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Abstract

In this study, we propose a new exponential smoothing method, modi-
�ed simple exponential smoothing (MSES) as an alternative to simple
exponential smoothing (SES). Despite its success and widespread use
in many areas, SES has some shortcomings that negatively a�ect the
accuracy of forecasts made using this method. For example, there is no
agreed upon concensus on choosing an initial value and determining an
optimum smoothing parameter and these decisions greatly a�ect the
forecasting accuracy of SES. The proposed method will help cope with
these shortcomings. It is compared to SES on popular metrics that are
commonly used for evaluating performance of forecasting techniques
and is shown to have better performance. The two models are applied
to the 1001 time series of the M-competition data simultaneously and
their prediction accuracies are compared under various settings.
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1. Introduction

Time series data arise in many di�erent contexts including �nance and industry, when-
ever something is observed over time. The main purpose in these cases involves using a
sequence of observations on some variable to predict a future value of it. This is achieved
by using some aggregation of the past observations to predict the future values. There
are many studies in the literature dealing with this problem utilizing forecasting and
smoothing techniques. Let the observed values of a random variable over time be de-
noted by xt, t = 1, . . . , n. The aim is then to obtain an estimate for xn+1. For simplicity,
it is assumed that the data do not display any clear trending behavior or any seasonality,
although the mean of the data may be changing slowly over time. The method proposed
later on can be easily adapted to handle data that involve such components. For now,
assume xt can be modeled using only a random error component as below:

(1.1) xt = a+ et,
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where et is some random noise with mean zero and variance σ2. Under the model in (1.1),
the aim is then reduced to �nding a good estimator for the constant a so that it can be
used to forecast future values. The general form of this estimator should involve some
sort of an average of the observed values. It can be notated as:

(1.2) â = F (x1, . . . , xn) =

n∑
t=1

wtxt,

where wt are a collection of weights called weighting vector such that wt ∈ [0, 1] for
t = 1, . . . , n and

∑n
t=1 wt = 1. The estimators of form (1.2) will be unbiased. In order to

deal with sequential updating, the term an is sometimes used to indicate the smoothed
value at time n, therefore an and â are synonyms.

Since there are a lot of ways to obtain estimators of form (1.2) and there is not an
estimator that will be universally satisfactory, researchers need a way to choose among
all these potential smoothing methods. When making a choice, some criteria to judge
the relative merits of each alternative that are important to the researchers are needed.
Most importantly, researchers have a preference for fresh data and therefore in practice
weighting vectors that assign more weight to recent observations are preferred. In other
words, weighting vectors with wj ≥ wi for j > i are preferred. One popular metric that
is used for measuring a smoothing method's ability to utilize fresh data is the average
age (AA) of the data used:

(1.3) AA = n−
n∑
t=1

twt.

Another important metric to consider is the variance of the estimator at hand as usual.
Since the estimator in (1.2) is unbiased, its variance can be written as:

(1.4) V ar(â) = E

[(
n∑
t=1

wtxt − a

)2]
=

n∑
t=1

w2
tσ

2 = V σ2.

Even though it is desirable to keep both of the metrics in (1.3) and (1.4) minimal simulta-
neously, it is not an achievable goal. Consider two extreme weighting schemes which will
result in boundary values of these metrics. The �rst scheme is the average method which
assigns equal weights to all observations over time, i.e. wt = 1

n
, for t = 1, . . . , n. Here

the estimator â is simply the simple average and it is well known that for the conditions
wt ∈ [0, 1] and

∑n
t=1 wt = 1 the variance in (1.4) is minimized since V = 1

n
. On the

contrary, AA attains its largest value under this weighting scheme which is equal to n−1
2
.

Under the naive weighting scheme where all the observations other than the latest one
are discarded, i.e. wn = 1 and wt = 0 for t = 1, . . . , n− 1, the estimator is simply equal
to the latest observation. AA under this scenario will be equal to zero thus minimized
but this time the variance of the estimator will be maximized since V now reaches its
maximum value which is equal to 1.

