewise constant arguments [14]. In this respect, we obtain
su�cient conditions for the existence of oscillatory solutions of Eq. (1.1)-(1.2).

1.1. De�nition. It is said that a function x de�ned on the set {−1} ∪ [−τ,∞) is a
solution of Eq. (1.1)-(1.2) if it satis�es the following conditions:
(D1) x(t) is continuous on [−τ,∞) with the possible exception of the points ti, i = 1, 2, ...
(D2) x(t) is right continuous and has left-hand limit at the points ti, i = 1, 2, ...
(D3) x(t) is di�erentiable and satis�es (1.1) for any t ∈ R+, with the possible exception
of the points ti, i = 1, 2, ..., and [t] ∈ [0,∞), where one-sided derivatives exist,
(D4) x(t) satis�es (1.2) at the points ti, i = 1, 2, ...

1.2. De�nition. A function x (t) is called oscillatory if it is neither eventually positive
nor eventually negative for t ≥ T where T is su�ciently large. Otherwise, the solution is
called nonoscillatory.

1.3. Remark. In this paper we assume that −∞ < bi < 1 for all i = 1, 2, ... Otherwise,
from the impulse conditions (1.2) it is obtained that the solutions are already oscillatory.

1.4. Remark. We assume that b(t) 6≡ 0 or c(t) 6≡ 0. If b(t) ≡ 0 and c(t) ≡ 0, then Eq.
(1.1)-(1.2) reduce to an ordinary di�erential equation with impulses. The results on the
oscillation of impulsive ordinary di�erential equations can be found in the survey paper
[15].

2. Main Results

In this paper we also consider following di�erential inequalities.

x′ (t) + a (t)x (t) + b(t)x(t− τ) + c(t)x([t− 1]) ≤ 0, t 6= ti, t ≥ t0 > 0,

∆x (ti) = bix (ti) , i = 1, 2, ...,(2.1)

and

x′ (t) + a (t)x (t) + b(t)x(t− τ) + c(t)x([t− 1]) ≥ 0, t 6= ti, t ≥ t0 > 0,

∆x (ti) = bix (ti) , i = 1, 2, ...(2.2)

The main tools for the proofs of our results are following di�erential equation and in-
equalities.

(2.3) y′ (t) + a (t) y (t) +B(t)y(t− τ) + C(t)y([t− 1]) = 0, t ≥ t0 + max{τ, 2}
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(2.4) y′ (t) + a (t) y (t) +B(t)y(t− τ) + C(t)y([t− 1]) ≤ 0, t ≥ t0 + max{τ, 2},

(2.5) y′ (t) + a (t) y (t) +B(t)y(t− τ) + C(t)y([t− 1]) ≥ 0, t ≥ t0 + max{τ, 2},

where

(2.6) B(t) =
∏

t−τ<tj≤t

(1− bj)b(t), t ≥ t0 + max{τ, 2},

and

(2.7) C(t) =
∏

[t−1]<tj≤t

(1− bj)c(t), t ≥ t0 + max{τ, 2}.

The following theorem is a generalization of Theorem 1 in [16] to impulsive delay di�er-
ential equations with continuous and piecewise constant arguments.

2.1. Theorem. (i) Inequality (2.1) has no eventually positive solution if and only if
inequality (2.4) has no eventually positive solution.
(ii) Inequality (2.2) has no eventually negative solution if and only if inequality (2.5) has
no eventually negative solution.
(iii) All solutions of the equation (1.1)-(1.2) are oscillatory if and only if all solutions of
equation (2.3) are oscillatory.

Proof. We will prove only (i) since the proofs of (ii) and (iii) are similar. Let x(t) be an
eventually positive solution of inequality (2.1) such that x(t) > 0, x(t−τ) > 0, x([t−1]) >
0 for t > T ≥ t0 + max{τ, 2}, where T is su�ciently large. Set y(t) =

∏
T<tj≤t

(1− bj)x(t).

