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Highlights  

Experimental methods used to determine the ballistic properties of body armors are costly, time-

consuming, and difficult to repeat for each parameter combination. In contrast, numerical methods 

and machine learning-based models provide the opportunity to analyze a large number of variables 

such as different bullet types, velocities, armor thicknesses, and material properties quickly and 

cost-effectively. In this article, finite element analysis and three different machine learning 

algorithms are used to determine the ballistic properties of ceramic body armors. 
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Abstract  

This study presents a machine learning-based approach for predicting the residual velocity of projectiles impacting silicon 

carbide (SiC) ceramic body armor plates of varying thicknesses. Explicit dynamic simulations were performed using the ANSYS 

finite element software to model the ballistic response of the armor under high-velocity impact. Simulation data were used to 

train and evaluate three different machine learning models: Linear Regression, ElasticNet, and Multilayer Perceptron (MLP). 

The predictive performance of each model was assessed using the coefficient of determination (R), mean absolute error (MAE), 

and root mean square error (RMSE) metrics across both training and testing datasets. Among the tested algorithms, the MLP 

model achieved the highest accuracy and lowest error values, demonstrating superior capability in capturing the complex 

nonlinear relationships governing ballistic impact phenomena. 

Özet 

Bu çalışma, farklı kalınlıklardaki silisyum karbür (SiC) seramik vücut zırh plakalarına çarpan mermilerin artık hızını tahmin 

etmek için makine öğrenmesine dayalı bir yaklaşım sunmaktadır. Zırhın yüksek hızlı darbe altındaki balistik tepkisini 

modellemek için ANSYS sonlu elemanlar yazılımı kullanılarak açık dinamik simülasyonlar gerçekleştirilmiştir. Simülasyon 

verileri, üç farklı makine öğrenimi modelini eğitmek ve değerlendirmek için kullanıldı: Doğrusal Regresyon, ElasticNet ve Çok 

Katmanlı Algılayıcı (MLP). Her modelin öngörü performansı, hem eğitim hem de test veri kümelerinde belirleme katsayısı (R), 

ortalama mutlak hata (MAE) ve kök ortalama kare hata (RMSE) metrikleri kullanılarak değerlendirildi. Test edilen 

algoritmalar arasında MLP modeli en yüksek doğruluk ve en düşük hata değerlerine ulaşarak, balistik çarpma olaylarını 

yöneten karmaşık doğrusal olmayan ilişkileri yakalamada üstün bir yetenek sergiledi.  
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1. INTRODUCTION 

For military and law enforcement personnel, 

body armor is a critical piece of equipment that 

increases the chance of survival in combat 

environments. With its first examples dating back 

to 2600 BC, armor has evolved from heavy metal 

parts to lightweight ceramic and composite 

systems with technological advances. Today's 

armor is manufactured within the framework of 

various standards in accordance with its intended 

use, aiming for an optimum balance between 

durability and mobility. In this context, ballistic 

material research continues. Body armor has been 

an indispensable part of personal defense 

throughout history. As is the case today, armor, 

which has been one of the important protective 

systems that increased people's chances of 

survival in the past, has evolved according to 

constantly changing war technologies and 

ammunition types. Armor systems have 

diversified with the development of material 

technology. Plate armor has become widespread 

in medieval Europe since the 14th century. These 

armors, which are made by combining leather and 

metal, were manufactured from iron, especially in 

Italy in the 15th century. However, with the 

increasing effectiveness of firearms on the 

battlefield, these armors became insufficient, and 

thicker and heavier armors were developed. 

Armors, which weighed approximately 15 kg in 

the 14th and 15th centuries, increased to 25 kg by 

the end of the 16th century [1]. This significantly 

limited the mobility of soldiers. As of the 20th 

century, the development of ammunition and 

weapons created the need for more effective 

protection systems. At this point, metal armors 

were replaced by lightweight, flexible, energy-

absorbing materials. Modern body armors are 

manufactured especially from ceramic and fiber-

reinforced composite materials. These materials 

provide both lightness and durability thanks to 

their low density and high hardness. The idea of 

using ceramic materials as armor dates back to 

the 20th century. It emerged towards the end of 

World War II and was first effectively applied 

during the Vietnam War. Today, armor systems 

are manufactured according to different ballistic 

standards worldwide. Various ceramic and 

composite combinations are preferred depending 

on the purpose of use and threat level. With the 

development of technology, research on new 

generation materials that can be used in the 

ballistic field continues. After the long-term 

dominance of steel, steel plates have been 

replaced by more advanced structural systems 

with the development of armor-piercing 

ammunition. This process has made it necessary 

to both lighten and make armor more effective in 

order to increase mobility. Thus, advanced 

ceramics have begun to be widely used in ballistic 

armor.  

Advanced ceramics are high-performance 

materials consisting of crystal structures with 

high purity and controlled composition. They are 

subject to much more precise production 

processes compared to traditional ceramics; this 

makes them superior in terms of both structural 

strength and functional performance. The desired 

mechanical, thermal, and ballistic properties can 

be achieved by carefully adjusting the raw 

material ratios used during production. Such 

ceramics are generally produced from high-

quality and finely ground powders [2]. Various 

molding methods, such as dry pressing, isostatic 



 

 

pressing, and wet forming, are used in the 

production of advanced ceramics. In some cases, 

additional processes may be required after 

sintering to gain the final properties. Thanks to 

these processes, the crystal structure is made 

denser, smoother, and more impact-resistant. 

Advanced ceramics are among the ideal materials 

in ballistic applications due to their light weight 

and high hardness/strength ratios [3-5]. The 

primary purpose of the armor system is to stop the 

bullet coming at high speed and prevent it from 

contacting the human body. In this context, 

ceramics perform better than traditional metal 

armor because they can provide the same level of 

protection with much lower density. 

Today, advanced ceramics such as aluminum 

oxide, boron carbide, silicon carbide, zirconia-

reinforced alumina, and silicon nitride are widely 

used in armor systems. Among these, SiC is one 

of the prominent materials in ballistic armors. 

SiC, with its properties such as low density, high 

hardness, and excellent thermal conductivity, is 

the primary ceramic material preferred in both 

personal armor systems and military vehicles. 

Being lighter than aluminum oxide and more 

economical than boron carbide makes it ideal in 

terms of cost-performance [6]. In addition, SiC's 

high melting point and ability to limit microcrack 

propagation after impact increase its resistance to 

multiple impacts. In this respect, its resistance, 

especially against steel-core ammunition, is 

higher than that of other ceramics such as alumina 

and boron carbide. Although brittleness is a 

general disadvantage of advanced ceramics, SiC 

offers a more balanced performance in this 

respect. 

