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Abstract

model achieved the highest accuracy and lowest error values, demonstrating superior capability in capturing the complex
nonlinear relationships governing ballistic impact phenomena.

Ozet

Bu ¢alisma, farkl kalinliklardaki silisyum karbiir (SiC) seramik viicut zirh plakalarina ¢carpan mermilerin artik hizini tahmin
etmek i¢in makine 6grenmesine dayali bir yaklasim sunmaktadir. Zirhin yiiksek hizli darbe altindaki balistik tepkisini
modellemek i¢in ANSYS sonlu elemanlar yazilimi kullamilarak ac¢ik dinamik simiilasyonlar gergeklestirilmistir. Simiilasyon
verileri, ii¢ farkli makine 6grenimi modelini egitmek ve degerlendirmek igin kullanildi: Dogrusal Regresyon, ElasticNet ve Cok
Katmanli Algilayici (MLP). Her modelin 6ngorii performansi, hem egitim hem de test veri kiimelerinde belirleme katsayisi (R),
ortalama mutlak hata (MAE) ve kik ortalama kare hata (RMSE) metrikleri kullamilarak degerlendirildi. Test edilen
algoritmalar arasinda MLP modeli en yiiksek dogruluk ve en diisiik hata degerlerine ulasarak, balistik ¢carpma olaylarini
yoneten karmasik dogrusal olmayan iliskileri yakalamada iistiin bir yetenek sergiledi.
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1. INTRODUCTION

For military and law enforcement personnel,
body armor is a critical piece of equipment that
increases the chance of survival in combat
environments. With its first examples dating back
to 2600 BC, armor has evolved from heavy metal
parts to lightweight ceramic and composite
systems with technological advances. Today's
armor is manufactured within the framework of
various standards in accordance with its intended
use, aiming for an optimum balance between
durability and mobility. In this context, ballistic
material research continues. Body armor has been
an indispensable part of personal defense
throughout history. As is the case today, armor,

which has been one of the important protective

systems that increased people's chances 0‘

survival in the past, has evolved according’
constantly changing war

types.
diversified with the developmen} of

technologies

ammunition Armor  system

the 14th and 15th centuries, increased to 25 kg by
the end of the 16th century [1]. This significantly
limited the mobility of soldiers. As of the 20th

century, the development of ammunition and
weapons created the need for more effective
protection systems. At this point, metal armors

were replaced by lightweight, flexible, energy-

absorbing materials. Modern body armors are
manufactured especially from ceramic and fiber-
reinforced composite materials. These materials
provide both lightness and durability thanks to
their low density and high hardness. The idea of
using ceramic materials as armor dates back to
the 20th century. It emerged towards the end of

World War 1l and was first effectiyely applied

during the Vietnam War. Today, a systems
are manufactured accorging i
standards worldwid® VaN
red depending

evel. With the

y more advanced structural systems
e development of armor-piercing
unition. This process has made it necessary
to both lighten and make armor more effective in
order to increase mobility. Thus, advanced
ceramics have begun to be widely used in ballistic

armor.

Advanced ceramics are high-performance
materials consisting of crystal structures with
high purity and controlled composition. They are
subject to much more precise production
processes compared to traditional ceramics; this
makes them superior in terms of both structural
strength and functional performance. The desired
mechanical, thermal, and ballistic properties can
be achieved by carefully adjusting the raw
material ratios used during production. Such
ceramics are generally produced from high-
quality and finely ground powders [2]. Various

molding methods, such as dry pressing, isostatic



pressing, and wet forming, are used in the
production of advanced ceramics. In some cases,
additional processes may be required after
sintering to gain the final properties. Thanks to
these processes, the crystal structure is made
denser, smoother, and more impact-resistant.
Advanced ceramics are among the ideal materials
in ballistic applications due to their light weight
and high hardness/strength ratios [3-5]. The
primary purpose of the armor system is to stop the
bullet coming at high speed and prevent it from
contacting the human body. In this context,
ceramics perform better than traditional metal
armor because they can provide the same level of

protection with much lower density.

Today, advanced ceramics such as aluminum

oxide, boron carbide, silicon carbide, zircon@.

reinforced alumina, and silicon nitride are widel

used in armor systems. Among these, Si

multiple acts. In this respect, its resistance,
especially against steel-core ammunition, is
higher than that of other ceramics such as alumina
and boron carbide. Although brittleness is a
general disadvantage of advanced ceramics, SiC
offers a more balanced performance in this

respect.

