
Hacettepe Journal of Mathematics and Statistics
Volume 47 (3) (2018), 637 � 648

A Two-by-Two matrix representation of a
generalized Fibonacci sequence
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Abstract

The Fibonacci sequence is a well-known example of second order re-
currence sequence, which belongs to a particular class of recursive se-
quences. In this article, other generalized Fibonacci sequence is in-
troduced and de�ned by Hk,n+1 = 2Hk,n + kHk,n−1, n ≥ 1, Hk,0 =
2, Hk,1 = 1 and k is the positive real number. Also nth power of
the generating matrix for this generalized Fibonacci sequence is estab-
lished and some basic properties of this sequence are obtained by matrix
methods.
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1. Introduction

The well-known Fibonacci sequence is a sequence of positive integers that has been
studied over several years. Many authors are dedicated to study this sequence. The most
and vast research �eld of Fibonacci numbers are dedicated to study the generalizations
of Fibonacci numbers [6, 11]. The main aim of the present paper is to study other
generalized Fibonacci sequence by matrix methods.

Horadam [3] introduced and studied the generalized Fibonacci sequence
Wn = Wn(a, b; p, q) de�ned by

Wn = pWn−1 − qWn−2, n ≥ 1, W0 = a, W1 = b
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where a, b, p and q are arbitrary complex numbers with q 6= 0. These numbers were
�rst studied by Horadam and they are called Horadam numbers. In [7] Silvester shows
that a number of the properties of the Fibonacci sequence can be derived from a matrix
representation. In doing so, he showed that if

A =

[
0 1

1 1

]
then An

[
0

1

]
=

[
Fn

Fn+1

]

where {Fn} represents the nth Fibonacci number. In [5] Koken and Bozkurt obtained
some important properties of Jacobsthal numbers by matrix methods, using diagonaliza-
tion of a 2×2 matrix to obtain a Binet's formula for the Jacobsthal numbers and in that
paper, 2× 2 matrix and its nth power are de�ned respectively as

F =

[
1 2

1 0

]
and Fn =

[
Jn+1 2Jn

Jn 2Jn−1

]

where Jn is the nth Jacobsthal number. In [4] Demirturk obtained summation formulae
for the Fibonacci and Lucas sequences by matrix methods. For doing this, he considered
2× 2 matrix such as

S =

[
1
2

5
2

1
2

1
2

]
and Sn =

[
Ln
2

5Fn
2

Fn
2

Ln
2

]

where {Fn} and {Ln} are nth Fibonacci and Lucas numbers respectively. In [10] the
authors presented some important relationship between k -Jacobsthal matrix sequence
and k -Jacobsthal-Lucas matrix sequence and k is the positive real number. In [2] Godase
and Dhakne described some properties of k -Fibonacci and k -Lucas numbers by matrix
terminology. To obtain such properties, the authors weighed 2× 2 matrix as

S =

[
k
2

k2+4
2

1
2

k
2

]
and Sn =

Lk,n

2

(k2+4)Fk,n

2

Fk,n

2

Lk,n

2


where k is the �xed positive real number. In [9] Catarino and Vasco introduced a 2× 2
matrix for the k -Pell sequence with its nth power and in [8] Catarino presented Binet's
formula for the k -Pell sequence by the diagonalization of 2 × 2 matrix. In both [8] and
[9] the authors de�ned 2× 2 matrix as

T =

[
0 1

k 2

]
and Tn =

[
kPk,n−1 Pk,n

kPk,n Pk,n+1

]

where {Pk,n} is the nth k -Pell number. Again in [8] Catarino obtained Binet's formulae
for the k -Pell-Lucas sequences by the matrix diagonalization and also obtained some
properties of k -Pell-Lucas sequence with the help of a 2× 2 matrices de�ned as

Q =

[
0 1

k 2

]
and Qn =

k
(

Qk,n−Qk,n−1

2(k+1)

)
Qk,n+1−Qk,n

2(k+1)

k
(

Qk,n+1−Qk,n

2(k+1)

)
Qk,n+2−Qk,n+1

2(k+1)


where {Qk,n} is the nth k -Pell-Lucas number. In [1] the authors have used the same
concept as in [8] and studied k -Fibonacci and k -Lucas sequences by matrix methods.
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2. Preliminaries

In [9] for the positive positive real number k the k -Pell sequence {Pk,n} is de�ned by
the recurrence relation:

Pk,n+1 = 2Pk,n + kPk,n−1, n ≥ 1, Pk,0 = 0, Pk,1 = 1(2.1)

Again in [8] for the positive real number k the k -Pell-Lucas sequence {Qk,n} is de�ned
recurrently by

Qk,n+1 = 2Qk,n + kQk,n−1, n ≥ 1, Qk,0 = 2, Qk,1 = 2(2.2)

The sequences (2.1) and (2.2) have the same characteristic equation x2− 2x− k = 0 and
let a and b are roots of the characteristic equation. The well known general forms of both
sequences known as Binet formulae are given and write by

Pk,n =
an − bn

a− b
and Qk,n = an + bn

where a = 1 +
√
1 + k and b = 1−

√
1 + k.