Since 1− bj > 0, it is clear that y(t) > 0, y(t− τ) > 0, and y([t− 1]) > 0 for t > T. Now,
we will show that y(t) is a solution of inequality (2.4). From (2.6), (2.7), and (2.1) we
obtain that for t 6= ti and n ≤ t < n+ 1

y′ (t) + a (t) y (t) +B(t)y(t− τ) + C(t)y([t− 1])

=
∏

T<tj≤t

(1− bj)x′(t) + a(t)
∏

T<tj≤t

(1− bj)x(t)

+
∏

t−τ<tj≤t

(1− bj)b(t)
∏

T<tj≤t−τ

(1− bj)x(t− τ)

+
∏

[t−1]<tj≤t

(1− bj)c(t)
∏

T<tj≤[t−1]

(1− bj)x([t− 1])

=
∏

T<tj≤t

(1− bj)
[
x′ (t) + a (t)x (t) + b(t)x(t− τ) + c(t)x([t− 1])

]
≤ 0.

So, y(t) is an eventually positive solution of inequality (2.4). On the other hand, from
(1.2), we have

y(t−i ) =
∏

T<tj≤ti−1

(1− bj)x(t−i )

=
∏

T<tj≤ti

(1− bj)x(ti)

= y(ti)
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and

y(t+i ) =
∏

T<tj≤ti

(1− bj)x(t+i )

=
∏

T<tj≤ti

(1− bj)x(ti)

= y(ti).

So, y(t) is continuous at the impulse points.
Now, let y(t) be an eventually positive solution of inequality (2.4). Then y(t) > 0, y(t−
τ) > 0, and y([t − 1]) > 0 for t > T. We will show that x(t) is an eventually positive
solution of inequality (2.1). From (2.6), (2.7), and (2.4) we obtain that for t 6= ti and
n ≤ t < n+ 1

x′ (t) + a (t)x (t) + b(t)x(t− τ) + c(t)x([t− 1])

=
∏

T<tj≤t

(1− bj)−1y′(t) + a(t)
∏

T<tj≤t

(1− bj)−1y(t)

+b(t)
∏

T<tj≤t−τ

(1− bj)−1y(t− τ) + c(t)
∏

T<tj≤[t−1]

(1− bj)−1y([t− 1])

=
∏

T<tj≤t

(1− bj)−1 [y′ (t) + a (t) y (t) +B(t)y(t− τ) + C(t)y([t− 1])
]

≤ 0.

Moreover,

x(t−i ) =
∏

T<tj≤ti−1

(1− bj)−1y(t−i )

=
∏

T<tj≤ti

(1− bj)−1(1− bi)y(ti)

= (1− bi)x(ti)

and

x(t+i ) =
∏

T<tj≤ti

(1− bj)−1y(t+i ) = x(ti).

So, x(t) is an eventually positive solution of inequality (2.1). The proof is complete.

�

Following we give several su�cient conditions for the oscillation of equation (1.1)-(1.2).

2.2. Theorem. If one of the following conditions be satis�ed then every solution of
equation (1.1)-(1.2) is oscillatory:

(2.8) lim
t→∞

sup

t∫
t−l

 ∏
s−τ<tj≤s

(1− bj)

 b(s) exp

 s∫
s−τ

a(u)du

 ds > 1,

(2.9) lim
n→∞

sup

n+1∫
n+1−l

 ∏
n−1<tj≤s

(1− bj)

 c(s) exp

 s∫
n−1

a(u)du

 ds > 1,

where l = min{τ, 1}.
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Proof. Let condition (2.8) or (2.9) is satis�ed. We shall prove that the existence of even-
tually positive (or negative) solutions leads to a contradiction. Let x(t) be an eventually
positive solution of equation (1.1)-(1.2). Then y(t) =

∏
T<tj≤t

(1− bj)x(t) is an eventually

positive solution of equation (2.3) such that y(t) > 0, y(t − τ) > 0, y([t − 1]) > 0 for
n+ 1 > t ≥ n > T. Taking