Even though average and naive weighting schemes are simple methods that work
remarkably well for many economic and �nancial time series, it is more realistic to use
weighting schemes that assign more weight on current observations without having to
give up all the remaining observations. One such parameterized method is the classic
moving average (MA) where for the parameter, the size of the window p, the model can
be written as:

(1.5) â =
xn + xn−1 + · · ·+ xn−p+1

p
=

1

p

p−1∑
j=0

xn−j ,
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for p ≤ n. For this model the weights are wj = 0 for j ≤ n − p and wj = 1
p
for

n− p+ 1 ≤ j ≤ n. This model has AA = p−1
2

and V = 1
p
(Brown, 1962).

Another classic and well known approach that allows the researchers to utilize more
data is the SES method where for the smoothing constant α ∈ [0, 1], the model can be
written as:

(1.6) an = αxn + (1− α)an−1,

where an is the smoothed value at time n which is as mentioned earlier in the paper a
synonym for â. Substituting the model in (1.6) into itself successively, the model can be
re-written as:

(1.7) an = α

n−1∑
k=0

(1− α)kxn−k + (1− α)na0,

so an represents a weighted moving average of all past observations with weights decreas-
ing exponentially, a0 is the initial value. It can be seen that for large α recent observations
get more weight. For large sample sizes the ES estimator in (1.6) is unbiased and has
AA = 1−α

α
and V = α

2−α (Brown, 1962).

Exponential smoothing (ES) methods are the most widely used techniques in fore-
casting due to their simplicity, robustness and accuracy as an automatic forecasting
procedure. ES was proposed in the late 1950s (Holt, 1957; Brown, 1959; Winters, 1960).
However, their popularity in time series analysis is not just as a result of simplicity but
also their proven superiority against more sophisticated approaches (Makridakis et al.,
1984; Makridakis and Hibon, 2000). ES models assume that the time series have up to
three underlying data components: level, trend and seasonality. Estimates for the �nal
values of these components are used to construct the forecast. An ES model can include
of one of �ve types of trend (none, additive, damped additive, multiplicative, or damped
multiplicative) and one of three types of seasonality (none, additive, or multiplicative).
Pegels (1969) proposed taxonomy of ES methods, which was extended and modi�ed later
by Gardner Jr and McKenzie (1985), Hyndman et al. (2002), Taylor (2003) and Hynd-
man and Athanasopoulos (2014). Thus, there are 15 di�erent ES models, the best known
of which are simple exponential smoothing (SES) (no trend, no seasonality), Holt's linear
model (additive trend, no seasonality) and Holt-Winters' additive model (additive trend,
additive seasonality)(Goodwin et al., 2010). For this reason we can say that ES is not a
simple model but rather a family of models.

Appropriate choice of smoothing constants and initial values in any ES model play
key roles in successful forecasting. An extensive review and discussion of ES models
and initial value and smoothing constant selection for the various ES models is given by
Gardner (2006). Despite their success and popularity and large body of research on this
topic, there has never been a consensus among forecasters and there are no consistent
guidelines in the forecasting literature on how smoothing constants and initial values
should be selected. In this study, a new smoothing framework will be introduced as an
alternative to traditional SES method to cope with this shortcoming.

Even though we focus on providing and studying in detail only MSES, the alternative
to the SES, in this paper, it should be kept in mind that the proposed framework can
easily be adapted to higher order ES models.

In Section 2, we introduce the proposed method MSES and provide explicit formulas
for its average age and variance. In Section 3, we compare MSES and SES in great
detail. In Section 4, we illustrate the method by applying it to a data set from the
M-competition data and then compare the overall forecasting performances of various
MSES and SES models under two speci�c settings by applying both models to all 1001
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series of the M-competition. Finally, in Section 5, we conclude by suggesting some future
research.

2. Proposed method: Modi�ed simple exponential smoothing (MSES)

Our purpose was to develop a parametric procedure for obtaining weights that provide
the best forecast for xn+1 which also satisfy

∑n
t=1 wt = 1 and wi ≤ wj for i < j. In order

to do this, the shortcomings of ES models were examined in detail and a new model that
can help cope with these was proposed. Let the smoothed value at time n be written as:

(2.1) an =
(m
n

)
xn +

(n−m
n

)
an−1,

where m = 0, 1, . . . , n. This model has very similar form to traditional SES model so it
will be called modi�ed simple exponential smoothing (MSES) henceforth. To see that
the weights sum to unity and therefore an can be interpreted as a weighted average of
past observations, the model in (2.1) is applied recursively to all successive observations
in the series as below:

an−1 =

(
m

n− 1

)
xn−1 +

(
n−m− 1

n− 1

)
an−2,

an =
(m
n

)
xn +

(m
n

)(n−m
n− 1

)
xn−1 +

(n−m
n

)(n−m− 1

n− 1

)
an−2,

an−2 =

(
m

n− 2

)
xn−2 +

(
n−m− 2

n− 2

)
an−3,

an =
(m
n

)
xn +

(m
n

)(n−m
n− 1

)
xn−1 +

(m
n

)(n−m
n− 1

)(
n−m− 1

n− 2

)
xn−2

+
(n−m

n

)(n−m− 1

n− 1

)(
n−m− 2

n− 2

)
an−3,

...

an =
(m
n

)
xn +

(m
n

)(n−m
n− 1

)
xn−1 + . . .

+

(
m
m−1

)(
n
m

) xm+1 +
(n−m

n

)(n−m− 1

n− 1

)
. . .

(
1

m+ 1

)
am.

Therefore, the smoothed value at time n obtained by MES can be re-written as:

(2.2) an =

n−(m+1)∑
k=0

(
n−k−1
m−1

)(
n
m

) xn−k +
1(
n
m

)am,
where am is the starting or initial value for MSES which can be simply the mth obser-
vation or the average of the oldest m observations. It can now easily be seen that the
smoothed value at time n is a weighted average of past observations and the initial value
am. The weights of MSES as given in (2.2) can be thought of as the probabilities from
a Negative Hyper-Geometric distribution with parameters (n,m, 1) where if a random
variable X follows this distribution then

P (X = x) =

(
n−x−1
m−1

)(
n
m

) ,
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for x = 0, 1, 2, . . . , n−m (Johnson and Kotz, 1977). Utilizing the expected value of this
distribution, the average age of MSES can then be easily found as:

(2.3) AAMSES =
n−m
m+ 1

.

In order to calculate the variance of the MSES estimator, it is needed to calculate the
sum of squared weights, V , once again. With a slight re-arrangement of the numerators
in the weights, the sum can be written as:

VMSES =

n∑
t=1

w2
t

=
(m
n

)2
+
(m
n

)2(n−m
n− 1

)2

+
(m
n

)2(n−m
n− 1

)2(
n−m− 1

n− 2

)2

+ . . .

+
(m
n

)2(n−m
n− 1

)2(
n−m− 1

n− 2

)2

. . .

(
1

m

)2

=
(m
n

)2 [
1 +

n−m−1∑
i=0

i∏
j=0

(
n−m− j
n− 1− j

)2
]

=
(m
n

)2
3F2 ((1,m− n,m− n), (1− n, 1− n), 1)(2.4)

From equation (2.4) it can be seen that the variance of the MSES estimator involves the
Generalized Hyper-Geometric series:

3F2 ((1,m− n,m− n), (1− n, 1− n), 1)

(Bailey, 1935). This framework can be easily adapted to incorporate higher order com-
ponents when needed.

3. Comparison of SES and MSES

There is no doubt that the two methods SES and MSES are closely related and MSES
lies somewhere between SES and MA. MSES attaches weights to only the most recent
m observations like MA and the weights decrease exponentially like SES for some m
(m ≥ 3). Both SES and MSES methods need smoothing constants and initial values.
The smoothing constants for SES are commonly estimated by minimizing the mean
squared error (MSE), although the mean absolute error (MAE) and the mean absolute
percentage error (MAPE) are also used. Gardner (1985) discusses various theoretical
and empirical arguments for selecting an appropriate smoothing constant and concludes
that it is best to estimate an optimum α from the data.

The main idea in SES is that the recent history is more representative of the near future
and therefore more emphasis should be given to recent observations. So, intuitively, the
starting point for grid search should be weighting all past observations equally (average
method) and then giving greater emphasis to recent observations gradually until ending
up by weighting the last observation by 1 (naive method). This would guarantee that
the weight of the initial value stays less than or equal to the weight of the most current
observation. This can easily be achieved with an MSES model with m = 1 for any n as
below:

an =

(
1

n

)
xn +

(
n− 1

n

)
an−1

=

(
1

n

)
xn +

(
1

n

)
xn−1 + · · ·+

(
1

n

)
x2 +

(
1

n

)
a1,
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Figure 1. Weights attached to the observations by MSES for di�erent
m values.