The main aim of this paper is to study other generalized Fibonacci sequence by matrix
methods, which is de�ned below:

2.1. De�nition. For the positive real number k the generalized Fibonacci sequence, say

{Hk,n} de�ned by

Hk,n+1 = 2Hk,n + kHk,n−1, n ≥ 1, Hk,0 = 2, Hk,1 = 1(2.3)

Clearly x2 − 2x − k = 0 is also the characteristic equation of the sequence (2.3). It
produces two roots as, a = 1 +

√
1 + k and b = 1−

√
1 + k

Some noticeable points about a and b are

a+ b = 2, a− 1 = 1− b, a2 = 2a+ k, b2 = 2b+ k(2.4)

Also the 2× 2 matrix called generating matrix for the sequence (2.3) is de�ned as

H =

[
2 k

1 0

]
(2.5)

3. Main Results

3.1. Theorem. (Binet Formulae for the Generalized Fibonacci Sequence)

Hk,n = an + bn − an − bn

a− b
= Qk,n − Pk,n, n ≥ 0(3.1)

Hk,n =
1

a− b

[
2(an+1 − bn+1)− 3(an − bn)

]
= 2Pk,n+1 − 3Pk,n, n ≥ 0(3.2)

Proof. The general form of the generalized Fibonacci sequence may be expressed in the
form:

Hk,n = Aan +Bbn(3.3)

where A and B are constants that can be determined by the initial conditions. So put
the values n = 0 and n = 1 in equation (3.3), we get

A+B = 2 and Aa+Bb = 1

After solving the above system of equations for A and B, we get

A =
1− 2b

a− b
and B =

2a− 1

a− b
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Therefore,

Hk,n =
1

a− b
[an(1− 2b)− bn(1− 2a)]

and by (2.4), we have

Hk,n =
1

a− b
[an − 2ban − bn + 2abn](3.4)

=
1

a− b
[an − ban − ban − bn + abn + abn]

=
1

a− b
[an(1− b)− bn(1− a)− ban + abn]

=
1

a− b
[an(a− 1)− bn(b− 1)− ban + abn]

=
1

a− b
[an(a− b)− bn(b− a)− an + bn]

=
1

a− b
[(an + bn)(a− b)− (an − bn)]

= an + bn − an − bn

a− b

This proves the �rst part of the theorem (3.1).
Now if we consider equations (2.4) and (3.4), we get

Hk,n =
1

a− b
[an − 2ban − bn + 2abn]

=
1

a− b
[an − 2(2− a)an + 2(2− b)bn − bn]

=
1

a− b

[
−3an + 3bn + 2(an+1 − bn+1)

]
=

1

a− b

[
2(an+1 − bn+1)− 3(an − bn)

]
This proves the second part of the theorem (3.1) �

3.2. Theorem. For n ∈ N, we have

2kHk,n − kHk,n−1 + 2Hk,n+2 −Hk,n+1 = (3 + 4k)Qk,n(3.5)

Proof. To prove this we will use equations (3.1), (3.2),(2.1) and (2.3)

3Qk,n + 4kQk,n = 3(Hk,n + Pk,n) + 4k(Pk,n +Hk,n)

= 3Pk,n + 4kPk,n + 3Hk,n + 4kHk,n

= (2Pk,n+1 −Hk,n) + 4kPk,n + 3Hk,n + 4kHk,n

= 2Pk,n+1 + 4kPk,n + 2Hk,n + 4kHk,n

= 4kPk,n + 2Pk,n+1 + 2Hk,n + 4kHk,n

= 4(Pk,n+2 − 2Pk,n+1) + 2Pk,n+1 + 2Hk,n + 4kHk,n

= 4Pk,n+2 − 6Pk,n+1 + 2Hk,n + 4kHk,n

= 2(2Pk,n+2 − 3Pk,n+1) + 2Hk,n + 4kHk,n

= 2Hk,n+1 + 2Hk,n + 4kHk,n

= 3Hk,n+1 −Hk,n+1 + 2Hk,n + 4kHk,n

= 3Hk,n+1 − kHk,n−1 + 4kHk,n

= 4Hk,n+1 −Hk,n+1 − kHk,n−1 + 2kHk,n + 2kHk,n
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= 2kHk,n − kHk,n−1 + 2(2Hk,n+1 + kHk,n)−Hk,n+1

