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A �xed point approach to the stability of a
nonlinear volterra integrodi�erential equation with

delay
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Abstract

By using a �xed point method, we prove the Hyers�Ulam�Rassias sta-
bility and the Hyers�Ulam stability of a nonlinear Volterra integrodif-
ferential equation with delay. Two examples are presented to support
the usability of our results.
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1. Introduction

In 1940, Ulam posed the following problem related to the stability of functional equa-
tions: �Under what conditions does there exist an additive mapping near an approxi-
mately additive mapping?� see for more detail [15]. One year later, Hyers [8] gave an
answer to the problem of Ulam for the case of functional equation for homomorphism
between the Banach spaces. In 1978, Rassias [13] proved the existence of unique linear
mapping near approximate additive mapping that provides generalization of the Hyers
result. Jung [9] applied the �xed point method to the investigation of Volterra integral
equation by using the idea of Cadariu and Radu in [2]. S. M. Jung proved that if a
continuous function v : I → C is such that∣∣∣∣v(t)−

∫ t

c

G(ξ, v(ξ))dξ

∣∣∣∣ ≤ φ(t)
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for all t ∈ I, then there exists a unique continuous function v0 : I → C and a constant
K > 0 such that

v0(t) =

∫ t

c

G(ξ, v0(ξ))dξ and d (v(t), v0(t)) ≤ Lφ(t),

for all t ∈ I, it is important to obtain a precise L because it is clear that L will lead us to
the error between the actual solution v0(t) and the approximate solution v(t). In 2013,
Jung et al. proved that if g : I → R, h : I → R, G : I → R and φ : I → R are su�ciently
smooth functions and if a continuously di�erentiable function v : I → R satis�es the
perturbed Volterra integrodi�erential equation∣∣∣∣v′(t) + g(t)v(t) + h(t) +

∫ t

c

K(t, η)v(η)dη

∣∣∣∣ ≤ φ(t),

for some t ∈ I, then there exists a unique solution v0 : I → R of the Volterra integrodif-
ferential equation

v′(t) + g(t)v(t) + h(t) +

∫ t

c

K(t, η)v(η)dη = 0,

such that

d(v(t), v0(t)) ≤ exp
{
−
∫ t

c

g(η)dη
}∫ b

t

φ(ς) exp
{∫ ς

c

g(η)dη
}
dς,

for all t ∈ I. If the reader wishes more details, we recommend [1, 3, 4, 6, 7, 12, 14, 16].
The main purpose of the paper is to investigate the Hyers-Ulam-Rassias stability and

the Hyers-Ulam stability of following nonlinear Volterra integrodi�erential equation with
delay:

(1.1) v′(t) = g(t, v(t), v(α(t))) +

∫ t

0

k(t, s, v(s), v(α(s)))ds,

for all t ∈ I = [0, T ], where the function g(t, v(t), v(α(t))) is continuous function with
respect to variables t and v on I ×R×R, k(t, s, v(t), v(α(t))) is continuous with respect
to variables t, s and v on I × I × R × R, β is any constant and α : [0, T ] → [0, T ] is a
continuous delay function with α(t) ≤ t.

1.1. De�nition. If for each continuously di�erentiable function v(t) satisfying∣∣∣∣v′(t)− g(t, v(t), v(α(t)))−
∫ t

0

k(t, s, v(s), v(α(s)))ds

∣∣∣∣ ≤ φ(t),

for some φ : [0, T ]→ (0,∞), there exists a solution v0(t) of the Volterra integrodi�erential
equations with delay (1.1) and a constant K > 0 (independent of v(t) and v0(t)) with

|v(t)− v0(t)| ≤ Kφ(t),

for all t ∈ I, then we can say that the equation (1.1) is Hyers-Ulam-Rassias stable on I.
If φ(t) is constant function then we say that the equation (1.1) has Hyers-Ulam stability
on I.