where a1 = x1 and an = x̄. This can not be achieved by a SES model for any parameter
value of α. When m = 2, for any n the MSES model produces weights that decrease
linearly with slope 2/(n(n−1)) which again can never be achieved by SES since it always
assigns exponentially decreasing weights to observations no matter the parameter choice.
For m = 2 the MSES smoothed value at time n can be written as:

an =

(
2

n

)
xn +

(
n− 2

n

)
an−1

=
2

n
xn +

2

n

(n− 2)

(n− 1)
xn−1 +

2

n

(n− 3)

(n− 1)
xn−2 + · · ·+ 2

n

2

(n− 1)
x3 +

2

n(n− 1)
a2,

where a2 = (x1 + x2)/2 or simply a2 = x2. For m > 2 the weights start to decrease
exponentially as the observations get older as in SES but not exactly at the same rate.
The weights of MSES can be visualized as in Figure 1. As a result, the MSES model is
more �exible and intuitive compared to SES since it allows for more meaningful weighting
schemes when searching for an optimal parameter while potentially reducing the number
of iterations needed for reaching that optimal smoothing parameter.

After a smoothing parameter is obtained, it is also needed to �nd an initial value
for both of the aforementioned models. For SES, most practitioners work with α values
between 0.01 and 0.3. However, also known as the "initialization problem", when either
n or α is small SES attaches more weight to initial value than even the most current
observation. The choice of starting value then becomes particularly important for SES.
It is conceptually wrong to think of the smoothing constant α alone without paying any
attention to the sample size n. The main idea of ES is to assign more weight to recent
observations and therefore an ES model should assign the most recent observation at
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Figure 2. Weights attached to initial value by MSES and SES for
di�erent iterations k = 1, 2, . . . , n.

least a weight of 1
n
. This can be achieved only if the search for the smoothing parameter

is limited to the interval [ 1
n
, 1].

To compare, we set the smoothing constant of SES as α = m/n to make the smoothing
constants of the two models equal. At the same smoothing constant level, MSES assigns
less weight to the initial value even for small α. The weights assigned to the initial values
by these two models are (1−α)n and (n−m)!m!/n! respectively. To visualize, the weights
of initial values for both of these models for relatively short time series are plotted in
Figure 2 for m = 2 and n = 20 resulting in α = m/n = 0.1.

As discussed in Section 1, a model's potential to provide a good smoothing estimate
is generally a�ected by the smoothing method's ability to use recent data while keeping
its variance small. If we compare the average age of data used from SES and MSES at
the same α level, it is obvious that MSES is always younger than SES method at the
same smoothing constant (AAMSES < AASES), since

n−m
m+ 1

<
1− m

n
m
n

or
1

m+ 1
<

1

m
.

When the same smoothing constant is used for both models, since MSES always has a
smaller AA, its V value will be greater than that of SES as shown by Yager (2008).

Another way of de�ning a SES system that is equivalent to MSES is using a smoothing
constant that results in equal average ages for both models. In other words, the smoothing
constant for SES should satisfy:

1− α
α

=
n−m
m+ 1

,

so α = (m+ 1)/(n+ 1).
The V values of the two approaches when they have equal average ages, can be vi-

sualized as in Figure 3 below. This Figure was produced for n = 15 for demonstration,
changing the value of m and letting α = m+1

n+1
. It can be seen from Figure 3 that MSES

attains a smaller variance at the same smoothing constant. The variance of MSES stays
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Figure 3. V values of MSES and SES for n = 15, m ∈ {1, 2, . . . , 14}
and α = m+1

n+1
.

smaller than that of SES at all parameter values. This makes MSES more �exible than
SES as Yager (2008) de�nes it.

Other major advantages of SES method are its relatively good short-term accuracy,
simplicity and low cost. The process is easily implemented into computer, it does not
require large amounts of historical data and new forecasts are easy to obtain. It is obvious
that MSES satis�es all these desirable properties besides being even computationally
simpler than SES.

To summarize, MSES attaches more weight to the recent observations than SES does
but less weight to older observations at the same α level. It is obvious that for any �xed
m value, the sharp distinction between the two methods will diminish when the number
of observations is increased. It is clear that MSES is more adaptive than SES when there
is level-shift in the data since it puts more weight on the most recent observations at
the same smoothing constant. This helps MSES adapt faster to the data. The di�erence
between the two approaches is more signi�cant when α and n are small since under these
conditions SES performs worse because it assigns even more weight to the initial value.