In the literature, researchers have conducted 

experimental and numerical studies on the 

ballistic properties of ceramic armors. Cui et al. 

[7] conducted a comprehensive analysis of the 

ballistic performance of monolithic ceramics, 

including alumina, silicon carbide, boron carbide, 

and titanium diboride (TiB₂), based on existing 

literature data. The study examined various 

calibers and projectile velocities ranging from 

500 to 2700 m/s. The influence of different 

ceramic types and their properties on depth of 

penetration (DOP), excluding ceramic thickness, 

and the differential efficiency factor (DEF), was 

systematically investigated. The findings 

demonstrated that projectile velocity, ceramic 

material, and tile thickness significantly affect 

ballistic performance. DEF correlated with the 

ceramic density, with boron carbide, silicon 

carbide, alumina, and titanium diboride 

exhibiting the highest efficiency. Additionally, 

DEF increased with ceramic thickness, which 

was consistent with the observed trends in DOP. 

Both DOP and DEF initially increased with 

projectile velocity but decreased at higher speeds. 

The DEF parameter accounts for penetration into 

the backing plate, which increases with velocity 

and consequently reduces DEF. Ceramic 

thickness also affects residual penetration, 

showing a linear relationship between penetration 

depth and thickness. However, as thickness and 

density increase, DEF tends to decrease if there is 

no corresponding reduction in DOP, reflecting 

the balance between protection and mass 

efficiency. Optimal ballistic efficiency against 

armor-piercing projectiles was observed at 

impact velocities between 800 and 900 m/s. 

Furthermore, a correlation between flexural 



 

 

strength and ballistic performance suggests that 

flexural strength could serve as a useful 

evaluation criterion for ceramic armor materials. 

Savio et al. [8] investigated the influence of 

backing materials, projectile velocity, and 

ceramic tile thickness (alumina, boron carbide, 

and zirconia toughened alumina—ZTA) on 

ballistic performance against 7.62 × 54 mm 

armor-piercing projectiles through depth of 

penetration (DOP) testing. Experiments were 

conducted at velocities ranging from 600 m/s to 

820 m/s. The study introduced a novel ballistic 

efficiency metric, the normalized differential 

efficiency factor (NDEF), which normalizes the 

thickness efficiency of DEF to exclude the effect 

of backing material resistance. Additionally, the 

normalized ballistic efficiency (NBE) was 

proposed, eliminating the influence of backing 

material density. Both NDEF and NBE exhibited 

a clear trend: ballistic efficiency of the ceramics 

decreased with increasing projectile velocity. 

Moreover, NBE and NDEF showed comparable 

trends regarding ceramic thickness and projectile 

velocity. Consequently, NBE was identified as 

the most effective parameter for evaluating 

ballistic efficiency and classifying ceramic 

materials, as it effectively removes the impact of 

backing material resistance and density from the 

efficiency assessment. 

Hu et al. [9] investigated the ballistic behavior of 

silicon carbide mosaic tiles with varying 

geometries, combined with an ultra-high 

molecular weight polyethylene (UHMWPE) 

backing layer, under impact from 7.62 x 51 mm 

armor-piercing projectiles at velocities around 

780 m/s. Their findings demonstrated that the 

mosaic configuration extends the interaction time 

between the projectile and the target, resulting in 

erosion and deceleration of the projectile within 

the ceramic front layer, while the residual kinetic 

energy is absorbed by the backing material. 

Moreover, ceramic properties such as hardness, 

fracture toughness, and flexural strength were 

identified as critical factors influencing ballistic 

performance. 

Shen et al. [10] conducted experimental tests on 

silicon carbide mosaics backed by UHMWPE, 

incorporating bonding adhesives between the 

layers. These tests were performed near the 

ballistic limit using 7.62 mm steel-core 

projectiles with initial velocities ranging from 

776 m/s to 791 m/s. They developed a numerical 

model employing design point and Monte Carlo 

methods to analyze dynamic responses and assess 

armor reliability. Results revealed that adhesive 

strength significantly enhances ballistic 

performance by mitigating bulging deformation 

in the backing layer. 

Experimental and numerical methods have 

traditionally been used to analyze ballistic 

properties of armor. However, these approaches 

are often time-consuming and computationally 

expensive, with limited availability of 

comprehensive experimental databases. 

Recently, hybrid techniques combining 

numerical simulations with machine learning 

(ML) have emerged, enabling rapid analysis and 

extensive data generation. ML algorithms are 

increasingly applied in ballistic armor design for 

material selection, impact resistance evaluation, 

structural optimization, and dynamic impact 

analysis. These data-driven methods enhance 



 

 

armor performance while reducing costs by 

accurately predicting armor deformation under 

varying conditions, thus minimizing the need for 

extensive physical testing. Additionally, AI-

assisted finite element analysis (FEA) contributes 

to the development of lightweight and high-

strength armor systems, promoting design 

innovation and efficiency. Overall, integrating 

machine learning into ballistic protection 

research improves protective capabilities and 

streamlines manufacturing processes. 

Ryan et al. [11] employed machine learning 

regression models—including Extreme Gradient 

Boosting (XGBoost), Artificial Neural Networks 

(ANN), Support Vector Regression (SVR), and 

Gaussian Process Regression (GP)—to predict 

the ballistic limit of metallic armor against small 

and medium caliber projectiles, as well as the 

penetration depth into semi-infinite targets. 

Artero-Guerrero et al. [12] utilized an ANN to 

predict laminate deformation around the ballistic 

limit and identify optimal laminate 

configurations. Their approach integrated 

experimental results with finite element 

simulations to develop the ANN training dataset.  

Wang and Sun [13] investigated the ballistic 

behavior of hybrid aramid fiber reinforced plastic 

(AFRP)/carbon fiber reinforced plastic (CFRP) 

laminates by integrating numerical simulations 

and machine learning. Finite element analyses 

were conducted in ABAQUS, modeling bullet 

impacts at 30°, 60°, and 90°, with velocities 

ranging from 300 to 900 m/s in 50 m/s 

increments. Residual projectile velocities were 

predicted in real-time using ANN and decision 

tree regression (DTR) models trained on ballistic 

data. Both models demonstrated strong predictive 

accuracy on experimental datasets, which 

improved further when trained on larger datasets 

generated from finite element simulations, 

highlighting the efficacy of combining data-

driven and numerical methods for ballistic impact 

prediction. Khan et al. [14] investigated the 

prediction of penetration depth (PD) in ultra-

high-performance concrete (UHPC) targets under 

ballistic impact by integrating interpretable ML 

approaches with deep generative adversarial 

network (DGAN)-based data augmentation. 

