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Distribution function estimation using
concomitant-based ranked set sampling

Ehsan Zamanzade∗† and M. Mahdizadeh‡

Abstract

Ranked set sampling (RSS) is a data collection method designed to
exploit auxiliary ranking information. In this paper, a new estimator
of distribution function is proposed when RSS is done by using a con-
comitant variable. It is shown by simulation study that the alternative
estimator can be considerably more e�cient than the standard one,
especially when the rankings are perfect.
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1. Introduction

There are situations where the actual quanti�cation of the variable of interest, say Y ,
is di�cult (expensive, time-consuming or destructive), but sampling units can be easily
ordered without actual measurement. Ranking is usually done by expert opinion, con-
comitant variable, or a combination of them. Ranked set sampling (RSS) is sampling
plan which can be e�ectively employed in the above situations. It often results in im-
proved statistical inference, for many population attributes, over simple random sampling
(SRS).

The RSS was introduced by McIntyre [6] in the context of estimating pasture yields.
He noticed that measuring a plot yield requires harvesting its crops, but an expert can
simply sort the adjacent plots in terms of their pasture yields by eye inspection. Motivated
by McIntyre [6]'s work, RSS has found many applications in other contexts, including
forestry, medicine, biometrics, environmental monitoring and entomology. For a book-
length treatment of RSS and its applications, see Chen [1].
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There has been much research in RSS since its introduction. Takahasi and Wakimoto
[12] were the �rst who proved that sample mean in RSS, ȲRSS , is unbiased for the
population mean and more e�cient than sample mean in SRS, ȲSRS . Furthermore, they
showed that the e�ciency of ȲRSS to ȲSRS is maximized when the population distribution
is uniform. Stokes and Sager [11] considered the problem of estimating the cumulative
distribution function (CDF), and proved that RSS CDF estimator is more e�cient than
its counterpart in SRS regardless of the ranking quality. Stokes [10], MacEachern et al.
[7] and Zamanzade and Vock [16] proposed some variance estimators based on a ranked
set sample. As the ranking process in RSS is performed without obtaining precise values
of the sample units, it may not to be accurate (perfect). Frey [3] and Li and Balakrishnan
[5] proposed some nonparametric tests for assessing perfect ranking assumption which
were followed by Vock and Balakrishnan [13], Zamanzade et al. [14] and Zamanzade
et al. [15]. The problem of estimating the population mean and variance when RSS
is applied by measuring a concomitant variable were discussed by Frey [4], Zamanzade
and Mohammadi [17] and Zamanzade and Vock [16]. In this work, we plan to develop a
more e�cient CDF estimator when judgment ranking is performed using a concomitant
variable.

In Section 2, the concomitant-based RSS is described, and our CDF estimator is
presented. In Section 3, the proposed estimator is compared with the standard one
in RSS. In Section 4, the new method is illustrated using a real data example. Final
conclusions are given in Section 5.

2. The CDF estimation in concomitant-based RSS

Let Y and X be the variable of the interest and the concomitant variable, respec-
tively. We assume that the exact measurement of the variable of interest Y is expensive,
destructive or time-consuming, but actual quanti�cation of the concomitant variable X
can be easily obtained. The concomitant-based RSS can be described as follows:

(1) Draw a simple random sample of size k2 from (Y,X), and partition them into k
samples of size k each.

(2) In each sample of size k, obtain the exact quanti�cation of the concomitant
variable X, and then sort the sample according to the X values. It is assumed
that the researcher is aware about the sign of correlation coe�cient between X
and Y .

(3) Actually measure the Y value of the ith (i = 1, . . . , k) ordered unit in the ith
sample.

(4) Repeat the steps (1)-(3), n times (cycles) to obtain a ranked set sample of size
nk.

The resulting ranked set sample is then denoted by{
Y[i]ij : i = 1, . . . , k; j = 1, . . . , n

}
,

where Y[i]ij is the ith judgement ordered unit in the jth cycle. We use the term judgement

order and the subscript [.] in Y[i]ij to emphasize that the Y value of ith ordered unit in
step (3), may not be the true ith order statistic of the variable of interest Y , in the ith
sample. This is so because the ranking process in step (2) is performed according to the
concomitant variable X. Obviously, the quality of the ranking depends on the correlation
between concomitant variable and the variable of the interest. If the variable of interest
Y is a one-to-one function of the concomitant variable X, then ranking process is perfect.
In this case, we use the subscript (.) for the ranked set sample units, which are denoted
by {

Y(i)ij : i = 1, . . . , k; j = 1, . . . , n
}
.
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The standard CDF estimator in RSS is given by

(2.1) F̂RSS (t) =
1

nk

k∑
i=1

n∑
j=1

I
(
Y[i]ij ≤ t

)
.

