\int Hacettepe Journal of Mathematics and Statistics Volume 47 (3) (2018), 615 – 623

A fixed point approach to the stability of a nonlinear volterra integrodifferential equation with delay

Rahim Shah^{*} and Akbar Zada[†]

Abstract

By using a fixed point method, we prove the Hyers–Ulam–Rassias stability and the Hyers–Ulam stability of a nonlinear Volterra integrodifferential equation with delay. Two examples are presented to support the usability of our results.

Keywords: Hyers-Ulam-Rassias stability, Hyers-Ulam stability, Volterra integrodifferential equation with delay, fixed point approach.

2000 AMS Classification: 47H10, 45J05, 45M10.

Received: 05.01.2017 Accepted: 20.03.2017 Doi: 10.15672/HJMS.2017.467

1. Introduction

In 1940, Ulam posed the following problem related to the stability of functional equations: "Under what conditions does there exist an additive mapping near an approximately additive mapping?" see for more detail [15]. One year later, Hyers [8] gave an answer to the problem of Ulam for the case of functional equation for homomorphism between the Banach spaces. In 1978, Rassias [13] proved the existence of unique linear mapping near approximate additive mapping that provides generalization of the Hyers result. Jung [9] applied the fixed point method to the investigation of Volterra integral equation by using the idea of Cadariu and Radu in [2]. S. M. Jung proved that if a continuous function $v: I \to \mathbb{C}$ is such that

 $\left|v(t) - \int_c^t G(\xi, v(\xi)) d\xi\right| \le \phi(t)$

^{*}Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan Email: safeer_rahim@yahoo.com

[†]Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan Email: zadababo@yahoo.com, akbarzada@uop.edu.pk

for all $t \in I$, then there exists a unique continuous function $v_0 \colon I \to \mathbb{C}$ and a constant K > 0 such that

$$v_0(t) = \int_c^t G(\xi, v_0(\xi)) d\xi \quad ext{and} \quad d\left(v(t), v_0(t)
ight) \le L \phi(t),$$

for all $t \in I$, it is important to obtain a precise L because it is clear that L will lead us to the error between the actual solution $v_0(t)$ and the approximate solution v(t). In 2013, Jung *et al.* proved that if $g: I \to \mathbb{R}$, $h: I \to \mathbb{R}$, $G: I \to \mathbb{R}$ and $\phi: I \to \mathbb{R}$ are sufficiently smooth functions and if a continuously differentiable function $v: I \to \mathbb{R}$ satisfies the perturbed Volterra integrodifferential equation

$$\left|v'(t) + g(t)v(t) + h(t) + \int_c^t K(t,\eta)v(\eta)d\eta\right| \le \phi(t),$$

for some $t \in I$, then there exists a unique solution $v_0: I \to \mathbb{R}$ of the Volterra integrodifferential equation

$$v'(t) + g(t)v(t) + h(t) + \int_{c}^{t} K(t,\eta)v(\eta)d\eta = 0,$$

such that

$$d(v(t), v_0(t)) \le \exp\left\{-\int_c^t g(\eta)d\eta\right\} \int_t^b \phi(\varsigma) \exp\left\{\int_c^\varsigma g(\eta)d\eta\right\} d\varsigma,$$

for all $t \in I$. If the reader wishes more details, we recommend [1, 3, 4, 6, 7, 12, 14, 16].

The main purpose of the paper is to investigate the Hyers-Ulam-Rassias stability and the Hyers-Ulam stability of following nonlinear Volterra integrodifferential equation with delay:

(1.1)
$$v'(t) = g(t, v(t), v(\alpha(t))) + \int_0^t k(t, s, v(s), v(\alpha(s))) ds,$$

for all $t \in I = [0, T]$, where the function $g(t, v(t), v(\alpha(t)))$ is continuous function with respect to variables t and v on $I \times \mathbb{R} \times \mathbb{R}$, $k(t, s, v(t), v(\alpha(t)))$ is continuous with respect to variables t, s and v on $I \times I \times \mathbb{R} \times \mathbb{R}$, β is any constant and $\alpha : [0, T] \to [0, T]$ is a continuous delay function with $\alpha(t) \leq t$.