Using 103 experimental data points from the 

literature, a synthetic dataset of 10,000 entries 

was generated via DGAN, which successfully 

replicated the statistical characteristics of the real 

data. Five ML algorithms—decision tree (DT), 

XGBoost, random forest (RF), CatBoost, and 

LightGBM—were trained using projectile 

parameters (impact energy, velocity, diameter, 

mass) and UHPC properties (compressive 

strength, fiber addition) as inputs. The XGBoost 

model achieved the highest accuracy, with R = 

0.990 and MAE = 4.933 for both training and 

testing sets. Comparative analysis showed that 

ML models outperformed empirical penetration 

models, highlighting their superior predictive 

capability. Model interpretability was enhanced 

using SHapley Additive exPlanations (SHAP), 

individual conditional expectation (ICE), and 

partial dependence plots (PDP), which revealed 

that projectile features were the dominant PD-

influencing factors, followed by UHPC 

compressive strength and fiber content. The study 

demonstrated that combining interpretable ML 

with DGAN is an effective strategy for accurate 

PD estimation in UHPC with limited datasets, 



 

 

offering potential for reducing experimental 

requirements. Limitations include the omission of 

parameters such as aggregate size and type, 

which have been shown to affect PD. Future work 

could explore hybrid ML models, alternative data 

augmentation techniques, and the development of 

ML-derived empirical equations for UHPC 

ballistic performance prediction. 

Zhu et al. [15] developed a hybrid machine 

learning framework to predict the ballistic 

performance of multilayer composite armor 

against high-velocity projectiles. The study 

addressed the challenge of balancing lightweight 

structures with robust protection by combining 

Support Vector Machine (SVM) and Deep Neural 

Network (DNN) models, with hyperparameter 

optimization enhancing predictive accuracy. The 

framework was validated using a numerical 

computational model simulating the dynamic 

response of composite armor, comprising steel 

front and rear panels with a ceramic and fiber-

reinforced composite core, and was benchmarked 

against experimental data on ballistic limit 

velocity and damage morphology. The SVM 

model accurately predicted armor penetration, 

with the radial basis function (RBF) kernel 

showing the best performance after optimization, 

while the DNN model predicted residual 

projectile kinetic energy and rear panel 

deformation with high precision. The hybrid 

framework, trained on 302 high-fidelity 

numerical samples, enables rapid and near real-

time predictions of armor damage states, 

significantly reducing computational time from 

96 core hours to under 10 seconds. This approach 

demonstrates the potential of integrating data-

driven ML techniques for efficient and reliable 

prediction of multilayer composite armor 

performance under extreme impact conditions, 

providing a foundation for constructing a 

comprehensive “damage database” to support 

engineering design and operational decision-

making. Mutu et al. [16] numerically investigated 

the ballistic performance of multilayered armor 

systems composed of alumina ceramic front 

layers supported by Kevlar-29 and ultra-high 

molecular weight polyethylene (UHMWPE) 

composites in various thickness ratios, 

maintaining a total composite layer thickness of 

10 mm. Using LS-DYNA, they conducted 735 

simulations with 7.62 mm armor-piercing 

projectiles at velocities between 700–1000 m/s 

(50 m/s increments) and three different failure 

strain (FS) erosion criteria on 35 armor 

configurations. The simulation results—validated 

against literature data—were used to train MLP, 

SVM, and DT machine learning models to predict 

residual projectile velocities based on ceramic 

thickness, composite configuration, projectile 

velocity, FS, and material properties. The 

findings revealed that increasing ceramic 

thickness reduced residual velocity, and higher 

UHMWPE content in the composite layers 

enhanced ballistic resistance. Among the tested 

algorithms, SVM achieved the highest prediction 

accuracy, with MAE values of 1.8826 (training) 

and 6.6731 (testing), and RMSE values of 3.4102 

and 9.0483, respectively, accurately estimating 

approximately 82 % of residual velocities with an 

absolute error below 6 m/s. The study 

demonstrated that ML approaches can effectively 

complement traditional engineering methods in 

early-stage armor design, enabling efficient 

configuration screening, material selection, and 



 

 

performance prediction, thereby reducing the 

need for costly and time-consuming physical tests 

while fostering innovative design strategies in 

defense applications. Lei et al. [17] developed an 

ML model to predict the ballistic impact 

performance of unidirectional fiber-reinforced 

composite plates (UD-FRCP) by linking 

macroscopic energy absorption to microstructural 

characteristics, quantified via the two-point 

correlation function. Using 185 micro-scale 

simulation cases for training, the proposed model 

achieved an average prediction error of 6.94% 

and a maximum error of 12.69%, demonstrating 

both high accuracy and computational efficiency. 

Critical parameter sensitivities were analyzed, 

showing that increasing the number of estimators 

in gradient boosting regression (GBR) and 

random forest regression (RFR) improved 

accuracy up to a saturation point, while decision-

tree-based algorithms, particularly GBR, 

provided the best predictive performance. The 

study also highlighted the effect of training 

dataset size, confirming that 185 cases were 

sufficient for reliable predictions without 

excessive computational cost. Lei et al. [13] 

concluded that their ML approach effectively 

models the relationship between microstructure 

and impact protective performance, providing a 

rapid and accurate method for designing UD-

FRCP with optimized ballistic resistance, and 

suggested extending the method to various fiber 

types, matrix materials, and microstructural 

topologies in future research. Kazarinov and 

Khvorov [18] explored the use of ANN to 

accelerate the numerical evaluation of residual 

impactor velocities for perforated PMMA targets, 

addressing the computational challenges of high-

fidelity finite element method (FEM) 

simulations. The ANN models were trained on 

FEM-generated datasets incorporating the 

incubation time fracture criterion, enabling rapid 

predictions of impact strength for target 

configurations without requiring computationally 

intensive FEM runs. The study demonstrated that 

fully connected ANNs outperformed 

convolutional architectures for predicting static 

plate deflection, while convolutional networks 

were effective for dynamic impact problems. 