= 2kHk,n − kHk,n−1 + 2Hk,n+2 −Hk,n+1

as required. �

3.3. Theorem. (The nth Power of the Generating Matrix.) For n ∈ N, we have

Hn = (3 + 4k)−1

[
2Hk,n+2 −Hk,n+1 k(2Hk,n+1 −Hk,n)

2Hk,n+1 −Hk,n k(2Hk,n −Hk,n−1)

]
(3.6)

Proof. Here we shall use induction on n. Indeed (3.6) is true for n = 1. Now we suppose
that the (3.6) is true for n. Let us show that the result is true for n+ 1, then

Hn+1 = (3 + 4k)−1

[
2Hk,n+2 −Hk,n+1 k(2Hk,n+1 −Hk,n)

2Hk,n+1 −Hk,n k(2Hk,n −Hk,n−1)

][
2 k

1 0

]

= (3 + 4k)−1


2(2Hk,n+2 −Hk,n+1) k(2Hk,n+2 −Hk,n+1)

+k(2Hk,n+1 −Hk,n)

2(2Hk,n+1 −Hk,n) k(2Hk,n+1 −Hk,n)

+k(2Hk,n −Hk,n−1)



= (3 + 4k)−1


4Hk,n+2 − 2Hk,n+1 k(2Hk,n+2 −Hk,n+1)

+2kHk,n+1 − kHk,n

4Hk,n+1 − 2Hk,n k(2Hk,n+1 −Hk,n)

+2kHk,n − kHk,n−1



= (3 + 4k)−1


2(2Hk,n+2 + kHk,n+1) k(2Hk,n+2 −Hk,n+1)

−(2Hk,n+1 + kHk,n)

2(2Hk,n+1 + kHk,n) k(2Hk,n+1 −Hk,n)

−(2Hk,n + kHk,n−1)


= (3 + 4k)−1

[
2Hk,n+3 −Hk,n+2 k(2Hk,n+2 −Hk,n+1)

2Hk,n+2 −Hk,n+1 k(2Hk,n+1 −Hk,n)

]
as required. �

3.4. Theorem. (Cassini's Identity.) For n ∈ N

Hk,n+1Hk,n−1 −H2
k,n = (−k)n−1(3 + 4k)(3.7)

Proof. From equation (2.5), det(Hn) = (−k)n and now from equation (3.6), we get

Hn = (3 + 4k)−1

[
2Hk,n+2 −Hk,n+1 k(2Hk,n+1 −Hk,n)

2Hk,n+1 −Hk,n k(2Hk,n −Hk,n−1)

]
then

det(Hn) = k(3 + 4k)−2 [(2Hk,n −Hk,n−1)(2Hk,n+2 −Hk,n+1)

−(2Hk,n+1 −Hk,n)
2]

= k(3 + 4k)−2 [4Hk,nHk,n+2 − 2Hk,nHk,n+1 − 2Hk,n−1Hk,n+2

+Hk,n−1Hk,n+1 − 4H2
k,n+1 −H2

k,n + 4Hk,n+1Hk,n

]
Put Hk,n+2 = 2Hk,n+1 + kHk,n and Hk,n+1 = 2Hk,n + kHk,n−1 and then

det(Hn) = k(3 + 4k)−2 [8Hk,nHk,n+1 + 4kH2
k,n − 2Hk,nHk,n+1

−4Hk,n−1Hk,n+1 − 2kHk,n−1Hk,n +Hk,n−1Hk,n+1 − 16
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H2
k,n − 4k2H2

k,n−1 − 16kHk,nHk,n−1 −H2
k,n + 4Hk,n+1Hk,n

]
= k(3 + 4k)−2 [4kH2

k,n − 17H2
k,n − 3Hk,n−1Hk,n+1 + 10Hk,n

Hk,n+1 − 18Hk,nHk,n−1 − 4k2H2
k,n−1

]
= k(3 + 4k)−2 [4kH2

k,n − 17H2
k,n − 3Hk,n−1Hk,n+1

+10Hk,n(2Hk,n + kHk,n−1)− 18Hk,nHk,n−1 − 4k2H2
k,n−1

]
= k(3 + 4k)−2 [4kH2

k,n − 17H2
k,n − 3Hk,n−1Hk,n+1 + 20H2

k,n

−8kHk,nHk,n−1 − 4k2H2
k,n−1

]
= k(3 + 4k)−2 [4kH2

k,n + 3H2
k,n − 3Hk,n−1Hk,n+1 − 4kHk,n−1

(2Hk,n + kHk,n−1)]