For a nonempty set Y , the generalized metric on Y is de�ned as follow:

1.2. De�nition. A function d : Y × Y → [0,∞] is called a generalized metric on Y if
and only if for all u, v, w ∈ Y d satis�es the following conditions:

(1) d(u, v) = 0 if and only if u = v.
(2) d(u, v) = d(v, u).
(3) d(u,w) ≤ d(u, v) + d(v, w).

Now, we are going to introduce one of the most crucial result of �xed point theory
that will play an important role in proving our main results.
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1.3. Theorem. ([5]) Let (Y, d) be a generalized complete metric space. Assume that
Θ : Y → Y is a strictly contractive operator with L < 1 as Lipschitz constant. If there
exists a nonnegative integer k such that d(Θk+1u,Θku) < ∞ for some u ∈ Y , then the
following conditions are true:

• The sequence Θnu converges to a �xed point u∗ of Θ;
• u∗ is the unique �xed point of Θ in

Y ∗ =
{
v ∈ Y | d(Θku, v) <∞

}
;

• If v ∈ Y ∗, then

d(v, u∗) ≤ 1

1− L d(Θv, v).

2. Hyers-Ulam-Rassias stability

In this section, we prove the Hyers-Ulam-Rassias stability of the nonlinear Volterra
integrodi�erential equation with delay (1.1).

2.1. Theorem. Let I = [0, T ] be a closed and bounded interval for a given T > 0 and
let N , Lg and Lk be nonnegative constants with 0 < NLg + N2Lk < 1. Assume that
g : I × R× R→ R is a continuous function that satis�es a Lipschitz condition

(2.1) |g(t, v1, v1(α(t)))− g(t, v2, v2(α(t)))| ≤ Lg|v1 − v2|,

for all t ∈ I and v1, v2 ∈ R. Let k : I × I × R × R → R be a continuous function which
satis�es a Lipchitz condition

(2.2) |k(t, s, v1, v1(α(s)))− k(t, s, v2, v2(α(s))| ≤ Lk| v1 − v2|,

for all t, s ∈ I, v1, v2 ∈ R. If v : I → R a continuously di�erentiable function satis�es

(2.3)

∣∣∣∣v′(t)− g(t, v(t), v(α(t)))−
∫ t

0

k(t, s, v(s), v(α(s)))ds

∣∣∣∣ ≤ φ(t),

for all t ∈ I, where φ : I → (0,∞) is a continuous function with

(2.4)

∫ t

0

φ(ζ)dζ ≤ Nφ(t)

for all t ∈ I, then there exists a unique continuous function v0 : I → R such that

(2.5) v0(t) =

∫ t

0

g(ζ, v0(ζ), v0(α(ζ)))dζ +

∫ t

0

∫ s

0

k(t, ζ, v0(ζ), v0(α(ζ))dζds

and

(2.6) |v(t)− v0(t)| ≤ N

1− (NLg +N2Lk)
φ(t)

for all t ∈ I.

Proof. Let Y be the set of all real valued continuous functions on closed and bounded
interval I. For all u,w ∈ Y , we set

(2.7) d(u,w) = inf{K ∈ [0,∞] : |u(t)− w(t)| ≤ Kφ(t), for all t ∈ I}.

The metric space (Y, d) is a complete generalized metric space, see [10]. Consider the
operator Θ : Y → Y de�ned by

(2.8) (Θu)(t) = v(0) +

∫ t

0

g(ζ, u(ζ), u(α(ζ)))dζ +

∫ t

0

∫ s

0

k(t, ζ, u(ζ), u(α(ζ)))dζds
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for all t ∈ I. We show that the operator Θ is strictly contractive. Let Kuw ∈ [0,∞] be a
constant with d(u,w) ≤ Kuw for u,w ∈ Y . By (2.7), we can write

(2.9) |u(t)− w(t)| ≤ Kuwφ(t) for all t ∈ I.
From inequalities (2.1)), (2.2), (2.4), (2.8) and (2.9) it follows that for all t ∈ I we have

|(Θu)(t)− (Θw)(t)| =
∣∣∣ ∫ t

0

{
g(ζ, u(ζ), u(α(ζ)))− g(ζ, w(ζ), w(α(ζ)))