Moreover, the ANN models were capable of 

extrapolating to configurations that caused FEM 

failures due to extreme mesh distortions, 

achieving high prediction accuracy (R² = 0.961) 

for problematic cases. By integrating the ANN 

with a genetic algorithm, optimized perforation 

patterns were generated that theoretically 

enhanced impact resistance by distributing spall-

related fractures and reducing residual projectile 

velocities. The approach significantly reduced 

computational time, bypassed FEM instabilities, 

and allowed fast evaluation of design variants, 

providing a robust tool for both prediction and 

optimization of perforated plate impact 

performance. The study highlighted the potential 

of ANN-assisted frameworks to complement 

FEM in complex impact problems and streamline 

design processes. 

Although various studies have analyzed the 

ballistic performance of ceramic armors using 

experimental methods or finite element 

simulations, applications that combine such 

simulations with ML for predictive modeling 

remain limited. In particular, there is a lack of 

research focusing on SiC body armors subjected 

to impacts from multiple types of rifle projectiles, 



 

 

such as both 7.62 x 39 mm Mild Steel Core 

(MSC) and 5.56 x 45 mm SS109 bullets, within 

the same study. Existing ML-based ballistic 

prediction works often employ small datasets and 

consider only a narrow range of parameters, 

typically limited to a single projectile type or 

basic impact velocity. Furthermore, comparative 

evaluations of different ML algorithms for this 

specific application are scarce, especially using 

large datasets generated from high-fidelity finite 

element models.  

In this study, the ballistic properties of SiC body 

armors with different thicknesses against high-

velocity 7.62 x 39 mm MSC and 5.56 x 45 mm 

SS109 bullets were investigated by the finite 

element method. As a result of the analyses, a 

data set was created for the residual velocities 

depending on the bullet type, bullet muzzle 

velocity, ceramic thickness, and mesh size. The 

obtained data were used to train the 

LinearRegression, ElasticNet, and MLP 

algorithms; thus, the aim was to estimate the 

residual velocity values after the bullet impact. A 

total of 600 data points were generated for each 

data set in the ML algorithms. 70% of the data set 

was used for training, while 30% was used for 

testing. The prediction results of the 

LinearRegression, ElasticNet, and MLP machine 

learning algorithms were evaluated according to 

three performance criteria. 

2. MATERIAL AND METHODS  

2.1. Finite Element Analysis 

7.62 x 39 mm MSC, 5.56 x 45 mm SS109, and 

SiC body armors of different thicknesses were 

modeled with the Ansys/SpaceClaim module. In 

the analyses, body armors of 8, 9, 10, 11, and 12 

mm thicknesses were used in accordance with the 

measurements of ceramic body armors produced 

for ballistic protection today. The steel cores of 

the 7.62 x 39 mm MSC and 5.56 x 45 mm SS109 

bullets were positioned to contact the armor. 

Finite element models of the bullets and armors 

are given in Figure 1.  

 

Figure 1: Ballistic body armor and bullets. 



 

 

7.62 x 39 mm MSC is an infantry rifle 

ammunition developed by the Soviets and 

generally used in weapons such as the AK-47 and 

SKS. 5.56 x 45mm SS109 is an ammunition 

developed to NATO standards and used in the 

M16 and its derivatives. These two bullets were 

preferred in numerical analyses. A summary of 

the nominal data of the bullets is given in Table 

1. The technical drawing of the ammunition is 

shown in Figure 2. 

Table 1: Summary of the nominal data of the 

bullets. 

Ammunition Gun Bullet 

mass 

(g) 

Expected 

Muzzle 

Velocity 

[m/s] 

7.62x39 mm 

MSC 

AK-

47, 

SKS 

8 (123 

grain) 

~715 m/s 

5.56x45mm 

SS109 

M16, 

M4 

4 (62 

grain) 

~920 m/s 

 

Figure 2: Ammunition technical drawings A) 

7.62x39 mm MSC cartridge B) 5.56x45mm 

SS109 cartridge [19]. 

Finite element analyses of ceramic armors were 

performed with the Ansys/Explicit Dynamics 

module. Two different mesh structures were used 

in the analyses. Mesh structures are shown in 

Figure 3. 

 

Figure 3: Mesh structures of body armor. 



 

 

In the analysis, 7.62x39 mm MSC bullet hit 

targets consisting of SiC ceramics with 5 different 

thicknesses with speeds between 750 m/s and 

1000 m/s; 5.56x45 mm SS109 bullet hit targets 

consisting of 5 different thicknesses with speeds 

between 950 m/s and 1200 m/s. The changed 

parameters and values are given in Table 2. 

Table 2: Parameters and values used in the 

analysis. 

 

Parameter 

Bullet type Bullet 

muzzle 

velocity 

(m/s) 

Ceramic 

thickness 

(mm) 

Mesh 

size 

(mm) 

  750 8  

  
7.62x39 

mm MSC 

800 
850 

900 

950 
1000 

9 
10 

11 

12 

 
0.5  

1  

     

Value  
 

 

5.56x45mm 
SS109 

 

 

 
950 

1000 

1050 
1100 

1150 

1200 

 
8 

9 

10 
11 

12 

 
 

 

0.5 
1  

 

The Johnson Cook material chart is used to 

describe the behavior of the steel core of the 

bullet in the finite element method. In this model, 

the equivalent stress is: 

σy =  [A + Bεp
n] [1 + C ln (

ε

ε0
)] [1 − (

T−Tr

Tmelt− Tr
)

M
]           (1)                                                                                                                                                           

σy symbolize the yield stress of the material, εp 

represents the equivalent plastic deformation, ε/ε0 

represents the dimensionless deformation ratio; 

A, B, C, M, and n represent the material 

constants. T, Tr, and Tmelt represent the current, 

room, and melting temperatures, respectively. 

The material properties of the Steel 4340 steel 

bullet core used in the analysis are given in Table 

3. 

 

 

Table 3: Johnson-Cook material parameters for 

bullet [20]. 

Parameter Symbol Value Unit 

Linear EOS, Johnson– Cook strength, 

failure 

Density  

 

 

ρ  

 

 

7.83 

 

 

g/cm3 

Shear modulus G 7.7 x 107 kPa 

Strain hardening constant  B 5.1 x 105 kPa 

Strain rate constant C 0.014 - 

Melting temperature Tm 1793 °K 

Room temperature Tr 300 °K 

Bulk modulus - 1.59 x 108  

Yield strength A 7.92 x 105 kPa 

Strain hardening exponent n 0.26  

Thermal softening exponent m 1.03  

Reference strain rate ɛ 1 s-1 

Damage constant  D1 0.05 - 

Damage constant  D2 3.44 - 

Damage constant  D3 0.61 - 

Damage constant  

Damage constant  

D4 

D5 

-2.12 

0.003 

- 

- 

 

Explicit Dynamics is a nonlinear analysis 

software widely employed for the simulation of 

complex physical phenomena, including impact, 

penetration, explosions, and blast events [21]. 