The properties of F̂RSS (t) have been studied by Stokes and Sager [11]. They proved
that this estimator is unbiased and has less variance than empirical distribution function
(EDF) in SRS of the same size, regardless of the quality of ranking.
In concomitant-based RSS with set size k and cycle size n, we measure M = nk2 units
on the concomitant variable, and use them for ranking purpose, but we only measure
N = nk of units on the variable of interest. The main idea behind our proposed procedure
is to improve accuracy of the CDF estimation by exploiting the information contained in
all measurements on the concomitant variable.

Let
{
X(i1)i2j : i1, i2 = 1, . . . , k; j = 1, . . . , n

}
be the set of all concomitant variable

values which are used to obtain the ranked set sample of{
Y[i]ij : i = 1, . . . , k; j = 1, . . . , n

}
,

whereX(i1)i2j is the i1th ordered unit in the i2th sample of the jth cycle. LetX(1), . . . , X(M)

be the ordered values of the concomitant variable{
X(i1)i2j : i1, i2 = 1, . . . , k; j = 1, . . . , n

}
.

Also, suppose
(
Y m
[1] , X

m
(1)

)
, . . . ,

(
Y m
[N ], X

m
(N)

)
are quanti�cations on the variable of interest

along with the corresponding values of the concomitant variable, where Xm
(1) < · · · <

Xm
(N).

In view of the identity FY (t) = E (E (I (Y ≤ t) |X)) = E
(
FY |X (t)

)
, the estimator of

E
(
FY |X (t)

)
can be considered as population CDF estimator. Since

V ar (I (Y ≤ t)) = E (V ar (I (Y ≤ t) |X)) + V ar
(
FY |X (t)

)
,

one would expect the estimator of FY |X (t) to have smaller variance than that of E (I (Y ≤ t))

. The quantity E
(
FY |X (t)

)
is estimated by taking the average over kN estimates of

FY |X(i)
(t), for i = 1, . . . , kN .

Here, we assume that FY |X (t) is non-increasing function ofX, and hence the estimates
of FY |Xm

(i)
(t) should be non-increasing in i, as well. However, the estimates of FY |Xm

(i)
(t)

may not be non-increasing in i due to sampling noise. One can resolve this problem by
using nonparametric isotonic regression. Let F̂Y m

[i]
(t) = I

(
Y m
[i] ≤ t

)
. We �nd the values

of F̂ iso
Y m
[i]

(t) such that
∑N

i=1

(
F̂Y m

[i]
(t)− F iso

Y m
[i]

(t)
)2

is minimized under the constraint

F iso
Y m
[1]

(t) ≥ · · · ≥ F iso
Y m
[N]

(t) .

The F̂ iso
Y m
[i]

(t) values can be found quite e�ciently by using pool adjacent violator algorithm

(PAVA) (see Robertson [9], Chapter 1). It can be shown that for i = 1, . . . , N ,

F̂ iso
Y m
[i]

(t) = min
r≤i

max
s≥i

s∑
g=r

F̂Y m
[g]

(t)

s− r + 1
.
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Now, we estimate FY |Xm
(i)

(t) by using linear interpolation of closest known values of

F̂ iso
Y m
[i]

(t) on either side, i.e.,

F̂Y |x (t) =


F̂ iso
Y m
[1]

(t) , x < Xm
(1),

F̂ iso
Y m
[i]

(t) +
F̂ iso
Y m
[i+1]

(t)−F̂ iso
Y m
[i]

(t)

Xm
(i+1)

−Xm
(i)

(
x−Xm

(i)

)
, Xm

(i) ≤ x < Xm
(i+1) (i = 1, . . . , N),

F̂ iso
Y m
[N]

(t) , x ≥ Xm
(N).

Finally, the proposed CDF estimator is F̂N (t) = 1
kN

∑kN
i=1 F̂Y |X(i)

(t).

3. Monte Carlo Comparisons

We conducted a simulation study to assess the performance of the proposed
estimator in concomitant-based RSS. To this end, we used an imperfect ranking
model introduced by Dell and Clutter [2]. It assumes that (Y,X) has a bivariate
normal distribution with correlation coe�cient ρ. The selected values of ρ are
ρ = 1 for perfect ranking, ρ = 0.8 for imperfect ranking with fairly good accuracy,
and ρ = 0 for random ranking. It is worth mentioning that we assume that
the researcher is aware of the sign of correlation coe�cient between the interest
variable and the concomitant variable, and therefore the simulation results do not
depend on the sign of ρ.