1.1. Definition. If for each continuously differentiable function v(t) satisfying

$$\left|v'(t) - g(t, v(t), v(\alpha(t))) - \int_0^t k(t, s, v(s), v(\alpha(s)))ds\right| \le \phi(t),$$

for some $\phi: [0, T] \to (0, \infty)$, there exists a solution $v_0(t)$ of the Volterra integrodifferential equations with delay (1.1) and a constant K > 0 (independent of v(t) and $v_0(t)$) with

$$|v(t) - v_0(t)| \le K\phi(t),$$

for all $t \in I$, then we can say that the equation (1.1) is Hyers-Ulam-Rassias stable on I. If $\phi(t)$ is constant function then we say that the equation (1.1) has Hyers-Ulam stability on I.

For a nonempty set Y, the generalized metric on Y is defined as follow:

1.2. Definition. A function $d: Y \times Y \to [0, \infty]$ is called a generalized metric on Y if and only if for all $u, v, w \in Y d$ satisfies the following conditions:

(1) d(u, v) = 0 if and only if u = v.

(2) d(u, v) = d(v, u).

(3) $d(u, w) \le d(u, v) + d(v, w)$.

Now, we are going to introduce one of the most crucial result of fixed point theory that will play an important role in proving our main results.

1.3. Theorem. ([5]) Let (Y, d) be a generalized complete metric space. Assume that $\Theta: Y \to Y$ is a strictly contractive operator with L < 1 as Lipschitz constant. If there exists a nonnegative integer k such that $d(\Theta^{k+1}u, \Theta^k u) < \infty$ for some $u \in Y$, then the following conditions are true:

- The sequence $\Theta^n u$ converges to a fixed point u^* of Θ ;
- u^* is the unique fixed point of Θ in

$$Y^* = \left\{ v \in Y \mid d(\Theta^k u, v) < \infty \right\};$$

• If $v \in Y^*$, then $d(v, u^*) \leq \frac{1}{1 - L} d(\Theta v, v).$

2. Hyers-Ulam-Rassias stability

In this section, we prove the Hyers-Ulam-Rassias stability of the nonlinear Volterra integrodifferential equation with delay (1.1).

2.1. Theorem. Let I = [0,T] be a closed and bounded interval for a given T > 0 and let N, L_g and L_k be nonnegative constants with $0 < NL_g + N^2L_k < 1$. Assume that $g: I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a continuous function that satisfies a Lipschitz condition

$$(2.1) |g(t, v_1, v_1(\alpha(t))) - g(t, v_2, v_2(\alpha(t)))| \le L_g |v_1 - v_2|$$

for all $t \in I$ and $v_1, v_2 \in \mathbb{R}$. Let $k: I \times I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a continuous function which satisfies a Lipchitz condition

(2.2)
$$|k(t, s, v_1, v_1(\alpha(s))) - k(t, s, v_2, v_2(\alpha(s)))| \le L_k |v_1 - v_2|_{s}$$

for all $t, s \in I, v_1, v_2 \in \mathbb{R}$. If $v: I \to \mathbb{R}$ a continuously differentiable function satisfies

(2.3)
$$\left| v'(t) - g(t, v(t), v(\alpha(t))) - \int_0^t k(t, s, v(s), v(\alpha(s))) ds \right| \le \phi(t),$$

for all $t \in I$, where $\phi \colon I \to (0, \infty)$ is a continuous function with

(2.4)
$$\int_0^t \phi(\zeta) d\zeta \le N\phi(t)$$

for all $t \in I$, then there exists a unique continuous function $v_0 \colon I \to \mathbb{R}$ such that

(2.5)
$$v_0(t) = \int_0^t g(\zeta, v_0(\zeta), v_0(\alpha(\zeta))) d\zeta + \int_0^t \int_0^s k(t, \zeta, v_0(\zeta), v_0(\alpha(\zeta))) d\zeta ds$$

and

(2.6)
$$|v(t) - v_0(t)| \le \frac{N}{1 - (NL_g + N^2L_k)}\phi(t)$$

for all $t \in I$.