= k(3 + 4k)−2 [4kH2
k,n + 3H2

k,n − 3Hk,n−1Hk,n+1−
4kHk,n−1Hk,n+1]

= k(3 + 4k)−2 [(3 + 4k)H2
k,n − (3 + 4k)Hk,n−1Hk,n+1

]
= k(3 + 4k)−1 (H2

k,n −Hk,n−1Hk,n+1

)
= −k(3 + 4k)−1 (Hk,n−1Hk,n+1 −H2

k,n

)
Therefore,

Hk,n−1Hk,n+1 −H2
k,n = −(k)−1det(Hn)(3 + 4k)

Hk,n−1Hk,n+1 −H2
k,n = (−k)−1det(Hn)(3 + 4k)

Since from equation (2.5), det(Hn) = (−k)n then

Hk,n−1Hk,n+1 −H2
k,n = (−k)n−1(3 + 4k)

Hence the result.
From the proof of the above theorem we also conclude that

(2Hk,n −Hk,n−1)(2Hk,n+2 −Hk,n+1)− (2Hk,n+1 −Hk,n)
2(3.8)

= (3 + 4k)
(
H2

k,n −Hk,n−1Hk,n+1

)
�

3.5. Theorem. For n ∈ N, we get[
Hk,n+1

Hk,n

]
=

[
2 k

1 0

][
Hk,n

Hk,n−1

]
(3.9)

Proof. To prove the ongoing result we shall use induction on n. Indeed the result is true
for n = 1. Suppose that the result is true for n then[

Hk,n+2

Hk,n+1

]
=

[
2Hk,n+1 + kHk,n

Hk,n+1

]

=

[
2 k

1 0

][
Hk,n+1

Hk,n

]
Since the result is true for n then[

Hk,n+2

Hk,n+1

]
=

[
2 k

1 0

][
2 k

1 0

][
Hk,n

Hk,n−1

]
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=

[
2 k

1 0

][
2Hk,n + kHk,n−1

Hk,n

]

=

[
2 k

1 0

][
Hk,n+1

Hk,n

]
as desired. �

3.6. Theorem. For n ≥ 0, we get[
Hk,n+1

Hk,n

]
= Hn

[
Hk,1

Hk,0

]
(3.10)

Proof. To prove the ongoing result we shall use induction on n. Indeed the result is true
for n = 0. Suppose that the result is true for n then[

2 k

1 0

]n+1 [
Hk,1

Hk,0

]
=

[
2 k

1 0

][
2 k

1 0

]n [
Hk,1

Hk,0

]
Since the result is true for n then[

2 k

1 0

]n+1 [
Hk,1

Hk,0

]
=

[
2 k

1 0

][
Hk,n+1

Hk,n

]

=

[
2Hk,n+1 + kHk,n

Hk,n+1

]

=

[
Hk,n+2

Hk,n+1

]
as desired. �

4. Binet's Formula by Matrix Diagonalization of Generating Ma-

trix

In this section we will use the diagonalization of the generating matrix (2.5) to obtain
Binet's formula for the generalized Fibonacci sequence (2.3). For this purpose we should
prove the following theorem:

4.1. Theorem. For n ≥ 0

Hk,n =
1

a− b

[
2(an+1 − bn+1)− 3(an − bn)

]
(4.1)

Proof. The generating matrix is given by H =

[
2 k

1 0

]
. Now here our motive is to

diagonalize the generating matrix H. Since H is a square matrix and so let x be the
eigen value of H and then by the Cayley Hamilton theorem on matrices, we get∣∣H − xI

∣∣ = 0∣∣∣∣∣2− x k

1 −x

∣∣∣∣∣ = 0

x2 − 2x− k = 0

This is the characteristic equation of the generating matrix. Let a and b be the roots of
the characteristic equation and also a and b be the two eigen values of the square matrix
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H. Now we will try to �nd the eigen vectors corresponding to the eigen values a and b.
To �nd the eigen vectors we simply solve the system of linear equations given by