A �nal comparison can be made on the issue of �nding an initial value for both mod-
els.Several solutions are suggested in the literature for SES (Brown, 1962; Montgomery
and Johnson, 1976; Makridakis and Wheelwright, 1978; Bowerman and O'Connell, 1979).
MSES, on the other hand, does not need an initial value. In other words, when we �nd
the optimum m, the initial value is chosen simultaneously.

4. M-competition

To illustrate the proposed method and compare it to SES we applied both models to
the �rst data set �YAF2" from the 1001 series of the M-competition data (Makridakis
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Table 1. Weights assigned to observations by various MSES and SES
models for YAF2 data

m = 1 and α = 1/22 m = 2 and α = 2/22 m = 3 and α = 3/22

t MSES SES Di� MSES SES Di� MSES SES Di�

22 0.045 0.045 0.000 0.091 0.091 0.000 0.136 0.136 0.000
21 0.045 0.043 0.002 0.087 0.083 0.004 0.123 0.118 0.005
20 0.045 0.041 0.004 0.082 0.075 0.007 0.111 0.102 0.009
19 0.045 0.040 0.005 0.078 0.068 0.010 0.099 0.088 0.011
18 0.045 0.038 0.007 0.074 0.062 0.012 0.088 0.076 0.012
17 0.045 0.036 0.009 0.069 0.056 0.013 0.078 0.066 0.012
16 0.045 0.034 0.011 0.065 0.051 0.014 0.068 0.057 0.011
15 0.045 0.033 0.012 0.061 0.047 0.014 0.059 0.049 0.010
14 0.045 0.031 0.014 0.056 0.042 0.014 0.051 0.042 0.009
13 0.045 0.030 0.015 0.052 0.039 0.013 0.043 0.036 0.007
12 0.045 0.029 0.016 0.048 0.035 0.013 0.036 0.031 0.005
11 0.045 0.027 0.018 0.043 0.032 0.011 0.029 0.027 0.002
10 0.045 0.026 0.019 0.039 0.029 0.010 0.023 0.023 0.000
9 0.045 0.025 0.020 0.035 0.026 0.009 0.018 0.020 -0.002
8 0.045 0.024 0.021 0.030 0.024 0.006 0.014 0.018 -0.004
7 0.045 0.023 0.022 0.026 0.022 0.004 0.010 0.015 -0.005
6 0.045 0.022 0.023 0.022 0.020 0.002 0.006 0.013 -0.007
5 0.045 0.021 0.024 0.017 0.018 -0.001 0.004 0.011 -0.007
4 0.045 0.020 0.025 0.013 0.016 -0.003 0.002 0.010 -0.008
3 0.045 0.019 0.026 0.009 0.015 -0.006 0.000 0.008 -0.008
2 0.045 0.018 0.027 0.000 0.014 -0.014 0.000 0.007 -0.007
1 0.000 0.017 -0.017 0.000 0.012 -0.012 0.000 0.006 -0.006

Weight of initial 0.045 0.359 -0.314 0.004 0.123 -0.119 0.001 0.040 -0.039

Average Age (AA) 10.500 21.000 -10.500 6.667 10.000 -3.333 4.750 6.333 -1.583

et al., 1982). The data set is measured yearly, non-seasonal, consists of 22 observations
and the number of required forecasts is 6.

We applied MSES with parameters m ∈ {1, 2, 3} and the equivalent SES models with
α = m

n
which correspond to α ∈ {1/22, 2/22, 3/22}. In Table 1 we provide the weights

assigned to observations by these six models side-by-side.
The �rst column in Table 1 is the time index and the following three columns are

the weights obtained from MSES with m = 1 and from SES with α = 1/22 and their
di�erences calculated by subtracting the weights of the SES model from those of the
MSES model. The following three columns are similar with m = 2 and α = 2/22 and
the �nal three columns are calculated similarly with m = 3 and α = 3/22.