(2.10) z(t) = y(t) exp

 t∫
T

a(s)ds

 , t > T,

it is obtained from equation (2.3) that

(2.11) z′(t) = −

B(t)z(t− τ) exp

 t∫
t−τ

a(s)ds

+ C(t)z([t− 1]) exp

 t∫
[t−1]

a(s)ds




for n+1 > t ≥ n > T and t 6= ti. Since B(t), C(t) ≥ 0 for t ∈ R and z(t−τ), z([t−1]) ≥ 0
for n+ 1 > t ≥ n > T, we get z(t) is nonincreasing for t > T.
Now, we consider two cases:

Case 1. τ > 1. Then it is clear that z(t− τ) ≥ z(t− 1) and z([t− 1]) ≥ z(t− 1) for t > T.
Using (2.11), we obtain that

0 = z′(t) +B(t)z(t− τ) exp

 t∫
t−τ

a(s)ds


+ C(t)z([t− 1]) exp

 t∫
[t−1]

a(s)ds


≥ z′(t) + z(t− 1)P (t),(2.12)

where

(2.13) P (t) = B(t) exp

 t∫
t−τ

a(s)ds

+ C(t) exp

 t∫
[t−1]

a(s)ds

 .

Integrating inequality (2.12) from t− 1 to t, we get

z(t)− z(t− 1) +

t∫
t−1

P (s)z(s− 1)ds ≤ 0.

Since z(t) is nonincreasing for t > T, from the above inequality, we obtain that

z(t) + z(t− 1)

 t∫
t−1

P (s)ds− 1

 ≤ 0

and so, we have

t∫
t−1

P (s)ds ≤ 1.
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Using (2.13), (2.6), and (2.7), we obtain from the above inequality that

(2.14)

t∫
t−1

∏
s−τ<tj≤s

(1− bj)b(s) exp

 s∫
s−τ

a(u)du

 ds ≤ 1,

and

t∫
t−1

∏
[s−1]<tj≤s

(1− bj)c(s) exp

 s∫
[s−1]

a(u)du

 ds ≤ 1.

It is clear that inequality (2.14) contradicts (2.8). On the other hand, integrating in-
equality (2.12) from n to n+ 1, we get

z(n+ 1)− z(n) +

n+1∫
n

P (s)z(s− 1)ds ≤ 0.

Since z(t) is nonincreasing for t > T, from the above inequality, we obtain that

z(n+ 1) + z(n)

 n+1∫
n

P (s)ds− 1

 ≤ 0

and so, we have

n+1∫
n

P (s)ds ≤ 1.

In view of (2.13), (2.6), and (2.7), we obtain from the above inequality that

n+1∫
n

∏
s−τ<tj≤s

(1− bj)b(s) exp

 s∫
s−τ

a(u)du

 ds ≤ 1,

and

(2.15)

n+1∫
n

∏
[s−1]<tj≤s

(1− bj)c(s) exp

 s∫
[s−1]

a(u)du

 ds ≤ 1.

Since n ≤ s < n+ 1, (2.15) contradicts (2.9).

Case 2. τ ≤ 1. Then z(t − τ) ≤ z([t − 1]) for n + 1 > t ≥ n > T, and from (2.11), we
obtain that

0 = z′(t) +B(t)z(t− τ) exp

 t∫
t−τ

a(s)ds


+ C(t)z([t− 1]) exp

 t∫
[t−1]

a(s)ds


≥ z′(t) + z(t− τ)P (t),(2.16)

where P (t) is de�ned in (2.13). Integrating inequality (2.16) from t− τ to t, we get

z(t)− z(t− τ) +

t∫
t−τ

P (s)z(s− τ)ds ≤ 0.
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Since z(t) is nonincreasing for t > T, from the above inequality, we obtain that

z(t) + z(t− τ)

 t∫
t−τ

P (s)ds− 1

 ≤ 0

and so, we have

t∫
t−τ

P (s)ds ≤ 1.