The program incorporates a broad range of 

advanced material constitutive models to 

represent material behavior under extreme 

conditions accurately. Among these, the 

Johnson–Holmquist-1 (JH-1) model—

characterized by its linear segmented approach to 

material strength and failure—has been 

integrated into Explicit Dynamics to enhance its 



 

 

capabilities in advanced material modeling 

further. 

Users of Explicit Dynamics can choose between 

two modeling approaches when defining the 

Johnson–Holmquist material behavior: the 

“Segmented” (JH-1) or the “Continuous” (JH-2) 

type. When the segmented JH-1 model is selected 

for strength, it must also be used for the failure 

model; in other words, the segmented strength 

model cannot be combined with the continuous 

failure model. Conversely, both segmented (JH-

1) and continuous (JH-2) failure models are 

compatible with the continuous (JH-2) strength 

model. Validated material property data for SiC 

using the JH-1 model are presented in Table 4 and 

are included in the standard material library of 

Explicit Dynamics version 2020 R2 [20]. 

Table 4: Johnson-Holmquist material parameters 

for SiC [22]. 

Parameter Symbol Value Unit 

Equation of state: polynomial 

Density  

 

ρ  

 

3.215 

 

g/cm3 

Bulk modulus  A1 2.20 x 108 kPa 

Parameter 

Parameter 

Strength: Johnson–Holmquist, 

segmented  

Shear modulus 

A2 

T1 

 

 

G 

3.61 x 108 

2.20 x 108 

 

 

1.93 x 108 

kPa 

kPa 

 

 

kPa 

Hugoniot elastic limit HEL 1.17 x 107 kPa 

Intact strength constant S1 7.10 x 106 kPa 

Intact strength constant P1 2.50 x 106 kPa 

Intact strength constant S2 1.22 x 107 kPa 

Intact strength constant 

Strain rate constant 

Max. fracture strength 

Failed strength constant 

Failure: Johnson–Holmquist, 

segmented 

Hydro tensile limit 

P2 

C 

Smax 

α 

 

 

T 

1 x 107 

0.009 

1.30 x 106 

0.4 

 

 

-7.50x 105 

kPa 

- 

kPa 

- 

 

 

kPa 

Damage constant ɛmax 0.8 - 

Damage constant P3 9.975x 107 kPa 

Bulking constant β 1 - 

 

2.2. Model Validation 

In order to evaluate the accuracy of the finite 

element model developed in this study, an 

experimental study conducted by Araslı [23] was 

taken as a reference. In that study, ballistic tests 

were performed on 12 mm thick SiC ceramic 

armor using a 7.62 mm caliber bullet, in 

accordance with the NIJ 0101.06 Level III 

ballistic protection standard. The experimental 

results indicated that a bullet impacting at a 

velocity of 833.04 m/s exhibited partial 

penetration, confirming the protective capability 

of the ceramic plate. These data were compared 

with the finite element analysis results obtained 

in the current study. A total of 8 representative 

test cases, covering different projectile types, 

impact velocities, and armor thicknesses, were 

used for validation. Additionally, the simulation 

results were benchmarked against commercially 

available 12 mm SiC ceramic armor plates, which 

are designed to stop both 7.62×39 mm MSC and 

5.56×45 mm SS109 projectiles.  

2.3. Machine Learning 

2.3.1. Linear regression 

Linear regression is one of the fundamental 

methods used for modeling the relationship 

between a dependent variable and one or more 

independent variables [24]. The main objective of 

this technique is to find a linear function that best 

predicts the value of the target variable based on 

the observed inputs. It is widely used due to its 

simplicity, interpretability, and effectiveness in a 

variety of practical scenarios where the 

relationship among variables is approximately 

linear. 



 

 

The standard form of the linear regression model 

can be expressed as: 

ŷ = w0 + w1x1 + w2x2 + ⋯ + wnxn          (2)           

where: 𝑦̂ denotes the predicted value of the target 

variable, 𝑥1, 𝑥2, . . . 𝑥𝑛 represent the input 

(independent) variables, 𝑤0 is the intercept (bias 

term), 𝑤1, 𝑤2, . . . 𝑤𝑛 are the regression 

coefficients to be estimated from the data.  

2.3.2. Elastic Net 

In the realm of high-dimensional statistical 

modeling, the Elastic Net (ENET) has emerged as 

a powerful extension of the Lasso (Least 

Absolute Shrinkage and Selection Operator) 

method, offering enhanced robustness in the 

presence of highly correlated predictors [25]. 

While the lasso effectively performs variable 

selection by applying an ℓ1 penalty, it tends to 

produce unstable solutions when predictors 

exhibit strong multicollinearity. To address this 

critical limitation, the ENET was introduced as a 

more stable alternative, particularly suitable for 

high-dimensional settings such as genomics or 

signal processing, where extreme correlations are 

common [26]. 

The ENET achieves this improvement by 

incorporating a convex combination of the ℓ1 

penalty used in lasso and the ℓ2 penalty applied in 

ridge regression. This dual-penalty framework 

not only encourages sparsity in the model (as with 

lasso) but also promotes grouping effects and 

solution stability (as with ridge). The general 

form of the ENET estimator is given by: 

𝛽̂(enet) = (1 +
𝜆2

𝑛
) {arg min

β
‖𝑦 − 𝑋𝛽‖2

2 +

𝜆2‖𝛽‖2
2 + 𝜆1‖𝛽‖1}                                 (3) 

To simplify tuning, the penalty parameters 𝜆1 and 

𝜆2 are often reparameterized using a mixing 

parameter 𝛼 ∈ [0, 1], defined as: 

𝛼 = 𝜆2/(𝜆1 + 𝜆2)                       (4) 

Under this formulation, the ENET optimization 

problem can be equivalently expressed as: 

𝛽̂(enet2) = 
arg min

β
‖𝑦 − 𝑋𝛽‖2

2 , subject to 

𝑃𝛼(𝛽) = (1 − 𝛼)‖𝛽‖1 + 𝛼‖𝛽‖2
2 ≤ 𝑠                (5)              

where 𝑃𝛼(𝛽) denotes the elastic net penalty term, 

and 𝑠 is a scalar threshold controlling the total 

regularization. 