It can be seen from the table that MSES assigns more weight to fresher data points
while assigning less weight to older data points. This can also be seen from the row �AA"
of the table which shows the average ages of the two models under di�erent parameter
settings. Since MSES utilizes fresher data, its average age is always smaller than that
of SES at the same smoothing constant level. The di�erence in weights can be seen
clearly in Figure 4. For m = 1 the MSES always assigns more weight to the observations
regardless of the age of the data point and by doing so less weight is given to the initial
value hence the data is utilized better. For m = 2 MSES assigns more weight to recent
observations and less weight to distant observations. This pattern gets stronger as m is
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Figure 4. Di�erence between the weights assigned to xt by MSES and
SES (wt,MSES − wt,SES).

Figure 5. YAF2 along with the smoothed values from MSES(m = 1)
and SES(α = 1/22).

increased to 3 since the di�erence in weights for the recent observations get bigger and
more of the distant observations get smaller weight.

The smoothed values are plotted with the YAF2 data set in Figures 5, 6 and 7
for the MSES models with m ∈ {1, 2, 3} and the equivalent SES models with α ∈
{1/22, 2/22, 3/22} respectively. It can be seen from these �gures that even though the
original series clearly involves a trend component, MSES models are able to provide
better approximations in all three cases.

In Table 2 we compare the in-sample performance of the models based on the mean
absolute percentage error (MAPE) and compare their forecasting accuracies using MAPE
to be consistent with the rest of the literature. It can be seen from the table that whenever
the two models are at the same smoothing constant level MSES produces smaller error.
Also, since the MAPE values for all six forecast horizons are smaller for MSES when the
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Figure 6. YAF2 along with the smoothed values from MSES(m = 2)
and SES(α = 2/22).

Figure 7. YAF2 along with the smoothed values from MSES(m = 3)
and SES(α = 3/22).

two models are at the same smoothing constant level, it can be said that MSES produces
more accurate forecasts.
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Table 2. MAPE for MSES and SES on YAF2 data

.

m = 1 and α = 1/22 m = 2 and α = 2/22 m = 3 and α = 3/22

MSES SES MSES SES MSES SES

in-sample 0.63 0.79 0.47 0.68 0.38 0.60

out-sample

forecast horizon

1 0.65 0.72 0.48 0.55 0.39 0.44

2 0.68 0.74 0.53 0.59 0.44 0.49

3 0.75 0.81 0.64 0.69 0.58 0.61

4 0.81 0.85 0.72 0.76 0.67 0.70

5 0.82 0.86 0.74 0.78 0.70 0.72

6 0.85 0.88 0.79 0.81 0.75 0.77

Table 3. Average MAPE across di�erent forecast horizons (1001 se-
ries) : MSES with m ∈ {1, 2, 3} and equivalent SES with α = m

n

Forecasting horizons Average of forecasting horizons

Model 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18

MSES(m=1) 37.65 37.61 39.76 36.16 41.28 37.42 37.27 44.48 69.03 73.22 37.80 38.31 38.56 39.90 42.45 46.31
SES 39.81 40.51 43.04 39.15 44.44 40.47 40.21 47.78 71.65 80.60 40.63 41.24 41.37 42.61 45.17 49.27

MSES(m=2) 27.40 28.23 30.14 27.65 31.59 30.01 28.86 33.18 50.06 53.20 28.36 29.17 29.39 30.25 31.98 34.63
SES 30.15 31.27 33.32 30.60 34.91 32.59 31.64 36.86 55.13 60.72 31.33 32.14 32.31 33.24 35.18 38.20

MSES(m=3) 20.99 22.68 24.48 22.82 25.98 25.87 24.10 26.59 37.99 41.21 22.74 23.80 24.00 24.56 25.76 27.60
SES 23.85 25.39 27.25 25.25 28.93 28.01 26.54 30.01 43.79 48.06 25.43 26.45 26.64 27.34 28.81 31.08

Any forecasting method may have some desirable features but its ultimate performance
should be evaluated based on its capability of predicting future events accurately. To
check the performance of the proposed method and compare it to SES, we applied both
models to the 1001 series of the M-competition data under various settings. For all
settings the data sets were �rst deseasonalized if necessary using the seasonal indices
provided in the M-competition data �le.