Using (2.13), (2.6), and (2.7), we obtain from the above inequality that

t∫
t−τ

 ∏
s−τ<tj≤s

(1− bj)

 b(s) exp

 s∫
s−τ

a(u)du

 ds ≤ 1

which contradicts (2.8). On the other hand, integrating inequality (2.16) from n+ 1− τ
to n+ 1, we get

z(n+ 1)− z(n+ 1− τ) +

n+1∫
n+1−τ

P (s)z(s− τ)ds ≤ 0.

Since z(t) is nonincreasing for t > T, from the above inequality, we obtain that

n+1∫
n+1−τ

P (s)ds ≤ 1.

In view of (2.13), (2.6), and (2.7), we obtain from the above inequality that

n+1∫
n+1−τ

 ∏
n−1<tj≤s

(1− bj)

 c(s) exp

 s∫
n−1

a(u)du

 ds ≤ 1

which contradicts (2.9).
If x(t) is an eventually negative solution of equation (1.1)-(1.2), then −x(t) is an eventu-
ally positive solution of equation (1.1)-(1.2) and we obtain the same contradiction. So,
the proof is complete. �

2.3. Corollary. Assume that b(t) 6= 0, c(t) ≡ 0 and that

(2.17) lim
t→∞

sup

t∫
t−τ

 ∏
s−τ<tj≤s

(1− bj)

 b(s) exp

 s∫
s−τ

a(u)du

 ds > 1.

Then every solution of Eq. (1.1)-(1.2) is oscillatory.

2.4. Remark. If b(t) 6= 0 and c(t) ≡ 0, then Eq. (1.1)-(1.2) reduces to a delay di�erential
equation with impulses. Condition (2.17) is similar to hypothesis of Theorem 3′ in [16].
The di�erence between the hypotheses occurs because of the right continuity of the
solution instead of left continuity.

More results on the oscillation of impulsive delay di�erential equations can be found in
the survey paper [17].
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2.5. Corollary. Assume that b(t) ≡ 0, c(t) 6= 0 and that

(2.18) lim
n→∞

sup

n+1∫
n

 ∏
n−1<tj≤s

(1− bj)

 c(s) exp

 s∫
n−1

a(u)du

 ds > 1.

Then every solution of Eq. (1.1)-(1.2) is oscillatory.

2.6. Remark. If b(t) ≡ 0, c(t) 6= 0, then Eq. (1.1)-(1.2) reduces to an impulsive
di�erential equation with piecewise constant argument. Eq. (1.1)-(1.2) with b(t) ≡ 0, and
ti = i, i = 1, 2, ... has been investigated in [9]. So, Corollary 2.5 is a generalization of
Theorem 4 in [9].
Moreover, in [9], a di�erence equation is a main tool for the proofs. Similarly, in the other
works such as [4, 5, 6, 7, 10, 11, 18, 19] the relation between di�erence equations and
di�erential equations with piecewise constant arguments are underlined. Here, because
of the existence of continuous argument, we have di�uculty to obtain related di�erence
equation. So, we apply another technique which is worked for delay di�erential equations.

2.7. Theorem. If one of the following conditions is satis�ed then every solution of
equation (1.1)-(1.2) is oscillatory:

(2.19) lim
t→∞

inf

t∫
t−l

 ∏
s−τ<tj≤s

(1− bj)

 b(s) exp

 s∫
s−τ

a(u)du

 ds >
1

e
,

(2.20) lim
n→∞

inf

n+1∫
n+1−l

 ∏
n−1<tj≤s

(1− bj)

 c(s) exp

 s∫
n−1

a(u)du

 ds >
1

e
,

where l = min{τ, 1}.