We �rst take Y (∈ R) as the variable of interest, so the relation between variable
of interest and concomitant variable is linear. We then take eY (∈ R+) as the vari-
able of interest, therefore the relation between variable of interest and concomitant
variable is non-linear. Also, three con�gurations of the sample size and the set
size considered are (N, k) = (10, 5), (10, 10) and (20, 5). This allows us to observe
the e�ect of increasing the sample (set) size when the set (sample) size is �xed.

For each combination of ρ,N and k, 100,000 samples were generated in RSS
scheme. From each sample, the estimators F̂N (t) and F̂RSS (t) were computed for

both response variables (Y and eY ). Finally, the e�ciency of F̂N (t) relative to

F̂RSS (t) is estimated by

RE (t) =
MSE

(
F̂RSS (t)

)
MSE

(
F̂N (t)

) ,

where MSE
(
F̂RSS (t)

)
and MSE

(
F̂N (t)

)
are estimated mean squared errors

for the two CDF estimators based on 100,000 replications. The simulation results
are presented in Figures 1 and 2. In any plot, the top, middle and bottom curves
are corresponding to ρ = 1, ρ = 0.8 and ρ = 0, respectively.

The results con�rm the preference of the new estimator. The proposed estima-
tor has considerably better performance than its empirical counterpart when the
rankings are perfect, especially at the boundaries. Interestingly, F̂N (t) is still the

better than F̂RSS (t) when ρ = 0.8, in most cases. However, when the rankings are
completely random (ρ = 0), then the estimated relative e�ciencies are less than
one, but the e�ciencies loss are not much in this case. Furthermore, the relative
e�ciency increases as sample size (N) increases and the rankings are fairly good
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Figure 1. The estimated relative e�ciencies in concomitant-based
RSS scheme, when the relation between the target variable and con-
comitant variable is linear.

(ρ ≥ 0.8). These �gures also suggest that a greater e�ciency gain is obtained by
increasing the cycle size (n) rather than set size (k).

4. Application to a real data set

In this section, we use a data set from Platt et al. [8] to illustrate the application
of the new CDF estimator. It contains seven variables related to 396 conifer (pinus
palustris) trees. We only consider two variables: X the diameter in centimeters
at breast height, and Y the entire height in feet. The data set can be found in
Appendix B of Chen [1].

We treat the tree data as the target population, where Y is the variable of
interest, and X is concomitant variable. The correlation of coe�cient between X
and Y in the population is 0.91. The CDF of Y is given by

FY (t) =
1

396

396∑
i=1

I (Yi ≤ t) .

For the same choices of the sample size and the set size in Section 3, 100,000 sam-
ples were drawn from the population in concomitant-based RSS design. From each
sample, the estimators F̂N (t) and F̂RSS (t) were computed at t = F−1Y (p) , p =

0.1, 0.25, 0.5, 0.75, 0.9, where F−1Y (.) is the quantile function associated with Y .
Table 1 displays values of RE (t) de�ned as in the previous section. It is observed
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Figure 2. The estimated relative e�ciencies in concomitant-based
RSS scheme, when the relation between the target variable and con-
comitant variable is non-linear.

Table 1. Estimated e�ciencies of F̂N (t) relative to F̂RSS (t) at pth
quantiles, for p ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.

p
(N, k) 0.1 0.25 0.5 0.75 0.9
(5, 5) 1.03 1.37 1.19 1.40 1.02
(5, 10) 1.00 1.43 1.15 1.44 1.00
(10, 5) 1.22 1.68 1.23 1.52 1.03

that the proposed estimator outperforms the standard one in concomitant-based
RSS design.

5. Conclusion

The idea of ranking using a concomitant variable has been widely employed for
statistical inference. Under this setup, we consider the problem of CDF estima-
tion in RSS. The standard estimator does not make e�cient use of the available
information. An alternative estimator, incorporating the concomitant variable in-
formation, is proposed and its �nite sample behavior is investigated in simulation.
The results suggest that the new approach tends to be highly e�cient in some
situations, especially if the rankings are perfect. They also suggest that the higher
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relative e�ciency is achieved by increasing the number of cycles rather than set
size, as long as the quality of ranking is fairly good.
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