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A fixed point approach to the stability of a
nonlinear volterra integrodifferential equation with
delay
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Abstract

By using a fixed point method, we prove the Hyers—Ulam—Rassias sta-
bility and the Hyers—Ulam stability of a nonlinear Volterra integrodif-
ferential equation with delay. Two examples are presented to support
the usability of our results.
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1. Introduction

In 1940, Ulam posed the following problem related to the stability of functional equa-
tions: “Under what conditions does there exist an additive mapping near an approxi-
mately additive mapping?” see for more detail [15]. One year later, Hyers [8] gave an
answer to the problem of Ulam for the case of functional equation for homomorphism
between the Banach spaces. In 1978, Rassias [13] proved the existence of unique linear
mapping near approximate additive mapping that provides generalization of the Hyers
result. Jung [9] applied the fixed point method to the investigation of Volterra integral
equation by using the idea of Cadariu and Radu in [2]. S. M. Jung proved that if a
continuous function v: I — C is such that

v - [ Gle.v(e)ie] < o)
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for all ¢ € I, then there exists a unique continuous function vg: I — C and a constant
K > 0 such that

volt) = / G(€ vo(€)de and  d (u(t), vo(t)) < Lo(t),

for all ¢ € I, it is important to obtain a precise L because it is clear that L will lead us to
the error between the actual solution vo(¢) and the approximate solution v(t). In 2013,
Jung et al. proved thatif g: I - R, h: I - R, G: I — R and ¢: I — R are sufficiently
smooth functions and if a continuously differentiable function v: I — R satisfies the
perturbed Volterra integrodifferential equation

V(0 + o000 + )+ [ K] < 60,

for some ¢ € I, then there exists a unique solution vg: I — R of the Volterra integrodif-
ferential equation

VO + o000 + 10 + [ K nlan=o,

such that

w0 <o { - [ gman} [ o exw { [ atmana,

for all ¢ € I. If the reader wishes more details, we recommend [1, 3, 4, 6, 7, 12, 14, 16].

The main purpose of the paper is to investigate the Hyers-Ulam-Rassias stability and
the Hyers-Ulam stability of following nonlinear Volterra integrodifferential equation with
delay:

(1.1) U’(t)=g(t7v(t)7v(a(t)))+/o k(t, s, v(s), v(a(s)))ds,

for all t € I = [0,7], where the function g(¢,v(t),v(a(t))) is continuous function with
respect to variables ¢t and v on I X R x R, k(¢, s, v(t),v(a(t))) is continuous with respect
to variables t, s and v on I x I X R X R, (3 is any constant and « : [0,7] — [0,7] is a
continuous delay function with «a(t) < t.

1.1. Definition. If for each continuously differentiable function v(t) satisfying
t

v'(t)*g(tav(t)vv(a(t)))*/ k(t, s, v(s), v(a(s)))ds| < ¢(t),

0
for some ¢: [0,7] — (0, 00), there exists a solution vo(t) of the Volterra integrodifferential
equations with delay (1.1) and a constant K > 0 (independent of v(t) and vo(t)) with

v(t) —vo(t)] < Ko(2),
for all ¢ € I, then we can say that the equation (1.1) is Hyers-Ulam-Rassias stable on I.

If ¢(t) is constant function then we say that the equation (1.1) has Hyers-Ulam stability
on I.

For a nonempty set Y, the generalized metric on Y is defined as follow:

1.2. Definition. A function d:Y xY — [0,00] is called a generalized metric on Y if
and only if for all u, v, w € Y d satisfies the following conditions:

(1) d(u,v) =0 if and only if u = v.

(2) d(u,v) =d(v,u).

(3) d(u,w) < d(u,v) + d(v, w).

Now, we are going to introduce one of the most crucial result of fixed point theory
that will play an important role in proving our main results.
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1.3. Theorem. ([5]) Let (Y,d) be a generalized complete metric space. Assume that
©:Y — Y is a strictly contractive operator with L < 1 as Lipschitz constant. If there
exists a nonnegative integer k such that d(©""'u, ©%u) < oo for some u € Y, then the
following conditions are true:

e The sequence O™ u converges to a fixed point u™ of ©;
e u* is the unique fixed point of © in

Y* = {v €Y | d(©"u,v) < oo};
e If v e Y™ then

" 1
< — .
d(v,u") < l_Ld(G)v,v)

2. Hyers-Ulam-Rassias stability

In this section, we prove the Hyers-Ulam-Rassias stability of the nonlinear Volterra
integrodifferential equation with delay (1.1).