In the literature, researchers have conducted
experimental and numerical studies on the
ballistic properties of ceramic armors. Cui et al.
[7] conducted a comprehensive analysis of the
ballistic performance of monolithic ceramics,
including alumina, silicon carbide, boron carbide,
and titanium diboride (TiB:), based on existing

literature data. The study examined various

500 to 2700 m/s. Thg inf.
ceramic types and th®r pr

or (DEF), was
d.  The

jectile velocity, ceramic

findings

ensity, with boron carbide, silicon
alumina, and titanium diboride
piting the highest efficiency. Additionally,
DEF increased with ceramic thickness, which
was consistent with the observed trends in DOP.
Both DOP and DEF initially increased with
projectile velocity but decreased at higher speeds.
The DEF parameter accounts for penetration into
the backing plate, which increases with velocity
DEF.

residual

and consequently reduces Ceramic

thickness also affects penetration,
showing a linear relationship between penetration
depth and thickness. However, as thickness and
density increase, DEF tends to decrease if there is
no corresponding reduction in DOP, reflecting
the balance between protection and mass
efficiency. Optimal ballistic efficiency against
armor-piercing projectiles was observed at
impact velocities between 800 and 900 m/s.

Furthermore, a correlation between flexural



strength and ballistic performance suggests that
flexural strength could serve as a useful

evaluation criterion for ceramic armor materials.

Savio et al. [8] investigated the influence of
backing materials, projectile velocity, and
ceramic tile thickness (alumina, boron carbide,
and zirconia toughened alumina—ZTA) on
ballistic performance against 7.62 % 54 mm
armor-piercing projectiles through depth of
penetration (DOP) testing. Experiments were
conducted at velocities ranging from 600 m/s to
820 m/s. The study introduced a novel ballistic
efficiency metric, the normalized differential
efficiency factor (NDEF), which normalizes the
thickness efficiency of DEF to exclude the effect

of backing material resistance. Additionally, the

. - - o
normalized ballistic efficiency (NBE) was

proposed, eliminating the influence of backing
material density. Both NDEF and NBE eghibite

a clear trend: ballistic efficiency of the cgamics

Hu et al. [9] investigated the ballistic behavior of
silicon carbide mosaic tiles with varying
geometries, combined with an ultra-high
molecular weight polyethylene (UHMWPE)
backing layer, under impact from 7.62 x 51 mm
armor-piercing projectiles at velocities around

780 m/s. Their findings demonstrated that the

mosaic configuration extends the interaction time
between the projectile and the target, resulting in
erosion and deceleration of the projectile within
the ceramic front layer, while the residual kinetic
energy is absorbed by the backing material.
Moreover, ceramic properties such as hardness,
fracture toughness, and flexural strength were

identified as critical factors influencjng ballistic

performance.

7.62 mm steel-core

ndMo analyze dynamic responses and assess
gr reliability. Results revealed that adhesive
strength  significantly  enhances  ballistic
performance by mitigating bulging deformation

in the backing layer.

Experimental and numerical methods have
traditionally been used to analyze ballistic
properties of armor. However, these approaches

are often time-consuming and computationally

expensive, with limited availability of
comprehensive experimental databases.
Recently, hybrid techniques  combining

numerical simulations with machine learning
(ML) have emerged, enabling rapid analysis and
extensive data generation. ML algorithms are
increasingly applied in ballistic armor design for
material selection, impact resistance evaluation,
structural optimization, and dynamic impact

analysis. These data-driven methods enhance



armor performance while reducing costs by
accurately predicting armor deformation under
varying conditions, thus minimizing the need for
extensive physical testing. Additionally, Al-
assisted finite element analysis (FEA) contributes
to the development of lightweight and high-
strength armor systems, promoting design
innovation and efficiency. Overall, integrating
machine learning into ballistic protection
research improves protective capabilities and

streamlines manufacturing processes.