This reparameterization highlights the flexibility 

of the elastic net. When 𝛼 = 1, the model reduces 

to ridge regression, applying full ℓ2 penalization; 

when 𝛼 = 0, it simplifies to the lasso, with only 

an ℓ1 penalty applied. Intermediate values of 𝛼 

allow the method to balance sparsity and stability, 

depending on the structure of the data. 

A key advantage of the ENET is its ability to 

handle grouped variable selection effectively. 

The ℓ1 component continues to perform 

automatic variable elimination by shrinking some 

coefficients to exactly zero. Meanwhile, the ℓ2 

component stabilizes the estimation paths and 

encourages the selection of correlated groups of 

variables by shrinking their coefficients toward 

each other. This so-called "grouping effect" 

enables ENET to select entire clusters of related 

predictors even when the group membership is 

unknown a priori. 

This characteristic is particularly beneficial in 

situations where the number of predictors 𝑝 far 

exceeds the number of observations 𝑛, a common 

scenario in modern data-rich disciplines. Unlike 



 

 

lasso, which is limited to selecting at most nnn 

variables in such cases, the elastic net can select 

more than nnn variables due to the inclusion of 

the ℓ2 term. 

Despite these strengths, it is important to note that 

the elastic net does not possess the oracle 

property, a theoretical guarantee that allows 

consistent identification of the true model under 

certain conditions. Therefore, while the ENET 

improves prediction accuracy and model 

interpretability in practice, it may not always 

perfectly recover the underlying data-generating 

mechanism. 

In summary, the elastic net serves as a versatile 

and powerful tool for regularized regression 

analysis in high-dimensional contexts. 

Combining the strengths of both lasso and ridge 

regression addresses key limitations and provides 

a more robust framework for variable selection 

and predictive modeling in the presence of 

collinearity. 

2.3.3. MLP 

The MLP is a type of ANN designed to mimic the 

operational principles of the human nervous 

system [27]. This architectural framework creates 

a computational model that processes 

information and performs designated tasks 

through a network of interconnected artificial 

neurons. ANNs consist of numerous neurons 

working collaboratively, each contributing to the 

solution of specific problems by performing 

targeted computations on the input data [28]. The 

capability of these networks to tackle complex 

problems primarily arises from the dynamic 

interactions between neurons distributed across 

multiple layers within the system. 

One of the key strengths of ANNs lies in their 

ability to learn effectively from both 

experimental observations and numerical 

datasets, enabling their widespread application 

across diverse fields [29]. Moreover, neural 

networks offer considerable advantages in terms 

of ease of design and implementation, 

attributable to their generally intuitive and 

straightforward structural organization [30]. It 

has also been noted that such networks 

demonstrate significant improvements in 

computational performance, especially when 

handling large-scale datasets, due to their 

inherent speed and efficiency [31]. 

Specifically, in the case of the MLP, a network 

composed of a single layer is constrained to 

learning only linear relationships. However, by 

employing multiple layers, the MLP architecture 

gains the ability to model complex nonlinear 

functions. This expansion considerably enhances 

the network’s capacity to address intricate and 

multidimensional problems. The typical MLP 

structure includes an input layer, one or more 

hidden layers, and an output layer, each fulfilling 

distinct roles that collectively contribute to the 

network’s overall function. The input layer 

receives raw data, which is then processed and 

transformed into increasingly abstract 

representations by the hidden layers. Finally, the 

output layer interprets the processed information 

to produce the final result. 

Thanks to this layered configuration, MLPs serve 

as powerful and flexible models capable of 

adapting to a wide range of challenges by 

toggling between linear and nonlinear 

relationships as needed. Consequently, MLPs 

have been found to be extensively used in various 



 

 

domains, particularly in tasks such as 

classification, regression, and time series 

prediction [32]. Figure 4 provides a schematic 

illustration of the MLP architecture as applied to 

the estimation of residual velocity, highlighting 

its layered composition and operational flow.. 

 

Figure 4:  MLP architecture. 

3. FINDINGS 

In this study, the ballistic properties of SiC body 

armors with different thicknesses were analyzed 

using the finite element method with 7.62 x 39 

mm MSC and 5.56 x 45 mm SS109 bullets. While 

the 7.62 x 39 mm MSC bullet hit the targets at 

speeds between 750 and 1000 m/s, the 5.56 x 45 

mm SS109 bullet hit the target at speeds between 

950 and 1200 m/s. The residual velocity values 

obtained from the analysis results were also 

estimated using machine learning algorithms. 

3.1. Finite Element Analysis Results 

As a result of the shots fired with both bullets, full 

penetration occurred in SiC body armors of all 

thicknesses due to high impact velocities. An 

increase in residual velocity values was observed 

depending on the bullet diameter and velocity. 

Figure 5 shows the deformations that occur as a 

result of a bullet impact on SiC body armor. 

Ceramic materials, widely used in armor systems 

due to their high hardness and compressive 

strength, exhibit complex fracture behavior when 

subjected to high-velocity ballistic impacts. A 

critical factor governing this behavior is 

deviatoric stress—the component of stress 

responsible for shape change (distortion) without 

a change in volume. Unlike hydrostatic stress, 

which primarily contributes to volumetric 

changes, deviatoric stress directly drives the 

initiation and propagation of fractures in brittle 

materials such as ceramics. Under ballistic 

impact conditions, deviatoric stress plays a 

dominant role in determining the onset of failure. 

As the intensity of deviatoric stress, particularly 

that arising from shear forces, increases, the rate 

and severity of fracture in ceramic materials also 

rise. This is especially significant given ceramics’ 

inherent resistance to compressive loading. Once 

the deviatoric stress surpasses a critical threshold, 

localized shear deformation leads to crack 

initiation, ultimately resulting in catastrophic 

failure.  

Fracture in ceramics occurs through a 

combination of mechanisms that are activated by 

the interaction of stress waves generated during 

impact. Initially, the high-velocity impact 

generates a compressive stress wave that 

propagates through the ceramic body. Upon 

reaching the free (unconfined) surface of the 

ceramic, part of this compressive wave reflects 

back as a tensile wave. The superposition of these 



 

 

stress fields—compressive and tensile—induces 

radial cracking that originates at the impact site 

and spreads outward. In addition to radial 

fractures, circumferential (or hoop) cracks also 

develop due to bending moments induced along 

the radial direction. These bending stresses arise 

due to the differential deformation between the 

impacted zone and the surrounding material, 

leading to tensile stresses perpendicular to the 

radial cracks. This multi-modal cracking pattern, 

comprising both radial and circumferential 

fractures (Figure 5), is characteristic of brittle 

materials subjected to dynamic loading and plays 

a key role in energy dissipation and ballistic 

resistance. Similar cracking patterns have been 

documented in previous investigations of armor 

systems subjected to high-velocity projectile 

impacts [33-36]. 