(H − xI)V = 0

where V is the column vector of order 2 × 1. First of all we calculate the eigen vector
corresponding to the eigen value a and then

(H − aI)V = 0[
2− a k

1 −a

][
V1

V2

]
= 0[

2V1 − aV1 + V2k

V1 − aV2

]
= 0

consider the system

(2− a)V1 + kV2 = 0

V1 − aV2 = 0(4.2)

and if we take V2 = t in equation (4.2) we get V1 = at. Hence the eigen vectors corre-

sponding to a are of type

[
at

t

]
. In particular t = 1, the eigen vector corresponding to

a is

[
a

1

]
. Similarly the eigen vector corresponding to b is

[
b

1

]
. Let A be the matrix of

eigen vectors, so A =

[
a b

1 1

]
and then

A−1 = (a− b)−1

[
1 −b

−1 a

]
. Now we keep the diagonal matrix D in which eigen values

of H are on the main diagonal, D =

[
a 0

0 b

]
and then by the diagonalization of matrices,

we get

H = ADA−1

Hn = (ADA−1)n

= ADnA−1

= (a− b)−1

[
a b

1 1

][
an 0

0 bn

][
1 −b

−1 a

]

= (a− b)−1

[
an+1 bn+1

an bn

][
1 −b

−1 a

]

= (a− b)−1

[
an+1 − bn+1 −ban+1 + abn+1

an − bn −ban + abn

]
By using equation (3.10),we have[

Hk,n+1

Hk,n

]
= (a− b)−1

[
an+1 − bn+1 −ban+1 + abn+1

an − bn −ban + abn

][
1

2

]

= (a− b)−1

[
an+1 − bn+1 − 2ban+1 + 2abn+1

an − bn − 2ban + 2abn

]
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Let C = an+1 − bn+1 − 2ban+1 + 2abn+1 and using a+ b = 2, we achieve[
Hk,n+1

Hk,n

]
= (a− b)−1

[
C

an − bn − 4an + 2an+1 + 4bn − 2bn+1

]

= (a− b)−1

[
C

−3an + 3bn + 2an+1 − 2bn+1

]

= (a− b)−1

[
C

2(an+1 − bn+1)− 3(an − bn)

]
Therefore, by equating corresponding terms on both sides we get,

Hk,n =
1

a− b

[
2(an+1 − bn+1)− 3(an − bn)

]
Hence the proof. �

4.2. Theorem. The characteristic roots of Hn are

an =
Qk,n +

√
Q2

k,n − 4(−k)n

2
(4.3)

bn =
Qk,n −

√
Q2

k,n − 4(−k)n

2
(4.4)

where Qk.n is the k-Pell-Lucas sequence

Proof. If we write the characteristic polynomial of Hn, we achieve

∣∣Hn − yI
∣∣ =

∣∣∣∣∣∣∣∣
(2Hk,n+2 −Hk,n+1)

3 + 4k
− y k

(2Hk,n+1 −Hk,n)

3 + 4k

(2Hk,n+1 −Hk,n)

3 + 4k
k
(2Hk,n −Hk,n−1)

3 + 4k
− y

∣∣∣∣∣∣∣∣

= (3 + 4k)−2

∣∣∣∣∣∣∣∣∣∣
(2Hk,n+2 −Hk,n+1) k(2Hk,n+1 −Hk,n)

−(3 + 4k)y

2Hk,n+1 −Hk,n k(2Hk,n −Hk,n−1)

−(3 + 4k)y

∣∣∣∣∣∣∣∣∣∣
= (3 + 4k)−2 {[(2Hk,n+2 −Hk,n+1)− (3 + 4k)y]

[k(2Hk,n −Hk,n−1)− (3 + 4k)y]− k(2Hk,n+1 −Hk,n)
2}

= (3 + 4k)−2 [(2Hk,n+2 −Hk,n+1)k(2Hk,n −Hk,n−1)

−(2Hk,n+2 −Hk,n+1)y(3 + 4k)− ky(3 + 4k)

(2Hk,n −Hk,n−1) + y2(3 + 4k)2 − k(2Hk,n+1 −Hk,n)
2]

= (3 + 4k)−2 {y2(3 + 4k)2 − y(3 + 4k)(2Hk,n+2 −Hk,n+1

+2kHk,n − kHk,n−1)− k [(2Hk,n −Hk,n−1)