Ryan et al. [11] employed machine learning
regression models—including Extreme Gradient
Boosting (XGBoost), Artificial Neural Networks
(ANN), Support Vector Regression (SVR), and
Gaussian Process Regression (GP)—to predict

the ballistic limit of metallic armor against smﬂ?

and medium caliber projectiles, as well as thd

penetration depth into semi-infinite gargets

Artero-Guerrero et al. [12] utilized an N to

predict laminate deformation aro
identify
Their

limit and
configurations.
experimental

simulations to

and machine learning. Finite element analyses
were conducted in ABAQUS, modeling bullet

impacts at 30°, 60°, and 90°, with velocities
ranging from 300 to 900 m/s in 50 m/s
increments. Residual projectile velocities were
predicted in real-time using ANN and decision

tree regression (DTR) models trained on ballistic

data. Both models demonstrated strong predictive

accuracy on experimental datasets, which
improved further when trained on larger datasets
generated from finite element simulations,
highlighting the efficacy of combining data-
driven and numerical methods for ballistic impact
prediction. Khan et al. [14] investigated the

prediction of penetration depth (PD) in ultra-

ballistic impact by integrati
approaches with de®h ge

t of 10,000 entries

N, which successfully

random forest (RF), CatBoost, and

GBM—were trained using projectile
mrémeters (impact energy, velocity, diameter,
mass) and UHPC properties (compressive
strength, fiber addition) as inputs. The XGBoost
model achieved the highest accuracy, with R =
0.990 and MAE = 4.933 for both training and
testing sets. Comparative analysis showed that
ML models outperformed empirical penetration
models, highlighting their superior predictive
capability. Model interpretability was enhanced
using SHapley Additive exPlanations (SHAP),
individual conditional expectation (ICE), and
partial dependence plots (PDP), which revealed
that projectile features were the dominant PD-
followed by UHPC

compressive strength and fiber content. The study

influencing  factors,
demonstrated that combining interpretable ML
with DGAN is an effective strategy for accurate
PD estimation in UHPC with limited datasets,



offering potential for reducing experimental
requirements. Limitations include the omission of
parameters such as aggregate size and type,
which have been shown to affect PD. Future work
could explore hybrid ML models, alternative data
augmentation techniques, and the development of
ML-derived empirical equations for UHPC

ballistic performance prediction.

Zhu et al. [15] developed a hybrid machine
learning framework to predict the ballistic
performance of multilayer composite armor
against high-velocity projectiles. The study
addressed the challenge of balancing lightweight
structures with robust protection by combining
Support Vector Machine (SVM) and Deep Neural
Network (DNN) models, with hyperparameter

S . - e
optimization enhancing predictive accuracy. T@e

framework was validated using a numerica
computational model simulating the gfnami

response of composite armor, comprisiNy steel

model predicted residual

tic energy and rear panel
deformatidh with high precision. The hybrid
302 high-fidelity

numerical samples, enables rapid and near real-

framework, trained on

time predictions of armor damage states,
significantly reducing computational time from
96 core hours to under 10 seconds. This approach
demonstrates the potential of integrating data-

driven ML techniques for efficient and reliable

prediction of multilayer composite armor
performance under extreme impact conditions,
providing a foundation for constructing a
comprehensive “damage database” to support
engineering design and operational decision-
making. Mutu et al. [16] numerically investigated
the ballistic performance of multilayered armor

systems composed of alumina cepamic front

molecular weight pol.\/eth
vaous

composites  in

maintaining a total

m armor-piercing
between 700-1000 m/s

tjons. The simulation results—validated
t literature data—were used to train MLP,
,and DT machine learning models to predict
residual projectile velocities based on ceramic
thickness, composite configuration, projectile
and material

velocity, FS, properties. The

findings revealed that increasing ceramic
thickness reduced residual velocity, and higher
UHMWPE content in the composite layers
enhanced ballistic resistance. Among the tested
algorithms, SVM achieved the highest prediction
accuracy, with MAE values of 1.8826 (training)
and 6.6731 (testing), and RMSE values of 3.4102
and 9.0483, respectively, accurately estimating
approximately 82 % of residual velocities with an
absolute error below 6 m/s. The study
demonstrated that ML approaches can effectively
complement traditional engineering methods in
early-stage armor design, enabling efficient

configuration screening, material selection, and



performance prediction, thereby reducing the
need for costly and time-consuming physical tests
while fostering innovative design strategies in
defense applications. Lei et al. [17] developed an
ML model to predict the ballistic impact
performance of unidirectional fiber-reinforced
(UD-FRCP) by

macroscopic energy absorption to microstructural

composite plates linking
characteristics, quantified via the two-point
correlation function. Using 185 micro-scale
simulation cases for training, the proposed model
achieved an average prediction error of 6.94%
and a maximum error of 12.69%, demonstrating
both high accuracy and computational efficiency.
Critical parameter sensitivities were analyzed,