Proof. Let Y be the set of all real valued continuous functions on closed and bounded interval I. For all $u, w \in Y$, we set

$$(2.7) d(u,w) = \inf\{K \in [0,\infty] : |u(t) - w(t)| \le K\phi(t), \text{ for all } t \in I\}$$

The metric space (Y, d) is a complete generalized metric space, see [10]. Consider the operator $\Theta: Y \to Y$ defined by

(2.8)
$$(\Theta u)(t) = v(0) + \int_0^t g(\zeta, u(\zeta), u(\alpha(\zeta))) d\zeta + \int_0^t \int_0^s k(t, \zeta, u(\zeta), u(\alpha(\zeta))) d\zeta ds$$

for all $t \in I$. We show that the operator Θ is strictly contractive. Let $K_{uw} \in [0, \infty]$ be a constant with $d(u, w) \leq K_{uw}$ for $u, w \in Y$. By (2.7), we can write (2.9) $|u(t) - w(t)| \leq K_{uw}\phi(t)$ for all $t \in I$.

From inequalities (2.1)), (2.2), (2.4), (2.8) and (2.9) it follows that for all $t \in I$ we have

$$\begin{split} |(\Theta u)(t) - (\Theta w)(t)| &= \Big| \int_0^t \Big\{ g(\zeta, u(\zeta), u(\alpha(\zeta))) - g(\zeta, w(\zeta), w(\alpha(\zeta))) \Big\} d\zeta \\ &+ \int_0^t \int_0^s \Big\{ k(t, \zeta, u(\zeta), u(\alpha(\zeta))) - k(t, \zeta, w(\zeta), w(\alpha(\zeta))) \Big\} d\zeta ds \Big| \\ &\leq \int_0^t \Big| g(\zeta, u(\zeta), u(\alpha(\zeta))) - g(\zeta, w(\zeta), w(\alpha(\zeta))) \Big| d\zeta \\ &+ \int_0^t \int_0^s \Big| k(t, \zeta, u(\zeta), u(\alpha(\zeta))) - k(t, \zeta, w(\zeta), w(\alpha(\zeta))) \Big| d\zeta ds \\ &\leq L_g \int_0^t |u(\zeta) - w(\zeta)| d\zeta + L_h \int_0^t \int_0^s |u(\zeta) - w(\zeta)| d\zeta ds \\ &\leq L_g K_{uw} \int_0^t \phi(\zeta) d\zeta + L_k K_{uw} \int_0^t \int_0^s \phi(\zeta) d\zeta ds \\ &\leq K_{uw} \phi(t) \left(NL_g + N^2 L_k \right), \end{split}$$

i.e. $d(\Theta u, \Theta w) \leq K_{uw}\phi(t)(NL_g + N^2L_k)$. Hence, we may conclude that $d(\Theta u, \Theta w) \leq (NL_g + N^2L_k)d(u, w)$ for any $u, w \in Y$, where $0 < NL_g + N^2L_k < 1$.