2.1. Theorem. Let I = [0,7] be a closed and bounded interval for a given 7' > 0 and
let N, Ly and Ly, be nonnegative constants with 0 < NL, + N?L;, < 1. Assume that
g: I Xx R xR — R is a continuous function that satisfies a Lipschitz condition

(2.1) gt o1, 01(a?))) — gt vz, v2(a(t))] < Lglor — val,

for all t € I and v1,v2 € R. Let k: I x I x R x R — R be a continuous function which
satisfies a Lipchitz condition

(2.2) |k(t, s, v1,v1(a(s))) — k(t, s,v2, v2(a(s))| < Li| v1 — v2],
for all t,s € I, v1,v2 € R. If v: I — R a continuously differentiable function satisfies

v'(t) — g(t,v(t), v(a(t))) */0 k(t, s, v(s), v(a(s)))ds

for all t € I, where ¢: I — (0,00) is a continuous function with

(2.3) <o),

(2.4) /0 $(O)dC < No(t)

for all ¢ € I, then there exists a unique continuous function vg: I — R such that
t

(25)  wlt) = / 96, v0(C), vo(lO)))dC + / / k(¢ v0(C), vo(a(C))dCds

and

N

(2.6)  |u(t) —vo(t)| < . (NL9+N2Lk)¢(t)

for all t € I.

Proof. Let Y be the set of all real valued continuous functions on closed and bounded
interval /. For all u,w € Y, we set

(2.7) d(u,w) =inf{K € [0,00] : Ju(t) — w(t)] < K¢(t), for allt € I}.

The metric space (Y, d) is a complete generalized metric space, see [10]. Consider the
operator © : Y — Y defined by
t

(28)  (Ou)(t) = v(0) + / 96 u(©), ulal(O)))dC + / / T k(t, ¢ u(0), u(a(C)))dcds
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for all ¢ € I. We show that the operator © is strictly contractive. Let K. € [0, 00] be a
constant with d(u,w) < Kuw for u,w € Y. By (2.7), we can write

(2.9)  |u(t) —w(®)| < Kuwo(t) for all t € 1.
From inequalities (2.1)), (2.2), (2.4), (2.8) and (2.9) it follows that for all ¢ € I we have

uewawwewaﬂ=y/%acugx (@(O)) = g(¢.w(O). w(a(O) } ¢

// k(t, ¢, u(C), u(or (C)))*k(tvaw(O’w(a(C)))}dcdsl

&(Q((@%ﬂ&w@wm@MM

k(t, ¢, u(C), u((C))) — k(t»Cyw(C)yw(a(C)))‘ dCds

<Ly /Ot |u(¢) = w(¢)|d¢ + L /Ot/o [u(¢) — w(¢)] dC ds

gLQKM{AaMCMC+14Khw1i45¢@ﬁﬂds

< Kuwd(t) (NLy + N°Ly)

ie. d(Ou,0w) < Kuwd(t)(NLy + N2Ly). Hence, we may conclude that d(Qu, Ow) <
(NLg + N?Ly)d(u,w) for any u,w € Y, where 0 < NLg + N?L;, < 1.

It follows from (2.8) that for any arbitrary wo € Y, there exists a constant K € [0, oo]
with

@un(t) o) = [u(0) + [ gl wo(@).wo(a(O)) e

t s
k 1S ) d¢ds —
+AA (£, ¢, u0(C), w0 (a(€))) dC ds — wo
< K¢(t), forall ¢t € I.

Since g(¢, wo(¢), wo(a(C))), k(t, ¢, uo(C), uo(a(¢))) and wo are bounded and minser ¢(t) >
0. Thus, (2.7) implies that

d(Owo, wp) < 0.

So, according to Theorem 1.3, there exists a continuous function vo: I — R in a way that
O"wo — wvo in (Y,d) and Oug = vy, i.e., vo satisfies (2.5) for all ¢ € I. Since we know
that w and wo are bounded on closed interval I for any w € Y and min:e; ¢(¢) > 0, then
there exists a constant K, € [0, c0] such that

d(wo(t), w(t)) < Kud(t)

for any ¢ € I. We have |wo(t) — w(t)] < oo for any w € Y. Therefore, we get that
{w € Y|d(wo,w) < oo} is equal to Y. From Theorem 1.3, we conclude that vo, given by
(2.5), is the unique continuous function. Again from (2.3), we get

(2.10)  —¢(t) <'(t) — g(t,v(t) /ktsv (a(s)))ds < 6(¢)

for all ¢t € I. By integrating each term of inequality (2.10) from 0 to ¢, we get

o) =)~ [ 9600 vt de = [ [ kit 0) vla(e)) deds




t
< (o0
0
for all t € I. From (2.4) and (2.8), we get

¢
(211 Jo(®) - ©0)(0)] < [ $(0)d¢ < No)

0
for all ¢ € I, which implies that d(v,©v) < N. Next by making the use of Theorem 1.3
and inequality (2.11), we conclude that

1 N
< .
(NL, + N2Ly) YO ) < TN, TNy

d(v,v9) <
1—
Consequently, this yields the inequality (2.6) for all ¢t € I. d

In the above Theorem 2.1 we examined the Hyers-Ulam-Rassias stability of (1.1) on
a closed and bounded interval. Now, we are going to show that Theorem 2.1 is also valid
for the case of unbounded interval.