In the �rst setting, the two models were compared for pre-determined values of the
parameter m of MSES where m ∈ {1, 2, 3}. The corresponding α values for SES were
calculated depending on the sample size of each individual data set as α = m

n
. Then, at

the same smoothing constant level forecasts were computed from both models up to 18
steps ahead (as determined in the M-competition data �le) and both models' performance
was evaluated with respect MAPE as in Table 3. It can be seen from the table that on
average MSES models produced smaller errors for all forecast horizons compared to
the equivalent SES models at the same smoothing constant level. When the errors are
averaged for both the short term and long term forecast horizons this di�erence in the
error terms is still signi�cantly large.

In the second setting, the two models were compared for pre-determined values of
the parameter α of SES where α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The corresponding m values
for MSES were calculated depending on the sample size of each individual data set as
m = α× n. Then, again at the same smoothing constant level forecasts were computed
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Table 4. Average MAPE across di�erent forecast horizons (1001 se-
ries) : SES with α ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and equivalent MSES with
m = α× n

Forecasting horizons Average of forecasting horizons

Model 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18

SES (α = 0.1) 18.05 20.21 21.72 20.86 23.75 24.40 20.60 21.67 29.15 32.79 20.21 21.50 21.31 21.25 21.93 23.11
MSES 16.39 18.73 20.25 19.61 22.27 23.41 19.51 20.11 26.10 29.67 18.74 20.11 19.96 19.86 20.41 21.38

SES (α = 0.2) 12.52 15.12 16.67 16.63 19.53 21.13 17.98 17.54 21.91 25.52 15.24 16.93 17.06 17.05 17.54 18.31
MSES 11.94 14.62 16.17 16.18 19.05 20.80 17.90 17.35 21.46 25.07 14.73 16.46 16.66 16.71 17.21 17.96

SES (α = 0.3) 10.95 13.59 15.20 15.54 18.67 20.40 17.84 16.85 21.13 24.63 13.82 15.72 16.05 16.14 16.68 17.45
MSES 10.72 13.35 14.99 15.37 18.50 20.22 17.83 16.84 21.12 24.61 13.61 15.52 15.89 16.01 16.57 17.36

SES (α = 0.4) 10.16 12.75 14.44 15.05 18.34 20.10 17.98 16.62 20.94 24.43 13.10 15.14 15.61 15.76 16.33 17.13
MSES 10.08 12.65 14.35 14.99 18.29 20.04 17.99 16.62 20.95 24.44 13.02 15.07 15.55 15.72 16.29 17.10

SES (α = 0.5) 9.70 12.18 13.95 14.75 18.18 19.94 18.17 16.54 20.89 24.33 12.65 14.78 15.36 15.56 16.15 16.97
MSES 9.61 12.07 13.85 14.68 18.11 19.86 18.19 16.54 20.90 24.34 12.55 14.70 15.29 15.51 16.11 16.94

from both models up to 18 steps ahead (as determined in the M-competition data �le) and
both models' performance was evaluated with respect MAPE as in Table 4. The α levels
used in this application are highly recommended levels in the literature. When we apply
SES models with these recommended α levels and the equivalent MSES models, again
the MSES produces smaller errors for all forecast horizons. When the MAPE values are
averaged for di�erent forecast horizons as on the right side of the table, the patterns can
be seen more clearly. On average, both for short term and long term forecast horizons,
MSES produces more reliable forecasts than SES.

5. Conclusion

In this paper, an alternative smoothing technique to SES was introduced by modifying
the smoothing constant. By means of this modi�cation, we saw that MSES has attrac-
tive features as a forecasting method and it outperforms SES at the same smoothing
constant level when applied to the M-competition data which includes time series with
non-seasonal, monthly and quarterly data. This happens due to the fact that MSES
assigns more weight to the recent past compared to SES and therefore produces forecasts
that are more in sync with the recent past. Also whenever α and n are small SES su�ers
the initialization problem since the initial value is given a big weight where MSES is
immune to this phenomenon since for all parameter values the initial value's weight will
be less than or equal to the most recent observation's weight.

The application of the proposed model to the M-competition data in Section 5 demon-
strates that MSES performs well for both short term and long term forecasts. The pro-
posed model is as simple as SES, does not need initialization, is faster to optimize and
performs better.

This model can be extended further to allow for more complicated trending behaviors
and to model the seasonality that may be present in the data sets. After this extension,
the model can be applied to the M3-competition data (Makridakis and Hibon, 2000).
Surely the model can bene�t from data pre-processing techniques, outlier detection and
other strategies to improve the forecasts. These are left as future work.
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