}
dζ

+

∫ t

0

∫ s

0

{
k(t, ζ, u(ζ), u(α(ζ)))− k(t, ζ, w(ζ), w(α(ζ)))

}
dζ ds

∣∣∣
≤
∫ t

0

∣∣∣g(ζ, u(ζ), u(α(ζ)))− g(ζ, w(ζ), w(α(ζ)))
∣∣∣ dζ

+

∫ t

0

∫ s

0

∣∣∣k(t, ζ, u(ζ), u(α(ζ)))− k(t, ζ, w(ζ), w(α(ζ)))
∣∣∣ dζ ds

≤ Lg
∫ t

0

∣∣u(ζ)− w(ζ)
∣∣dζ + Lh

∫ t

0

∫ s

0

∣∣u(ζ)− w(ζ)
∣∣ dζ ds

≤ LgKuw

∫ t

0

φ(ζ)dζ + LkKuw

∫ t

0

∫ s

0

φ(ζ) dζ ds

≤ Kuwφ(t)
(
NLg +N2Lk

)
,

i.e. d(Θu,Θw) ≤ Kuwφ(t)(NLg + N2Lk). Hence, we may conclude that d(Θu,Θw) ≤
(NLg +N2Lk)d(u,w) for any u,w ∈ Y , where 0 < NLg +N2Lk < 1.

It follows from (2.8) that for any arbitrary w0 ∈ Y , there exists a constant K ∈ [0,∞]
with

|Θw0(t)− w0(t)| =
∣∣∣v(0) +

∫ t

0

g(ζ, w0(ζ), w0(α(ζ))) dζ

+

∫ t

0

∫ s

0

k(t, ζ, u0(ζ), u0(α(ζ))) dζ ds− w0

∣∣∣
≤ Kφ(t), for all t ∈ I.

Since g(ζ, w0(ζ), w0(α(ζ))), k(t, ζ, u0(ζ), u0(α(ζ))) and w0 are bounded and mint∈I φ(t) >
0. Thus, (2.7) implies that

d(Θw0, w0) <∞.
So, according to Theorem 1.3, there exists a continuous function v0 : I → R in a way that
Θnw0 → v0 in (Y, d) and Θv0 = v0, i.e., v0 satis�es (2.5) for all t ∈ I. Since we know
that w and w0 are bounded on closed interval I for any w ∈ Y and mint∈I φ(t) > 0, then
there exists a constant Kw ∈ [0,∞] such that

d(w0(t), w(t)) ≤ Kwφ(t)

for any t ∈ I. We have |w0(t) − w(t)| < ∞ for any w ∈ Y . Therefore, we get that
{w ∈ Y |d(w0, w) <∞} is equal to Y . From Theorem 1.3, we conclude that v0, given by
(2.5), is the unique continuous function. Again from (2.3), we get

(2.10) −φ(t) ≤ v′(t)− g(t, v(t), v(α(t)))−
∫ t

0

k(t, s, v(s), v(α(s)))ds ≤ φ(t)

for all t ∈ I. By integrating each term of inequality (2.10) from 0 to t, we get∣∣∣∣v(t)− v(0)−
∫ t

0

g(ζ, v(ζ), v(α(ζ))) dζ −
∫ t

0

∫ s

0

k(t, ζ, v(ζ), v(α(ζ))) dζ ds

∣∣∣∣
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≤
∫ t

0

φ(ζ) dζ,

for all t ∈ I. From (2.4) and (2.8), we get

(2.11) |v(t)− (Θv)(t)| ≤
∫ t

0

φ(ζ) dζ ≤ Nφ(t)

for all t ∈ I, which implies that d(v,Θv) ≤ N . Next by making the use of Theorem 1.3
and inequality (2.11), we conclude that

d(v, v0) ≤ 1

1− (NLg +N2Lk)
d(Θv, v) ≤ N

1− (NLg +N2Lk)
.