It follows from (2.8) that for any arbitrary $w_0 \in Y$, there exists a constant $K \in [0, \infty]$ with

$$\begin{aligned} |\Theta w_0(t) - w_0(t)| &= \left| v(0) + \int_0^t g(\zeta, w_0(\zeta), w_0(\alpha(\zeta))) \, d\zeta \right. \\ &+ \left. \int_0^t \int_0^s k(t, \zeta, u_0(\zeta), u_0(\alpha(\zeta))) \, d\zeta \, ds - w_0 \right| \\ &\leq K \phi(t), \text{ for all } t \in I. \end{aligned}$$

Since $g(\zeta, w_0(\zeta), w_0(\alpha(\zeta))), k(t, \zeta, u_0(\zeta), u_0(\alpha(\zeta)))$ and w_0 are bounded and $\min_{t \in I} \phi(t) > 0$. Thus, (2.7) implies that

$$d(\Theta w_0, w_0) < \infty.$$

So, according to Theorem 1.3, there exists a continuous function $v_0: I \to \mathbb{R}$ in a way that $\Theta^n w_0 \to v_0$ in (Y, d) and $\Theta v_0 = v_0$, i.e., v_0 satisfies (2.5) for all $t \in I$. Since we know that w and w_0 are bounded on closed interval I for any $w \in Y$ and $\min_{t \in I} \phi(t) > 0$, then there exists a constant $K_w \in [0, \infty]$ such that

$$d(w_0(t), w(t)) \le K_w \phi(t)$$

for any $t \in I$. We have $|w_0(t) - w(t)| < \infty$ for any $w \in Y$. Therefore, we get that $\{w \in Y | d(w_0, w) < \infty\}$ is equal to Y. From Theorem 1.3, we conclude that v_0 , given by (2.5), is the unique continuous function. Again from (2.3), we get

(2.10)
$$-\phi(t) \le v'(t) - g(t, v(t), v(\alpha(t))) - \int_0^t k(t, s, v(s), v(\alpha(s))) ds \le \phi(t)$$

for all $t \in I$. By integrating each term of inequality (2.10) from 0 to t, we get

$$\left|v(t) - v(0) - \int_0^t g(\zeta, v(\zeta), v(\alpha(\zeta))) \, d\zeta - \int_0^t \int_0^s k(t, \zeta, v(\zeta), v(\alpha(\zeta))) \, d\zeta \, ds\right|$$

$$\leq \int_0^t \phi(\zeta) \, d\zeta$$

for all $t \in I$. From (2.4) and (2.8), we get

(2.11)
$$|v(t) - (\Theta v)(t)| \le \int_0^t \phi(\zeta) \, d\zeta \le N\phi(t)$$

for all $t \in I$, which implies that $d(v, \Theta v) \leq N$. Next by making the use of Theorem 1.3 and inequality (2.11), we conclude that

$$d(v, v_0) \le \frac{1}{1 - (NL_g + N^2 L_k)} d(\Theta v, v) \le \frac{N}{1 - (NL_g + N^2 L_k)}.$$

Consequently, this yields the inequality (2.6) for all $t \in I$.

In the above Theorem 2.1 we examined the Hyers-Ulam-Rassias stability of (1.1) on a closed and bounded interval. Now, we are going to show that Theorem 2.1 is also valid for the case of unbounded interval.

2.2. Theorem. Suppose that I denote either \mathbb{R} or $[0, \infty)$ or $(-\infty, T]$ for a given nonnegative real number T. Let L_g , L_k and N be positive constants with $0 < NL_g + N^2L_k < 1$ and $\alpha: I \to \mathbb{R}$ be a continuous delay function such that $\alpha(t) \leq t$ for all $t \in I$. Assume that $g: I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a continuous function satisfying condition (2.1) for all $t \in I$, $v_1, v_2 \in \mathbb{R}$. If a continuously differentiable function $v: I \to \mathbb{R}$ satisfies inequality (2.3) for all $t \in I$, where $\phi: I \to (0, \infty)$ is a continuous function satisfying condition (2.4) for all $t \in I$, then there exists a unique continuous function $v_0: I \to \mathbb{R}$ which satisfies (2.5) and (2.6) for each $t \in I$.