 

Figure 5:  Fracture patterns in body armor. 

In the field of ballistic engineering, certain 

specialized types of ammunition are deliberately 

designed to decelerate upon entering a target 

medium. This controlled reduction in velocity 

serves to disperse kinetic energy over a wider 

area, thereby maximizing the impact effect. Such 

ammunition typically incorporates a mechanism 

of controlled expansion—often referred to as 

“mushrooming”—upon contact with the target. 

This expansion significantly increases the 

diameter of the projectile, resulting in a larger 

wound channel and enhanced tissue disruption. 

The strategic design of these projectiles plays a 

critical role in applications where stopping power 

and internal damage are prioritized over 

penetration depth. Within the scope of the 

numerical analysis presented in Fig. 6, it is 

observed that the bullets undergoes substantial 

plastic deformation as a result of stress levels that 

significantly exceed the material's static yield 

strength of 792 MPa during its interaction with 

the target. This extreme deformation leads to a 

pronounced mushrooming effect in the bullet 

core, which is a critical indicator of energy 

transfer and material failure mechanisms under 

high-strain-rate conditions. The occurrence of 

such deformation is not merely a byproduct of the 

impact but is considered a key design feature, as 

it enhances the terminal ballistic performance of 

the projectile. 



 

 

Figure 6: Deformation of bullets. 

Crouch et al. [37] investigated the penetration 

behavior of AK47 MSC ammunition against 

boron carbide-based armor systems through 

experimental and numerical methods. In their 

study, the presence of relatively soft intermediate 

layers (the lead-filled jacket on the bullet and the 

fiber-reinforced polymer layer on the ceramic) 

between the steel core and the ceramic strike face 

was evaluated. Their findings revealed that the 

projectile core exhibited pronounced 

mushrooming on or near the ceramic surface, 

followed by a linear erosion process as it 

penetrated the ceramic. This two-stage 

deformation mechanism was associated with the 

projectile being subjected to stress levels 

exceeding the material’s strength under high 

strain-rate loading. Similarly, in the present 

study, numerical analyses showed that the bullets 

experienced substantial plastic deformation under 

stresses significantly exceeding the static yield 

strength of 792 MPa, resulting in a pronounced 

mushrooming effect in the bullet core. In both 

studies, such deformation is emphasized not 

merely as a byproduct of impact, but as a key 

design feature that enhances the terminal ballistic 

performance of the projectile. 

3.2. Machine Learning Result 

The selection of Linear Regression, ElasticNet, 

and MLP algorithms for this study was based on 

their complementary capabilities in modeling 

complex relationships and their widespread use in 

predictive analytics. Linear Regression was 

chosen as a baseline model due to its simplicity, 

interpretability, and effectiveness in capturing 

linear relationships between input parameters and 

residual velocity. ElasticNet was selected to 

address potential multicollinearity among input 

features, as it combines the regularization 

benefits of both Lasso and Ridge regression, 

improving model generalization while 

maintaining interpretability. MLP, a type of 

feedforward neural network, was employed to 

capture the highly nonlinear and intricate 

interactions inherent in ballistic impact 

phenomena, which linear models may fail to 

represent accurately. By comparing these three 

methods, the study not only evaluates 

straightforward linear approaches but also 

demonstrates the superior predictive performance 

of MLP in complex, high-dimensional datasets.  

As a result of ballistic analysis, three different 

performance metrics were included in this study 



 

 

to evaluate the performance of machine learning 

models in order to make more accurate velocity 

estimates. These metrics were determined as R, 

MAE, and RMSE. 

The linear R shows how well the model's 

estimates match the real data, and as the R value 

approaches 1, the accuracy of the model's 

estimates increases. In other words, a high R 

indicates that the model provides more reliable 

results. MAE is another important criterion 

determining how close the predictions are to the 

actual values. A low MAE indicates that the 

model's prediction errors are minor, meaning that 

the model is more successful. RMSE is calculated 

by taking the square root of the average of the 

squares and comparing the differences between 

the model's predicted values and the actual 

values. A low RMSE indicates that the model's 

margin of error is smaller and, therefore, the 

predictions are more accurate. 

When these three performance metrics are 

evaluated together, it is possible to analyze the 

prediction capabilities of machine learning 

models more objectively and comprehensively. 

Thus, the best-performing model can be selected, 

and the accuracy of ballistic analyses can be 

increased. 

The formulations of the R2, MAE, and RMSE 

statistical metrics for the prediction results of 

residual velocity are given in equations 6, 7, and 

8. 

𝑅2 =  1 −
∑ (𝑦−𝑦̂)2𝑛

∑ (𝑦−𝑦̅)2𝑛                (6)                           

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦 − 𝑦̂|                                𝑛            (7)  

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦 − 𝑦̂)2𝑛               (8)          

In these equations, y represents the FEA data, 𝑦̂  

the predicted value, 𝑦̅ the mean value of the FEA 

data, and n the number of samples in the dataset. 

Table 5 shows the training and test data of 3 

different machine learning algorithms. 

Table 5: Training and testing results of ML 

algorithms. 

Model 

No 

ML Model 

 

Training Set 

 

     R                 MAE               RMSE 

Testing Set 

 

    R                  MAE               RMSE 

1 LinearRegression 0.5897 124.0397 143.3826 0.6311 136.4468 161.3921 

2 ElasticNet 0.9289 52.7159 64.8966 0.9331 67.0142 81.8513 

3 MultilayerPerceptron 0.9850 28.6245 36.1583 0.9884 36.6704 43.5008 

Figure 7 presents the residual velocity estimation 

results for both the training and test sets using the 

LinearRegression method. From Figure 7, it is 

observed that the LinearRegression method 

achieved an R value of 0.5897, an MAE of 

124.0397, and a RMSE of 143.3826 for the 

training set. For the test set, the LinearRegression 

method yielded an R value of 0.6311, an MAE of 

136.4468, and an RMSE of 161.3921. Figure 7 

also illustrates the residual velocity estimation 

errors obtained using the LinearRegression 

methods. The error values on the y-axis represent 

the difference between the predicted and FEA 

residual velocity values. The prediction errors for 

the LinearRegression technique is shown as 

orange lines in Figure 7(C) for both training and 

test sets. A larger deviation from the zero point 

on the y-axis indicates poorer prediction 

performance, while a smaller deviation indicates 

superior prediction accuracy. 