Consequently, this yields the inequality (2.6) for all t ∈ I. �

In the above Theorem 2.1 we examined the Hyers-Ulam-Rassias stability of (1.1) on
a closed and bounded interval. Now, we are going to show that Theorem 2.1 is also valid
for the case of unbounded interval.

2.2. Theorem. Suppose that I denote either R or [0,∞) or (−∞, T ] for a given nonneg-
ative real number T . Let Lg, Lk and N be positive constants with 0 < NLg +N2Lk < 1
and α : I → R be a continuous delay function such that α(t) ≤ t for all t ∈ I. Assume
that g : I × R × R → R is a continuous function satisfying condition (2.1) for all t ∈ I,
v1, v2 ∈ R. If a continuously di�erentiable function v : I → R satis�es inequality (2.3) for
all t ∈ I, where φ : I → (0,∞) is a continuous function satisfying condition (2.4) for all
t ∈ I, then there exists a unique continuous function v0 : I → R which satis�es (2.5) and
(2.6) for each t ∈ I.

Proof. First we assume that I = R and we are going to show that v0 is a continuous
function. For any n ∈ N, we de�ne the interval In = [−n, n]. In accordance with Theorem
2.1, there exists a unique continuous function vn : In → R in such a way that

(2.12) vn(t) = v(0) +

∫ t

0

g(ζ, vn(ζ), vn(α(ζ)))dζ +

∫ t

0

∫ s

0

k(t, ζ, vn(ζ), vn(α(ζ)) dζ ds

and

(2.13) |v(t)− vn(t)| ≤ N

1− (NLg +N2Lk)
φ(t) for all t ∈ I.

The uniqueness of the function vn implies that if t ∈ In, then

(2.14) vn(t) = vn+1(t) = vn+2(t) = · · · .

For t ∈ R, de�ne n(t) ∈ N as

n(t) = min{n ∈ N| t ∈ In}.

Next, we de�ne a function v0 : R→ R by

(2.15) v0(t) = vn(t)(t),

and claim that v0 is continuous. For any t1 ∈ R we take the integer n1 = n(t1). Then,
t1 belongs to the interior of the interval In1+1 and there exists positive ε > 0 such that
v0(t) = vn1+1(t) for all t with t1 − ε < t < t1 + ε. Since vn1+1 is continuous at t1, v0 is
continuous at t1 for t1 ∈ R.

Now, we prove that the continuous function v0 satis�es (2.5) and (2.7) for all t ∈ R.
Assume that n(t) is an integer for any t ∈ R. Then, by the use of (2.12) and (2.15), we
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have t ∈ In(t) and

v0(t) = vn(t)(t) = v(0) +

∫ t

0

g(ζ, vn(ζ), vn(α(ζ))) dζ

+

∫ t

0

∫ s

0

k(t, ζ, vn(ζ), vn(α(ζ)) dζ ds

= v(0) +

∫ t

0

g(ζ, v0(ζ), v0(α(ζ))) dζ

+

∫ t

0

∫ s

0

k(t, ζ, v0(ζ), v0(α(ζ))) dζ ds.

where the last equality holds true because n(ζ) ≤ n(t) for all ζ ∈ In(t) and from equations
(2.14) and (2.15) we get that

vn(t)(ζ) = vn(ζ)(ζ) = v0(ζ).

Since t ∈ In(t) for all t ∈ R, so from (2.13) and (2.15), we have

|v(t)− v0(t)| ≤ |v(t)− vn(t)(t)| ≤
N

1− (NLg +N2Lk)
φ(t),

for any t ∈ R.
Finally, we are going to prove that v0 is unique. To do this we consider another

continuous function u0 : R→ R which satis�es (2.5) and (2.7), with u0 instead of v0, for
all t ∈ R. Let t ∈ R be an arbitrary number. Since the restrictions v0|In(t)

and u0|In(t)

satis�es (2.5) and (2.7) for each t ∈ In(t), the uniqueness of vn(t) = v0|In(t)
suggest that

v0(t) = v0|In(t)
(t) = u0|In(t)

(t) = u0(t).