showing that increasing the number of estimators

in gradient boosting regression (GBR) ang

random forest regression (RFR) improvg

accuracy up to a saturation point, while decigion
tree-based

algorithms,  particularly § GB

provided the best predictive perfgrmanc@yThe

sufficient for relia

excessive comp

rapl
FRCP

suggested extending the method to various fiber

ptimized ballistic resistance, and

types, matrix materials, and microstructural
topologies in future research. Kazarinov and
Khvorov [18] explored the use of ANN to
accelerate the numerical evaluation of residual
impactor velocities for perforated PMMA targets,

addressing the computational challenges of high-

fidelity finite element method (FEM)

simulations. The ANN models were trained on
FEM-generated datasets incorporating the
incubation time fracture criterion, enabling rapid
predictions of impact strength for target
configurations without requiring computationally
intensive FEM runs. The study demonstrated that

fully connected ANNs

oytperformed

re ’capable of
t caused FEM
mesh distortions,
accuracy (R? = 0.961)

ere generated that theoretically
Aced impact resistance by distributing spall-
fled fractures and reducing residual projectile
velocities. The approach significantly reduced
computational time, bypassed FEM instabilities,
and allowed fast evaluation of design variants,
providing a robust tool for both prediction and
optimization of perforated plate impact
performance. The study highlighted the potential
of ANN-assisted frameworks to complement
FEM in complex impact problems and streamline

design processes.

Although various studies have analyzed the
ballistic performance of ceramic armors using
experimental methods or finite element
simulations, applications that combine such
simulations with ML for predictive modeling
remain limited. In particular, there is a lack of
research focusing on SiC body armors subjected

to impacts from multiple types of rifle projectiles,



such as both 7.62 x 39 mm Mild Steel Core
(MSC) and 5.56 x 45 mm SS109 bullets, within
the same study. Existing ML-based ballistic
prediction works often employ small datasets and
consider only a narrow range of parameters,
typically limited to a single projectile type or
basic impact velocity. Furthermore, comparative
evaluations of different ML algorithms for this
specific application are scarce, especially using
large datasets generated from high-fidelity finite

element models.

In this study, the ballistic properties of SiC body
armors with different thicknesses against high-
velocity 7.62 x 39 mm MSC and 5.56 x 45 mm
SS109 bullets were investigated by the finite
element method. As a result of the analyses, a

. )
data set was created for the residual velocit®s

depending on the bullet type, bullet muyzzl4
velocity, ceramic thickness, and mesh sife.
obtained data were wused to tra the
LinearRegression,  ElasticNet, nd

algorithms; thus, the aim ate the

AN

ANSYS

2020 R2

i

7.62 x 39 mm MSC

residual velocity values after the bullet impact. A
total of 600 data points were generated for each
data set in the ML algorithms. 70% of the data set
was used for training, while 30% was used for
testing. The prediction results of the
LinearRegression, ElasticNet, and MLP machine
learning algorithms were evaluated according to

three performance criteria.

2. MATERIAL AND METHQDS
L]
- @ N
2.1. Finite Element Apalysis

7.62 X 39 mm MSC, 56 m SS109, and

nt thicknesses were

.62 x 39 mm MSC and 5.56 x 45 mm SS109
bullets were positioned to contact the armor.
Finite element models of the bullets and armors

are given in Figure 1.

ANSYS

8-12 mm 2020 R2

5.56 X 45 mm SS109

Figure 1: Ballistic body armor and bullets.



762 x 39 mm MSC is an infantry rifle
ammunition developed by the Soviets and
generally used in weapons such as the AK-47 and
SKS. 556 x 45mm SS109 is an ammunition
developed to NATO standards and used in the
M16 and its derivatives. These two bullets were
preferred in numerical analyses. A summary of
the nominal data of the bullets is given in Table
1. The technical drawing of the ammunition is
shown in Figure 2.

Table 1: Summary of the nominal data of the
bullets.

Ammunition Gun Bullet  Expected

mass Muzzle

(9) Velocity

[m/s]
7.62x39 mm  AK- 8(123
MSC 47, grain)
SKS
5.56x45mm M16, 4 ~%0 m/s
SS109 M4 Lorai
4 \

.. munition technical drawings A)
715 m/s 6 mm MSC cartridge B) 5.56x45mm
SS109 cartridge [19].
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e

element analyses of ceramic armors were
performed with the Ansys/Explicit Dynamics
module. Two different mesh structures were used
in the analyses. Mesh structures are shown in

Figure 3.