Proof. First we assume that $I = \mathbb{R}$ and we are going to show that v_0 is a continuous function. For any $n \in \mathbb{N}$, we define the interval $I_n = [-n, n]$. In accordance with Theorem 2.1, there exists a unique continuous function $v_n : I_n \to \mathbb{R}$ in such a way that

(2.12)
$$v_n(t) = v(0) + \int_0^t g(\zeta, v_n(\zeta), v_n(\alpha(\zeta))) d\zeta + \int_0^t \int_0^s k(t, \zeta, v_n(\zeta), v_n(\alpha(\zeta))) d\zeta ds$$

and

(2.13)
$$|v(t) - v_n(t)| \le \frac{N}{1 - (NL_g + N^2L_k)} \phi(t)$$
 for all $t \in I$.

The uniqueness of the function v_n implies that if $t \in I_n$, then

 $(2.14) \quad v_n(t) = v_{n+1}(t) = v_{n+2}(t) = \cdots$

For $t \in \mathbb{R}$, define $n(t) \in \mathbb{N}$ as

$$n(t) = \min\{n \in \mathbb{N} | t \in I_n\}.$$

Next, we define a function $v_0 \colon \mathbb{R} \to \mathbb{R}$ by

 $(2.15) \quad v_0(t) = v_{n(t)}(t),$

and claim that v_0 is continuous. For any $t_1 \in \mathbb{R}$ we take the integer $n_1 = n(t_1)$. Then, t_1 belongs to the interior of the interval I_{n_1+1} and there exists positive $\varepsilon > 0$ such that $v_0(t) = v_{n_1+1}(t)$ for all t with $t_1 - \varepsilon < t < t_1 + \varepsilon$. Since v_{n_1+1} is continuous at t_1, v_0 is continuous at t_1 for $t_1 \in \mathbb{R}$.

Now, we prove that the continuous function v_0 satisfies (2.5) and (2.7) for all $t \in \mathbb{R}$. Assume that n(t) is an integer for any $t \in \mathbb{R}$. Then, by the use of (2.12) and (2.15), we

have $t \in I_{n(t)}$ and

$$v_{0}(t) = v_{n(t)}(t) = v(0) + \int_{0}^{t} g(\zeta, v_{n}(\zeta), v_{n}(\alpha(\zeta))) d\zeta + \int_{0}^{t} \int_{0}^{s} k(t, \zeta, v_{n}(\zeta), v_{n}(\alpha(\zeta))) d\zeta ds = v(0) + \int_{0}^{t} g(\zeta, v_{0}(\zeta), v_{0}(\alpha(\zeta))) d\zeta + \int_{0}^{t} \int_{0}^{s} k(t, \zeta, v_{0}(\zeta), v_{0}(\alpha(\zeta))) d\zeta ds.$$

where the last equality holds true because $n(\zeta) \leq n(t)$ for all $\zeta \in I_{n(t)}$ and from equations (2.14) and (2.15) we get that

$$v_{n(t)}(\zeta) = v_{n(\zeta)}(\zeta) = v_0(\zeta)$$

Since $t \in I_{n(t)}$ for all $t \in \mathbb{R}$, so from (2.13) and (2.15), we have

$$|v(t) - v_0(t)| \le |v(t) - v_{n(t)}(t)| \le \frac{N}{1 - (NL_g + N^2L_k)}\phi(t)$$

for any $t \in \mathbb{R}$.

Finally, we are going to prove that v_0 is unique. To do this we consider another continuous function $u_0: \mathbb{R} \to \mathbb{R}$ which satisfies (2.5) and (2.7), with u_0 instead of v_0 , for all $t \in \mathbb{R}$. Let $t \in \mathbb{R}$ be an arbitrary number. Since the restrictions $v_0|_{I_{n(t)}}$ and $u_0|_{I_{n(t)}}$ satisfies (2.5) and (2.7) for each $t \in I_{n(t)}$, the uniqueness of $v_n(t) = v_0|_{I_{n(t)}}$ suggest that

$$v_0(t) = v_0|_{I_{n(t)}}(t) = u_0|_{I_{n(t)}}(t) = u_0(t).$$

We can prove similarly for the cases $I = (-\infty, T]$ and $I = [0, \infty)$.