We can prove similarly for the cases I = (−∞, T ] and I = [0,∞). �

3. Hyers-Ulam stability

In this section, we prove the Hyers-Ulam stability of the nonlinear Volterra integrod-
i�erential equation with delay (1.1).

3.1. Theorem. Let I = [0, T ] be a non-degenerated interval, Lg and Lk be nonnegative

constants such that 0 < TLg + T2

2
Lk < 1. Assume that g : I × R× R→ R is continuous

function which satis�es the Lipschitz condition (2.1) and k : I × I × R × R → R is a
continuous function which satis�es the Lipchitz condition (2.2). If for some σ ≥ 0 and a
continuously di�erentiable function v : I → R we have

(3.1)

∣∣∣∣v′(t)− g(t, v(t), v(α(t)))−
∫ t

0

k(t, s, v(s), v(α(s))) ds

∣∣∣∣ ≤ σ for all t ∈ I,

then there exists a unique continuous function v0 : I → R satisfying the equation (2.5)
and

(3.2) |v(t)− v0(t)| ≤ T

1− (TLg + T2

2
Lk)

σ, for all t ∈ I.

Proof. Let Y be the set of all real valued continuous functions on closed and bounded
interval I. For all u,w ∈ Y , we de�ne a metric on Y by

(3.3) d(u,w) = inf {K ∈ [0,∞] : |u(t)− w(t)| ≤ K for all t ∈ I} .
The metric space (Y, d) is a complete generalized metric space, see [10]. Consider the
operator Θ: Y → Y de�ned by

(3.4) (Θu)(t) = v(0) +

∫ t

0

g(ζ, u(ζ), u(α(ζ)))dζ +

∫ t

0

∫ s

0

k(t, ζ, u(ζ), u(α(ζ))) dζ ds
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for all t ∈ I and for all u ∈ Y . Next, we need to check that the operator Θ is strictly
contractive on the set Y . Suppose that Kuw ∈ [0,∞] be a constant with d(u,w) ≤ Kuw

for any u,w ∈ Y . We have,

(3.5) |u(t)− w(t)| ≤ Kuw, for all t ∈ I.

By making the use of (2.1), (2.2), (3.4) and (3.5), we get

|(Θu)(t)− (Θw)(t)| =
∣∣∣ ∫ t

0

{
g(ζ, u(ζ), u(α(ζ)))− g(ζ, w(ζ), w(α(ζ)))

}
dζ

+

∫ t

0

∫ s

0

{
k(t, ζ, u(ζ), u(α(ζ)))− k(t, ζ, w(ζ), w(α(ζ)))

}
dζ ds

∣∣∣
≤
∫ t

0

∣∣∣g(ζ, u(ζ), u(α(ζ)))− g(ζ, w(ζ), w(α(ζ)))
∣∣∣ dζ

+

∫ t

0

∫ s

0

∣∣∣k(t, ζ, u(ζ), u(α(ζ)))− k(t, ζ, w(ζ), w(α(ζ)))
∣∣∣ dζ ds

≤ Lg
∫ t

0

∣∣u(ζ)− w(ζ)
∣∣ dζ + Lk

∫ t

0

∫ s

0

∣∣u(ζ)− w(ζ)
∣∣ dζ ds

≤ LgKuwT + LkKuw
T 2

2

≤ Kuw(TLg +
T 2

2
Lk), for all t ∈ I,

i.e., d(Θu,Θw) ≤ Kuw(TLg + T2

2
Lk). Hence, we may conclude that

d(Θu,Θw) ≤ (TLg + T2

2
Lk)d(u,w) for any u,w ∈ Y , where 0 < TLg + T2

2
Lk < 1.

Suppose w0 ∈ Y be arbitrary, there exists a constant K ∈ [0,∞] with

|Θw0(t)− w0(t)| =
∣∣∣v(0) +

∫ t

0

g(ζ, w0(ζ), w0(α(ζ)))dζ

+

∫ t

0

∫ s

0

k(t, ζ, u0(ζ), u0(α(ζ)))dζds− w0

∣∣∣
≤ K, for all t ∈ I.