2.2. Theorem. Suppose that I denote either R or [0, c0) or (—oco, T for a given nonneg-
ative real number T. Let Ly, Ly and N be positive constants with 0 < NLg, + N?Ly < 1
and a: I — R be a continuous delay function such that «(t) < ¢ for all ¢ € I. Assume
that g: I x R x R — R is a continuous function satisfying condition (2.1) for all ¢ € I,
v1,v2 € R. If a continuously differentiable function v: I — R satisfies inequality (2.3) for
all t € I, where ¢: I — (0,00) is a continuous function satisfying condition (2.4) for all
t € I, then there exists a unique continuous function vo: I — R which satisfies (2.5) and
(2.6) for each t € I.

Proof. First we assume that ] = R and we are going to show that vy is a continuous
function. For any n € N, we define the interval I, = [—n, n]. In accordance with Theorem
2.1, there exists a unique continuous function v, : I, — R in such a way that

(2.12) ww:mm+Am;mmwxmmm+441wmm9wmmmws

and

N
(NL, + N2Ly)

(2.13)  |v(t) —vn(t)] < . o(t) for all ¢t € I.

The uniqueness of the function v, implies that if ¢ € I,,, then
(2.14)  vp(t) = Vg1 (t) = Vpyga(t) =+ - .
For t € R, define n(t) € N as
n(t) = min{n € N|t € I,,}.
Next, we define a function vo: R — R by
(2.15)  vot) = vagey (1),

and claim that vo is continuous. For any ¢1 € R we take the integer n1 = n(t1). Then,
t1 belongs to the interior of the interval I,,,+1 and there exists positive € > 0 such that
vo(t) = vn,41(¢) for all ¢ with ¢, —e < t < t1 +&. Since vy, 41 is continuous at ¢, vo is
continuous at t1 for t1 € R.

Now, we prove that the continuous function vo satisfies (2.5) and (2.7) for all ¢t € R.
Assume that n(t) is an integer for any ¢ € R. Then, by the use of (2.12) and (2.15), we
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have t € I,,() and
t

vo(t) = Vp(r)(t) :v(o)+/O 9(C,0n(C), vm((C))) dC
+/ot/osk(t’C’U”(C)7””(a(C))dCds
=v0)+ /0 9(¢ v0(€), wo(@(€))) dC
* /Ot/osk(tvC:UO(C)va(a(C)))d(ds.

where the last equality holds true because n(¢) < n(t) for all ¢ € I,,4) and from equations
(2.14) and (2.15) we get that

Un() (€) = vn() (€) = vo(C)-
Since t € I,y for all t € R, so from (2.13) and (2.15), we have

N
(NE, + Moo O

[0(8) = v ()] < [0(8) = vaen (O] < 7=

for any t € R.

Finally, we are going to prove that vy is unique. To do this we consider another
continuous function ug: R — R which satisfies (2.5) and (2.7), with uo instead of vo, for
all t € R. Let ¢t € R be an arbitrary number. Since the restrictions volr,, ,, and uolz,,,
satisfies (2.5) and (2.7) for each t € I,,(1), the uniqueness of vn(t) = volr,,,, suggest that

vo(t) = volr,, ) (t) = oz, (t) = uo(?t).

We can prove similarly for the cases I = (—o0,T] and I = [0, 00). O

3. Hyers-Ulam stability

In this section, we prove the Hyers-Ulam stability of the nonlinear Volterra integrod-
ifferential equation with delay (1.1).

3.1. Theorem. Let [ = [0,T] be a non-degenerated interval, L, and Lj be nonnegative

constants such that 0 < T'Ly + %QLk < 1. Assume that g: I Xx R x R — R is continuous
function which satisfies the Lipschitz condition (2.1) and k: I x I x Rx R — R is a
continuous function which satisfies the Lipchitz condition (2.2). If for some ¢ > 0 and a
continuously differentiable function v: I — R we have

(3.1) V() = g(t,v(t), v(a(t))) — /Ot k(t,s,v(s),v(a(s)))ds| <o forall t € I,

then there exists a unique continuous function v : I — R satisfying the equation (2.5)
and

(32 folt) — w(t)] < ——

(TLg + % L)

o, forall t € I.

Proof. Let Y be the set of all real valued continuous functions on closed and bounded
interval /. For all u,w € Y, we define a metric on Y by
(3.3)  d(u,w)=1inf{K €[0,00]: Ju(t) —w(t)] < K for all t € I}.