3. Hyers-Ulam stability

In this section, we prove the Hyers-Ulam stability of the nonlinear Volterra integrod-ifferential equation with delay (1.1).

3.1. Theorem. Let I = [0,T] be a non-degenerated interval, L_g and L_k be nonnegative constants such that $0 < TL_g + \frac{T^2}{2}L_k < 1$. Assume that $g: I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is continuous function which satisfies the Lipschitz condition (2.1) and $k: I \times I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a continuous function which satisfies the Lipchitz condition (2.2). If for some $\sigma \geq 0$ and a continuously differentiable function $v: I \to \mathbb{R}$ we have

(3.1)
$$\left|v'(t) - g(t, v(t), v(\alpha(t))) - \int_0^t k(t, s, v(s), v(\alpha(s))) \, ds\right| \le \sigma \text{ for all } t \in I,$$

then there exists a unique continuous function $v_0: I \to \mathbb{R}$ satisfying the equation (2.5) and

(3.2)
$$|v(t) - v_0(t)| \le \frac{T}{1 - (TL_g + \frac{T^2}{2}L_k)} \sigma$$
, for all $t \in I$.

Proof. Let Y be the set of all real valued continuous functions on closed and bounded interval I. For all $u, w \in Y$, we define a metric on Y by

(3.3)
$$d(u, w) = \inf \{ K \in [0, \infty] : |u(t) - w(t)| \le K \text{ for all } t \in I \}.$$

The metric space (Y, d) is a complete generalized metric space, see [10]. Consider the operator $\Theta: Y \to Y$ defined by

(3.4)
$$(\Theta u)(t) = v(0) + \int_0^t g(\zeta, u(\zeta), u(\alpha(\zeta))) d\zeta + \int_0^t \int_0^s k(t, \zeta, u(\zeta), u(\alpha(\zeta))) d\zeta ds$$

for all $t \in I$ and for all $u \in Y$. Next, we need to check that the operator Θ is strictly contractive on the set Y. Suppose that $K_{uw} \in [0, \infty]$ be a constant with $d(u, w) \leq K_{uw}$ for any $u, w \in Y$. We have,

(3.5) $|u(t) - w(t)| \le K_{uw}$, for all $t \in I$.

By making the use of (2.1), (2.2), (3.4) and (3.5), we get

$$\begin{split} |(\Theta u)(t) - (\Theta w)(t)| &= \Big| \int_0^t \Big\{ g(\zeta, u(\zeta), u(\alpha(\zeta))) - g(\zeta, w(\zeta), w(\alpha(\zeta))) \Big\} d\zeta \\ &+ \int_0^t \int_0^s \Big\{ k(t, \zeta, u(\zeta), u(\alpha(\zeta))) - k(t, \zeta, w(\zeta), w(\alpha(\zeta))) \Big\} d\zeta ds \Big| \\ &\leq \int_0^t \Big| g(\zeta, u(\zeta), u(\alpha(\zeta))) - g(\zeta, w(\zeta), w(\alpha(\zeta))) \Big| d\zeta \\ &+ \int_0^t \int_0^s \Big| k(t, \zeta, u(\zeta), u(\alpha(\zeta))) - k(t, \zeta, w(\zeta), w(\alpha(\zeta))) \Big| d\zeta ds \\ &\leq L_g \int_0^t \big| u(\zeta) - w(\zeta) \big| d\zeta + L_k \int_0^t \int_0^s \big| u(\zeta) - w(\zeta) \big| d\zeta ds \\ &\leq L_g K_{uw} T + L_k K_{uw} \frac{T^2}{2} \\ &\leq K_{uw} (TL_g + \frac{T^2}{2} L_k), \text{ for all } t \in I, \end{split}$$