(2Hk,n+2 −Hk,n+1)− k(2Hk,n+1 −Hk,n)
2] }

= (3 + 4k)−2 {y2(3 + 4k)2 − y(3 + 4k)(2kHk,n − kHk,n−1

+2Hk,n+2 −Hk,n+1)− k [(2Hk,n −Hk,n−1)

(2Hk,n+2 −Hk,n+1)− k(2Hk,n+1 −Hk,n)
2] }
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After using equations (3.5), (3.7) and (3.8), we conclude that∣∣Hn − yI
∣∣ = (3 + 4k)−2 [y2(3 + 4k)2 − y(3 + 4k)(3 + 4k)Qk,n + k(3 + 4k)

(H2
k,n −Hk,n−1Hk,n+1)

]
= (3 + 4k)−2 [y2(3 + 4k)2 − (3 + 4k)2Qk,n y + (−k)(3 + 4k)

(Hk,n−1Hk,n+1 −H2
k,n)

]
= (3 + 4k)−2 [y2(3 + 4k)2 − (3 + 4k)2Qk,n y + (−k)(−k)n−1

(3 + 4k)2
]

= (3 + 4k)−2 [y2(3 + 4k)2 − (3 + 4k)2Qk,n y + (−k)n(3 + 4k)2
]

= y2 −Qk,n y + (−k)n

Hence the characteristic equation of Hn is given by

y2 −Qk,n y + (−k)n = 0(4.5)

and the characteristic roots are obtained from

y =
Qk,n ±

√
Q2

k,n − 4(−k)n

2

Clearly the equation (4.5) has two roots given an and bn and consequently we get the
desired result as

an =
Qk,n +

√
Q2

k,n − 4(−k)n

2
and bn =

Qk,n −
√

Q2
k,n − 4(−k)n

2

Hence the result �

4.3. Theorem. The characteristic equation of H is

a2 − 2a− k = 0(4.6)

Proof. Here we employ the method of matrices as well as determinants to obtain the
characteristic equation for H.
Since

Hn = (3 + 4k)−1

[
2Hk,n+2 −Hk,n+1 k(2Hk,n+1 −Hk,n)

2Hk,n+1 −Hk,n k(2Hk,n −Hk,n−1)

]

Hn

Hk,n−1
= (3 + 4k)−1


2Hk,n+2 −Hk,n+1

Hk,n−1

k(2Hk,n+1 −Hk,n)

Hk,n−1

2Hk,n+1 −Hk,n

Hk,n−1

k(2Hk,n −Hk,n−1)

Hk,n−1


Since the ratio of two consecutive generalized Fibonacci numbers is equal to a then

lim
n→∞

2Hk,n+2 −Hk,n+1

Hk,n−1
= 2 lim

n→∞

Hk,n+2

Hk,n−1
− lim

n→∞

Hk,n+1

Hk,n−1

= 2 lim
n→∞

Hk,n+2

Hk,n+1
lim

n→∞

Hk,n+1

Hk,n
lim

n→∞

Hk,n

Hk,n−1

− lim
n→∞

Hk,n+1

Hk,n
lim

n→∞

Hk,n

Hk,n−1

= 2a3 − a2
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and

lim
n→∞

2Hk,n+1 −Hk,n

Hk,n−1
= 2 lim

n→∞

Hk,n+1

Hk,n−1
− lim

n→∞

Hk,n

Hk,n−1

= 2 lim
n→∞

Hk,n+1

Hk,n
lim

n→∞

Hk,n

Hk,n−1
− lim

n→∞

Hk,n

Hk,n−1

= 2a2 − a

Again

lim
n→∞

2Hk,n −Hk,n−1

Hk,n−1
= 2 lim

n→∞

Hk,n

Hk,n−1
− 1

= 2a− 1

Therefore,

lim
n→∞

Hn

Hk,n−1
= (3 + 4k)−1

[
(2a− 1)a2 ka(2a− 1)

(2a− 1)a k(2a− 1)

]
If we consider equation (2.4), we have

(3 + 4k)−1

[
(2a− 1)a2 ka(2a− 1)

(2a− 1)a k(2a− 1)

]

= (3 + 4k)−1

[
(2a− 1)(2a+ k) ka(2a− 1)

(2a− 1)a k(2a− 1)

]
If we will compute the determinants of both sides, we get the characteristic equation of
the matrix H as follows

0 = (3 + 4k)−2 [(2a− 1)2(2ak + k2)− (2a− 1)2ka2]
0 = 2ak + k2 − ka2

a2 − 2a− k = 0

as required �
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