Proof. Let condition (2.19) or (2.20) is satis�ed. We shall prove that the existence
of eventually positive (or negative) solutions leads to a contradiction. Let x(t) be an
eventually positive solution of equation (1.1)-(1.2). Then y(t) =

∏
T<tj≤t

(1− bj)x(t) is an

eventually positive solution of equation (2.3) such that y(t) > 0, y(t−τ) > 0, y([t−1]) > 0
for n+1 > t ≥ n > T. Using the same arguments in the proof of Theorem 2.2, we obtained
that z(t) de�ned in (2.10) is nonincreasing for t > T. We consider two cases:

Case 1. τ > 1. Dividing inequality (2.12) by z(t), and then integrating from t − 1 to t,
it is obtained that

(2.21) ln
z(t− 1)

z(t)
≥

t∫
t−1

P (s)
z(s− 1)

z(s)
ds,

where P (t) is de�ned in (2.13). Since ex ≥ ex for x ∈ R, we obtain that

z(t− 1)

z(t)
≥ exp

 t∫
t−1

P (s)
z(s− 1)

z(s)
ds


≥ e

 t∫
t−1

P (s)
z(s− 1)

z(s)
ds

 .(2.22)

Let u(t) =
z(t− 1)

z(t)
. Since z(t) is nonincreasing for t > T , lim inf

t→∞
u(t) ≥ 1.
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Assume that lim inf
t→∞

u(t) = +∞. Then integrating inequality (2.12) from t − 1

2
to t, we

have

z(t)− z(t− 1

2
) +

t∫
t− 1

2

P (s)z(s− 1)ds ≤ 0.

Since z(t) is nonincreasing, from the above inequality, we obtain that

(2.23) z(t)− z(t− 1

2
) + z(t− 1)

t∫
t− 1

2

P (s)ds ≤ 0.

Dividing inequality (2.23) by z(t) and z(t− 1
2
), we get

(2.24) 1−
z(t− 1

2
)

z(t)
+
z(t− 1)

z(t)

t∫
t− 1

2

P (s)ds ≤ 0,

and

(2.25)
z(t)

z(t− 1
2
)
− 1 +

z(t− 1)

z(t− 1
2
)

t∫
t− 1

2

P (s)ds ≤ 0,

respectively. Now, from (2.24) we obtain

lim inf
t→∞

z(t− 1
2
)

z(t)
= +∞

which contradicts with (2.25). So, lim inf
t→∞

u(t) is �nite.

If lim inf
t→∞

u(t) = w, w ≥ 1 is �nite, then inequality (2.22) implies that

lim
t→∞

inf

t∫
t−1

P (s)ds ≤ 1

e
.

In view of (2.13), (2.6), and (2.7), we obtain from the above inequality that

lim
t→∞

inf

t∫
t−1

 ∏
s−τ<tj≤s

(1− bj)

 b(s) exp

 s∫
s−τ

a(u)du

 ds ≤ 1

e
,

which contradicts the hypothesis (2.19).
Now, dividing inequality (2.12) by z(t), and then integrating from n to n+1, it is obtained
that

ln
z(n)

z(n+ 1)
≥

n+1∫
n

P (s)
z(s− 1)

z(s)
ds,

where P (t) is de�ned in (2.13). Since ex ≥ ex for x ∈ R, we obtain that

(2.26)
z(n)

z(n+ 1)
≥ e

 n+1∫
n

P (s)
z(s− 1)

z(s)
ds

 .
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De�ne v(n) =
z(n)

z(n+ 1)
. Since z(t) is nonincreasing for t > T , lim inf

n→∞
v(n) ≥ 1. By

doing the same calculations with �rst part of the proof, we get that lim inf
n→∞

v(n) is �nite.

Therefore, from the inequality (2.26), we have

lim
n→∞

inf

n+1∫
n

 ∏
n−1<tj≤s

(1− bj)

 c(s) exp

 s∫
n−1

a(u)du

 ds ≤ 1

e
,

which contradicts (2.20).

Case 2. τ ≤ 1. Since the proof is similar to proof of Case 1, we shall give the sketch of
the proof. Dividing inequality (2.16) by z(t), and then integrating from t − τ to t, it is
obtained that

(2.27)
z(t− τ)

z(t)
≥ e

 t∫
t−τ

P (s)
z(s− τ)

z(s)
ds

 .