 

 

 

Figure 7: LinearRegression estimation results. 

Figure 8 illustrates the residual velocity 

estimation outcomes for both the training and test 

datasets obtained via the ElasticNet algorithm. As 

shown, the ElasticNet method attained an R value 

of 0.9289, an MAE of 52.7159, and an RMSE of 

64.8966 for the training data. In the test set, it 

yielded an R value of 0.9331, an MAE of 

67.0142, and an RMSE of 81.8513. The figure 

further displays the residual velocity estimation 

errors derived from the LinearRegression 

approach. The y-axis denotes the discrepancy 

between the predicted and FEA-obtained residual 

velocities. In Figure 8(C), the prediction errors 

corresponding to the ElasticNet technique are 

depicted with purple lines for both datasets. A 

greater deviation from zero on the y-axis reflects 

reduced prediction performance, whereas a 

smaller deviation signifies higher predictive 

accuracy. 



 

 

 

Figure 8:  ElasticNet estimation results. 

Figure 9 presents the residual velocity estimation 

results for both training and test datasets using the 

MLP method. As shown in Figure 9, the MLP 

approach achieved an R value of 0.9850, an MAE 

of 28.6245, and an RMSE of 36.1583 for the 

training set. For the test set, the LinearRegression 

method yielded an R value of 0.9884, an MAE of 

36.6704, and an RMSE of 43.5008. Additionally, 

Figure 9 depicts the residual velocity estimation 

errors obtained via the MLP method. The error 

values on the y-axis indicate the difference 

between the predicted and FEA-based residual 

velocities. In Figure 9(C), the prediction errors 

associated with the MLP method are represented 

by red lines for both datasets. Greater deviations 

from zero on the y-axis reflect lower prediction 

performance, whereas smaller deviations 

correspond to higher estimation accuracy. 



 

 

 

Figure 9: MLP estimation results.

Table 6: Generated equations with the linear 

regression and the elastic net algorithms. 

Predicted parameter with linear regression 

Residual velocity = 204.5635 * Bullet type + 1.6878 * Bullet muzzle velocity + -

71.9645 * Ceramic thickness + -1911.6902 

Predicted parameter with elastic net 

Residual velocity = 7.691 * Bullet type + 0.554 * Bullet muzzle velocity + -14.357 * 

Ceramic thickness + 0.548 * Mesh size + -33.488 

In Table 6, the mathematical equations obtained 

from the Linear Regression and Elastic Net 

algorithms are presented, each aiming to estimate 

the residual velocity of projectiles after impact. 

These equations incorporate four predictor 

variables: projectile type, bullet muzzle velocity, 

ceramic thickness, and mesh size. Each 

coefficient in the equations reflects the strength 

and direction of the relationship between the 

corresponding variable and the predicted residual 

velocity. The Elastic Net model produces a 

relatively balanced set of coefficients, with 

smaller magnitudes and both positive and 

negative values. This suggests a regularized 

model that penalizes extreme weights, reducing 

the risk of overfitting. Notably, the variable 

ceramic thickness exhibits a strong negative 

coefficient (−14.357), indicating its considerable 

inverse effect on residual velocity. The mesh size 

(0.548) and bullet muzzle velocity (0.554) 

contribute positively, while the bullet type 

variable (7.691) also shows a direct relationship. 

Conversely, the Linear Regression model yields 

significantly larger coefficient values, 

particularly for the bullet type (204.5635) and 

ceramic thickness (−71.9645) variables, implying 

higher sensitivity to those predictors. The 

absence of a regularization term in this method 

may lead to overfitting in the presence of 

multicollinearity or noise, especially when 

dealing with relatively small datasets. From a 



 

 

modeling perspective, while linear regression 

provides a straightforward interpretation, the 

elastic net’s use of both L1 and L2 regularization 

enables better generalization, especially when 

predictor variables are correlated. Therefore, in 

practical applications such as ballistic 

performance prediction, the elastic net model 

may offer more robust and reliable estimations. 

4. CONCLUSION 

This study has demonstrated the effectiveness of 

ML algorithms in predicting the residual velocity 

of projectiles impacting SiC ceramic armor 

plates, based on simulation data derived from 

explicit finite element analyses. By incorporating 

input features such as projectile type, bullet 

muzzle velocity, ceramic thickness, and mesh 

size, a predictive framework was established to 

estimate post-impact projectile velocity with high 

accuracy. Among the three algorithms evaluated, 

the MLP model significantly outperformed both 

Linear Regression and ElasticNet in terms of 

predictive accuracy and generalization capability. 

The MLP achieved an R-value of 0.9884 on the 

test set, with relatively low MAE and RMSE 

values, indicating its superior ability to model the 

complex, nonlinear dynamics of high-velocity 

ballistic impacts. In contrast, the Linear 

Regression model showed limited capability in 

capturing nonlinear patterns, while ElasticNet 

offered moderate improvement due to its 

regularization properties, though still inferior to 

the neural network approach. The results suggest 

that ML models—particularly deep learning 

architectures—can serve as reliable surrogates for 

computationally intensive numerical simulations 

in early-stage armor design. By enabling fast and 

reasonably accurate predictions, such models can 

support rapid evaluation of ballistic performance 

across different material configurations without 

the need for repeated physical testing or high-

fidelity simulations. In addition, the study 

highlights the importance of data quality and 

diversity in training robust ML models. Although 

the dataset used here was derived from 

simulations, future research should aim to 

integrate experimental data for enhanced model 

reliability and validation. Expanding the feature 

space to include additional physical and 

geometrical parameters—such as impact angle, 

backing materials, and multilayer 

configurations—could further improve the 

model's predictive capability and practical 

relevance. 

In future studies, the predictive framework 

developed in this work will be extended to 

investigate hybrid body armor systems composed 

of different ceramic and composite material 

combinations. These analyses will incorporate a 

variety of projectile types and employ a broader 

range of machine learning algorithms to evaluate 

residual velocity and overall ballistic 

performance. Such investigations are expected to 

provide deeper insights into material selection, 

optimization, and the development of more 

efficient and lightweight protective armor 

systems. 
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