i.e., $d(\Theta u, \Theta w) \leq K_{uw}(TL_g + \frac{T^2}{2}L_k)$. Hence, we may conclude that $d(\Theta u, \Theta w) \leq (TL_g + \frac{T^2}{2}L_k)d(u, w)$ for any $u, w \in Y$, where $0 < TL_g + \frac{T^2}{2}L_k < 1$. Suppose $w_0 \in Y$ be arbitrary, there exists a constant $K \in [0, \infty]$ with

$$\begin{aligned} |\Theta w_0(t) - w_0(t)| &= \left| v(0) + \int_0^t g(\zeta, w_0(\zeta), w_0(\alpha(\zeta))) d\zeta \right. \\ &+ \int_0^t \int_0^s k(t, \zeta, u_0(\zeta), u_0(\alpha(\zeta))) d\zeta ds - w_0 \right| \\ &\leq K, \text{ for all } t \in I. \end{aligned}$$

Since $g(\zeta, w_0(\zeta), w_0(\alpha(\zeta))), k(t, \zeta, u_0(\zeta), u_0(\alpha(\zeta)))$ and w_0 are bounded. Thus, equation (3.3) implies that

$$d(\Theta w_0, w_0) < \infty.$$

So, according to Theorem 1.3, there exists a continuous function $v_0: I \to \mathbb{R}$ in a way that $\Theta^n w_0 \to v_0$ in (Y, d) and $\Theta v_0 = v_0$, i.e., v_0 satisfies (2.5) for all $t \in I$. As in the proof of Theorem 2.1, it can be verify easily that $\{w \in Y | d(w_0, w) < \infty\}$ is equal to Y. From Theorem 1.3, we conclude that v_0 , given by equation (2.5), is the unique continuous function. Again from equation (2.3), we get

(3.6)
$$-\sigma \le v'(t) - g(t, v(t), v(\alpha(t))) - \int_0^t k(t, s, v(s), v(\alpha(s))) \, ds \le \sigma,$$

for all $t \in I$. By integrating each term of inequality (3.6) from 0 to t, then we get

$$\left| v(t) - v(0) - \int_0^t g(\zeta, v_0(\zeta), v_0(\alpha(\zeta))) d\zeta - \int_0^t \int_0^s k(t, \zeta, v_0(\zeta), v_0(\alpha(\zeta))) d\zeta ds \right|$$

 $\leq \sigma T$

for all $t \in I$. So, it satisfies that $|v - \Theta v| \leq \sigma T$. Finally, Theorem 1.3 together with (2.11) implies that

$$d(v, v_0) \le \frac{T}{1 - (TL_g + \frac{T^2}{2}L_k)} d(\Theta v, v) \le \frac{T}{1 - (TL_g + \frac{T^2}{2}L_k)} \sigma.$$

Now we present two examples which indicate how our theorems can be applied to concrete problems.

3.2. Example. Let a > 1, $q \in (0, \infty)$ and p are arbitrary but fixed constants. Consider the class of equations

(3.7)
$$u'(t) = g(t) + \frac{1}{2} \int_0^t \lambda(t-s)^p (u(s) + u(\alpha(s) + f(s))) \, ds, t \in [0,T]$$

for $\lambda < \frac{(q \ln a)^2}{T^p}$, where f(t) and g(t) are any continuous functions. Here

$$k(t, s, u(s), u(\alpha(s))) = \frac{1}{2}\lambda(t-s)^{p}(u(s) + u(\alpha(s)) + f(s)).$$

Clearly

$$\begin{aligned} &|k(t,s,u_1(s),u_1(\alpha(s))) - k(t,s,u_2(s),u_2(\alpha(s)))| \\ &\leq \frac{1}{2}\lambda \left| (t-s)^p \right| \left(|u_1(s) - u_2(s)| + |u_1(\alpha(s) - u_2(\alpha(s))|) \right) \\ &\leq \lambda T^p ||u_1 - u_2||. \end{aligned}$$