Using the similar arguments in Case 1, we get that lim inf
t→∞

z(t− τ)

z(t)
is �nite. So, from

inequality (2.27), we have

lim
t→∞

inf

t∫
t−τ

 ∏
s−τ<tj≤s

(1− bj)

 b(s) exp

 s∫
s−τ

a(u)du

 ds ≤ 1

e
,

which contradicts (2.19).
Moreover, dividing inequality (2.16) by z(t), and then integrating from n+1−τ to n+1,
it is obtained that

(2.28)
z(n+ 1− τ)

z(n+ 1)
≥ e

 n+1∫
n+1−τ

P (s)
z(s− τ)

z(s)
ds

 .

By using the similar arguments in Case 1, we get that lim inf
n→∞

z(n+ 1− τ)

z(t)
is �nite. So,

from inequality (2.28), we have

lim
n→∞

inf

n+1∫
n+1−τ

 ∏
n−1<tj≤s

(1− bj)

 c(s) exp

 s∫
n−1

a(u)du

 ds ≤ 1

e
,

which contradicts (2.20). So, the proof is complete. �

2.8. Corollary. Assume that b(t) 6= 0, c(t) ≡ 0 and that

lim
t→∞

inf

t∫
t−τ

 ∏
s−τ<tj≤s

(1− bj)

 b(s) exp

 s∫
s−τ

a(u)du

 ds >
1

e
.

Then every solution of Eq. (1.1)-(1.2) is oscillatory.

2.9. Corollary. Assume that b(t) ≡ 0, c(t) 6= 0 and that

lim
n→∞

inf

n+1∫
n

 ∏
n−1<tj≤s

(1− bj)

 c(s) exp

 s∫
n−1

a(u)du

 ds >
1

e
.

Then every solution of Eq. (1.1)-(1.2) is oscillatory.



611

Now, we give some examples to illustrate our results. Note that previous results in
the litarature can not be applied following di�erential equations to obtain existence of
oscillatory solutions.

2.10. Example. Let us consider the following di�erential equation

(2.29)

{
x′(t) + πx(t− 1

2
) + c(t)x([t− 1]) = 0, t 6= n, n = 1, 2, ..., t ≥ 0,

x(n+)− x(n−) = −x(n+), n = 1, 2, ...,

where c(t) ≥ 0 is any continuous function. It can be shown that the hypotheses of
Theorem 2.2 as well as Theorem 2.7 are satis�ed. So, all solutions of Eq. (2.29) are
oscillatory. The solution x(t) of the equation (2.29) with the initial condition φ(t) =
sinπt,−1/2 ≤ t ≤ 0 is demonstrated in Figure 1.

1 2 3 4 5 6
t

-2

-1

1

2

Figure 1. The solution x(t) of the equation (2.29) with the initial
condition φ(t) = sinπt,−1/2 ≤ t ≤ 0.

2.11. Example. Consider the following di�erential equation

(2.30)

{
x′(t) + x(t) + πx(t− 5

2
) + etx([t− 1]) = 0, t 6= tn, n = 1, 2, ..., t ≥ 0,

x(t+n )− x(t−n ) = −2nx(t+n ), n = 1, 2, ...,

where {tn}∞n=1 is an increasing sequence such that lim
n→∞

tn =∞.

It is clear that a(t) = 1, b(t) = π, c(t) = et, τ =
5

2
and bn = −2n. It can be

shown that the hypotheses of Theorem 2.2 as well as Theorem 2.7 are satis�ed. So, all
solutions of Eq. (2.30) are oscillatory. The solution x(t) of the equation (2.30) with
{tn} = 2n, n = 1, 2, ..., and the initial condition φ(t) = exp(−t) sinπt,−5/2 ≤ t ≤ 0 is
demonstrated in Figure 2.
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1 2 3 4
t

-10

-5

5

10

Figure 2. The solution x(t) of the equation (2.30) with the initial
condition φ(t) = exp(−t) sinπt,−5/2 ≤ t ≤ 0.
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