The metric space (Y, d) is a complete generalized metric space, see [10]. Consider the
operator ©: Y — Y defined by
t

(34)  (Ou)(t) = v(0) + / 96 u(), ulal©)))dC + / / k(¢ u(0), u(a(Q)) dC ds



621

for all ¢ € I and for all v € Y. Next, we need to check that the operator © is strictly
contractive on the set Y. Suppose that K., € [0,00] be a constant with d(u,w) < Kyw
for any u,w € Y. We have,

(3.5)  |u(t) —w(t)| < Kyw, forallt € 1.
By making the use of (2.1), (2.2), (3.4) and (3.5), we get

(©u)(t) = ©u)(t)] = | [ {a(¢.u(0).u(a(0)) = (¢ w(Q).w(a(O)) } &
/:/ (1, G u(c), ((O»——Macnmcxwuuo»}dcd4
&(Q((@%ﬂ&w@wm@wﬂ

K(t,¢u <a@»>—ka@nucxw«uo»hmds

<L, / |u(¢) — w( |d(+Lk// —w()| d¢ds

2
2

< Kuw(TLg + %Lk), for all t € I,

ie., d(Ou,0w) < Kyw(TLy + %2Lk) Hence, we may conclude that
d(Ou,0w) < (TLy + %QLk)d(u,w) for any w,w € Y, where 0 < TL, + %2Lk < 1.
Suppose wo € Y be arbitrary, there exists a constant K € [0, co] with

©un(t) = wo)] = [v(0) + [ g(c.wo(0).wo(a(0))eg
+/Ot/os k(t, ¢, uo0(C), uo(a(€)))dCds — wo

<K, foralltel.
Since (¢, wo(¢), wo(a(())), k(t, ¢, uo(¢), uo(a(¢))) and wo are bounded. Thus, equation
(3.3) implies that
d(Owo, wo) < oo.

So, according to Theorem 1.3, there exists a continuous function vo: I — R in a way
that ©"wo — v in (Y,d) and Ouvy = vy, i.e., vy satisfies (2.5) for all ¢ € I. As in the
proof of Theorem 2.1, it can be verify easily that {w € Y|d(wo,w) < oo} is equal to Y.
From Theorem 1.3, we conclude that vo, given by equation (2.5), is the unique continuous
function. Again from equation (2.3), we get

(3.6) —a <'(t)— g(t,v(t),v(a(t))) — /o k(t, s,v(s),v(a(s))) ds < o,

for all ¢t € I. By integrating each term of inequality (3.6) from 0 to ¢, then we get

mww@—ﬂgmm@wwmm«—lﬁkmgmq%mm»ww

<oT
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for all ¢ € I. So, it satisfies that [v—©v| < ¢T. Finally, Theorem 1.3 together with (2.11)
implies that
T T

d(v,v9) < d(Ov,v) <
(0) < O

< o.
1—(TLyg+ T2 Ly)
O

Now we present two examples which indicate how our theorems can be applied to
concrete problems.

3.2. Example. Let a > 1, ¢ € (0,00) and p are arbitrary but fixed constants. Consider
the class of equations

1

67) @) =90+ [ At =97 +ulals) + £5)) ds.t € 0.7)

2
for \ < (qlTnipa), where f(t) and g(t) are any continuous functions. Here

1

k(t, s, u(s), u(a(s))) = SA(t = 5)" (uls) + ula(s)) + f(s))-

Clearly
|k(t, 5,u1(s),u1(a(s))) — k(t, s, uz(s), uz(a(s)))]
< %A (¢ = 5)"] (lua(s) — uz(s)] + |ua(a(s) — uz(a(s))]))
S AT?flur — uel|-

Let v : I — R be such that

Clearly,

t 6 1 , 1
'/ U(t)dt‘ = ‘/ al dt‘ = a® = a(t)
0 0 glna glna

for all t € [0,7]. Theorem 2.1 ensures the existence of a unique continuous function
v: I — R that solves (3.7) and

}U(t)-’l}o(t”g ( QIna

qt
— T].
qlna)Q—TP)\a L te0T]

3.3. Example. Consider the above class of problems for A < ﬁ Let for some o > 0
and v: I — R we have

1 t
[V =90+ 5 [ A= (0() + vlals) + 1()ds| < o, t€ 0.7)
0
In the light of Theorem 3.1, there exists a unique continuous function v : I — R that
solves (3.7) for A < =2 and

2T

}U(t) — ’Uo(t)| S WU, t e [O,T]
Conclusion. In this manuscript, we investigated the Hyers-Ulam-Rassias stability
and Hyers—Ulam stability of a nonlinear Volterra integrodifferential equation with delay

by using a fixed point method.
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