Let $v: I \to R$ be such that

$$\left|v'(t) - g(t) - \frac{1}{2} \int_0^t (\lambda(t-s)^p (v(s) + v(\alpha(s)) + f(s))) ds\right| \le \sigma(t) = a^{qt}, t \in [0,T].$$

Clearly,

$$\left|\int_{0}^{t} \sigma(t)dt\right| = \left|\int_{0}^{t} a^{qt}dt\right| = \frac{1}{q\ln a}a^{qt} = \frac{1}{q\ln a}\sigma(t)$$

for all $t \in [0,T]$. Theorem 2.1 ensures the existence of a unique continuous function $v: I \to R$ that solves (3.7) and

$$|v(t) - v_0(t)| \le \frac{q \ln a}{(q \ln a)^2 - T^p \lambda} a^{qt}, \ t \in [0, T].$$

3.3. Example. Consider the above class of problems for $\lambda < \frac{2}{T^{p+2}}$. Let for some $\sigma > 0$ and $v: I \to R$ we have

$$\left|v'(t) - g(t) + \frac{1}{2} \int_0^t \lambda(t-s)^p (v(s) + v(\alpha(s)) + f(s)) ds\right| \le \sigma, \ t \in [0,T].$$

In the light of Theorem 3.1, there exists a unique continuous function $v:I\to R$ that solves (3.7) for $\lambda<\frac{2}{T^{p+2}}$ and

$$|v(t) - v_0(t)| \le \frac{2T}{2 - T^{p+2}\lambda}\sigma, \ t \in [0, T].$$

Conclusion. In this manuscript, we investigated the Hyers–Ulam–Rassias stability and Hyers–Ulam stability of a nonlinear Volterra integrodifferential equation with delay by using a fixed point method.

References

- M. Akkouchi, Hyers-Ulam-Rassias stability of nonlinear Volterra integral equations via a fixed point approach, Acta Univ. Apulensis Math. Inform., 26 (2011), 257-266.
- [2] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346 (2004), 43-52.
- [3] L. P. Castro and A. Ramos, Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral equations, Banach J. Math. Anal., 3 (2009), 36-43.
- [4] L. P. Castro, A. Ramos, Hyers-Ulam and Hyers-Ulam-Rassias stability of Volterra integral equations with delay, Integral methods in science and engineering, Birkhauser Boston, Inc., Boston, MA, 1 (2010), 85-94.
- [5] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309.
- [6] M. Gachpazan and O. Baghani, Hyers-Ulam stability of Volterra integral equation, J. Nonl. Anal. Appl., 1 (2010), 19-25.
- M. Gachpazan and O. Baghani, Hyers-Ulam stability of nonlinear integral equation, Fix. P. Theo. Appl., 2010 (2010), 6 pages.
- [8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A, 27 (1941), 222-224.
- S. M. Jung, A fixed point approach to the stability of a Volterra integral equation. Fix. P. Theo. Appl., 2007 (2007), 9 pages.
- [10] S. M. Jung, A fixed point approach to the stability of differential equations y' = F(x, y), Bull. Malays. Math. Sci. Soc., 33 (2010), 47–56.
- [11] S. M. Jung, S. Sevgin and H. Sevli, On the perturbation of Volterra integro-differential equations, Appl. Math. Lett., 26 (2013), 665-669.
- [12] J. R. Morales and E. M. Rojas, Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay, Int. J. Nonl. Anal. Appl., 2 (2011), 1-6.
- [13] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
- [14] J. M. Rassias and M. Eslamian, Fixed points and stability of nonic functional equation in quasi-β-normed spaces, Cont. Anal. Appl. Math., 3 (2015), 293–309.
- [15] S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, New York, (1960).
- [16] A. Zada, R. Shah and T. Li, Integral type contraction and coupled coincidence fixed point theorems for two pairs in G-metric spaces, Hacet. J. Math. Stat., 45 (2016), 1475-1484.