[N\

BAVAVAVAVAVAVAY,

NN

618468 nodes
3223935 elements

VAVAVAVAVAVAVAN
= NN /NN ING

/N

113118 nodes
555212 elements

Mesh size: 2 mm

Figure 3: Mesh structures of body armor.



In the analysis, 7.62x39 mm MSC bullet hit
targets consisting of SiC ceramics with 5 different
thicknesses with speeds between 750 m/s and
1000 m/s; 5.56x45 mm SS109 bullet hit targets
consisting of 5 different thicknesses with speeds
between 950 m/s and 1200 m/s. The changed
parameters and values are given in Table 2.

Table 2: Parameters and values used in the
analysis.

Bullet type Bullet Ceramic  Mesh

Parameter muzzle thickness  size
velocity (mm) (mm)
(m/s)
750 8
800 9
7.62x39 850 10 0.5
mm MSC 900 11 1
950 12
1000
Value
950 8
1000 9
5.56x45mm 1050 10 0.5
SS109 1100 11 1
1150 12
1200

The Johnson Cook material chart is fsed

constants.

, Tr, and Tmer represent the current,

room, and melting temperatures, respectively.
The material properties of the Steel 4340 steel
bullet core used in the analysis are given in Table
3.

Table 3: Johnson-Cook material parameters for
bullet [20].

Parameter Symbol Value Unit

Linear EOS, Johnson— Cook strength,
failure

Density p 7.83 g/lem?®

Shear modulus G 7.7x107 kPa

5.1x10° kPa

Strain hardening constant B

Strain rate constant

Melting temperature
Room temperature
Bulk modulus

kPa

Yield strength

Strain harl‘iﬁe

m 1.03
€ 1 st
D: 0.05
D2 3.44
D3 0.61
Damage constant D4 -2.12
Damage constant Ds 0.003

Explicit Dynamics is a nonlinear analysis
software widely employed for the simulation of
complex physical phenomena, including impact,
penetration, explosions, and blast events [21].
The program incorporates a broad range of

advanced material constitutive models to

represent material behavior under extreme
conditions accurately. Among these, the
Johnson—Holmquist-1 (JH-1) model—

characterized by its linear segmented approach to

material strength and failure—has been

integrated into Explicit Dynamics to enhance its



capabilities in advanced material modeling

further.

Users of Explicit Dynamics can choose between
two modeling approaches when defining the
Johnson-Holmquist material behavior: the
“Segmented” (JH-1) or the “Continuous” (JH-2)
type. When the segmented JH-1 model is selected
for strength, it must also be used for the failure
model; in other words, the segmented strength
model cannot be combined with the continuous
failure model. Conversely, both segmented (JH-
1) and continuous (JH-2) failure models are
compatible with the continuous (JH-2) strength
model. Validated material property data for SiC
using the JH-1 model are presented in Table 4 and

are included in the standard material library of

Explicit Dynamics version 2020 R2[20].  o®

Table 4: Johnson-Holmquist material parameters
for SiC [22].

Parameter Symbol Value nit

Equation of state: polynomial

Density p
Bulk modulus Au
Parameter A

Parameter

Strength: Johnson-Holm

segmented

Shear modulus 1.93 x 108 kPa

1.17 x 107 kPa
7.10 x 10° kPa
2.50 x 10° kPa
1.22 x 107 kPa

1x107 kPa

Strain rate const: C 0.009

Max. fracture strength Smax 1.30 x 10° kPa
Failed strength constant o 0.4

Failure: Johnson-Holmquist,

segmented

Hydro tensile limit T -7.50x 10° kPa
Damage constant Emax 0.8

Damage constant P3 9.975x 107  kPa
Bulking constant B 1

2.2. Model Validation

In order to evaluate the accuracy of the finite
element model developed in this study, an
experimental study conducted by Arasli [23] was
taken as a reference. In that study, ballistic tests

were performed on 12 mm thick SiC ceramic

armor using a 7.62 mm caliber bullet, in

total of 8 representative
g different projectile types,

s were benchmarked against commercially
available 12 mm SiC ceramic armor plates, which
are designed to stop both 7.62x39 mm MSC and
5.56x45 mm SS109 projectiles.