Since g(ζ, w0(ζ), w0(α(ζ))), k(t, ζ, u0(ζ), u0(α(ζ))) and w0 are bounded. Thus, equation
(3.3) implies that

d(Θw0, w0) <∞.

So, according to Theorem 1.3, there exists a continuous function v0 : I → R in a way
that Θnw0 → v0 in (Y, d) and Θv0 = v0, i.e., v0 satis�es (2.5) for all t ∈ I. As in the
proof of Theorem 2.1, it can be verify easily that {w ∈ Y |d(w0, w) < ∞} is equal to Y .
From Theorem 1.3, we conclude that v0, given by equation (2.5), is the unique continuous
function. Again from equation (2.3), we get

(3.6) −σ ≤ v′(t)− g(t, v(t), v(α(t)))−
∫ t

0

k(t, s, v(s), v(α(s))) ds ≤ σ,

for all t ∈ I. By integrating each term of inequality (3.6) from 0 to t, then we get∣∣∣∣v(t)− v(0)−
∫ t

0

g(ζ, v0(ζ), v0(α(ζ)))dζ −
∫ t

0

∫ s

0

k(t, ζ, v0(ζ), v0(α(ζ))) dζ ds

∣∣∣∣
≤ σ T
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for all t ∈ I. So, it satis�es that |v−Θv| ≤ σT . Finally, Theorem 1.3 together with (2.11)
implies that

d(v, v0) ≤ T

1− (TLg + T2

2
Lk)

d(Θv, v) ≤ T

1− (TLg + T2

2
Lk)

σ.

�

Now we present two examples which indicate how our theorems can be applied to
concrete problems.

3.2. Example. Let a > 1, q ∈ (0,∞) and p are arbitrary but �xed constants. Consider
the class of equations

(3.7) u′(t) = g(t) +
1

2

∫ t

0

λ(t− s)p(u(s) + u
(
α(s) + f(s)

)
ds, t ∈ [0, T ]

for λ < (q ln a)2

Tp , where f(t) and g(t) are any continuous functions. Here

k(t, s, u(s), u(α(s))) =
1

2
λ(t− s)p(u(s) + u(α(s)) + f(s)).

Clearly

|k(t, s, u1(s), u1(α(s)))− k(t, s, u2(s), u2(α(s)))|

≤ 1

2
λ |(t− s)p| (|u1(s)− u2(s)|+ |u1(α(s)− u2(α(s))|))

≤ λT p‖u1 − u2‖.

Let v : I → R be such that∣∣∣∣v′(t)− g(t)− 1

2

∫ t

0

(λ(t− s)p(v(s) + v(α(s)) + f(s)))ds

∣∣∣∣ ≤ σ(t) = aqt, t ∈ [0, T ].

Clearly, ∣∣∣∣ ∫ t

0

σ(t)dt

∣∣∣∣ =

∣∣∣∣ ∫ t

0

aqtdt

∣∣∣∣ =
1

q ln a
aqt =

1

q ln a
σ(t)

for all t ∈ [0, T ]. Theorem 2.1 ensures the existence of a unique continuous function
v : I → R that solves (3.7) and∣∣v(t)− v0(t)

∣∣ ≤ q ln a

(q ln a)2 − T pλa
qt, t ∈ [0, T ].

3.3. Example. Consider the above class of problems for λ < 2
Tp+2 . Let for some σ > 0

and v : I → R we have∣∣v′(t)− g(t) +
1

2

∫ t

0

λ(t− s)p(v(s) + v(α(s)) + f(s))ds
∣∣ ≤ σ, t ∈ [0, T ].

In the light of Theorem 3.1, there exists a unique continuous function v : I → R that
solves (3.7) for λ < 2

Tp+2 and∣∣v(t)− v0(t)
∣∣ ≤ 2T

2− T p+2λ
σ, t ∈ [0, T ].

Conclusion. In this manuscript, we investigated the Hyers�Ulam�Rassias stability
and Hyers�Ulam stability of a nonlinear Volterra integrodi�erential equation with delay
by using a �xed point method.
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