2.3. Machine Learning

2.3.1. Linear regression

Linear regression is one of the fundamental
methods used for modeling the relationship
between a dependent variable and one or more
independent variables [24]. The main objective of
this technique is to find a linear function that best
predicts the value of the target variable based on
the observed inputs. It is widely used due to its
simplicity, interpretability, and effectiveness in a
variety of practical scenarios where the
relationship among variables is approximately

linear.



The standard form of the linear regression model

can be expressed as:
¥=wo+w;ix; +wWyx, + -+ wpXy 2

where: ¥ denotes the predicted value of the target

variable, xq,x,,...x, represent the input
(independent) variables, wy, is the intercept (bias
term), the  regression

Wi, Wy,... Wy, are

coefficients to be estimated from the data.
2.3.2. Elastic Net

In the realm of high-dimensional statistical
modeling, the Elastic Net (ENET) has emerged as
a powerful extension of the Lasso (Least
Absolute Shrinkage and Selection Operator)

method, offering enhanced robustness in the

presence of highly correlated predictors [25]..

While the lasso effectively performs varia®e
selection by applying an €1 penalty, it tends td
produce unstable solutions when prfdictor,

not only encourages sparsity in the model (as with

lasso) but also promotes grouping effects and
solution stability (as with ridge). The general

form of the ENET estimator is given by:

~ A .
flenet) = (1+2){m8minyy — xp|IZ +

AlIBIZ + 2411811 } 3

To simplify tuning, the penalty parameters 4, and
A, are often reparameterized using a mixing

parameter « € [0, 1], defined as:
a=2/(4+ 1) 4)

Under this formulation, the ENET optimization
problem can be equivalently expressed as:

PN

B(enet2) =

e ly — XIS

F(B) = (1= a)IBlly + all§

paNalty applied. Intermediate values of a
the method to balance sparsity and stability,

depending on the structure of the data.

A key advantage of the ENET is its ability to
handle grouped variable selection effectively.
The £

automatic variable elimination by shrinking some

component continues to perform

coefficients to exactly zero. Meanwhile, the £
component stabilizes the estimation paths and
encourages the selection of correlated groups of
variables by shrinking their coefficients toward
each other. This so-called "grouping effect"
enables ENET to select entire clusters of related
predictors even when the group membership is

unknown a priori.

This characteristic is particularly beneficial in
situations where the number of predictors p far
exceeds the number of observations n, a common

scenario in modern data-rich disciplines. Unlike



lasso, which is limited to selecting at most nnn
variables in such cases, the elastic net can select
more than nnn variables due to the inclusion of

the €, term.

Despite these strengths, it is important to note that
the elastic net does not possess the oracle
property, a theoretical guarantee that allows
consistent identification of the true model under
certain conditions. Therefore, while the ENET
improves prediction accuracy and model
interpretability in practice, it may not always
perfectly recover the underlying data-generating

mechanism.

In summary, the elastic net serves as a versatile
and powerful tool for regularized regression
analysis  in  high-dimensional  contexts
Combining the strengths of both lasso and rioﬁ
regression addresses key limitations and proyjde:
a more robust framework for variable
and predictive modeling in the pres

collinearity.

2.3.3. MLP

AN signe) to mimic the
Ig§s of th

ectu¥al framework creates

The MLP is a type

uman nervous

that  processes

neurons. ANNSs consist of numerous neurons
working collaboratively, each contributing to the
solution of specific problems by performing
targeted computations on the input data [28]. The
capability of these networks to tackle complex
problems primarily arises from the dynamic
interactions between neurons distributed across

multiple layers within the system.

®

One of the key strengths of ANNSs lies in their
ability to learn effectively from both

experimental  observations and numerical
datasets, enabling their widespread application
across diverse fields [29]. Moreover, neural
networks offer considerable advantages in terms
of ease

of design and implementation,

attributable to their generally infuitive and

has also been noted.
signifi®@ant

computational per

demonstrate

handling
inherergg)

large-scale

cage of the MLP, a network
gle layer is constrained to
eq inear relationships. However, by
oyl multiple layers, the MLP architecture
the ability to model complex nonlinear
functions. This expansion considerably enhances
the network’s capacity to address intricate and
multidimensional problems. The typical MLP
structure includes an input layer, one or more
hidden layers, and an output layer, each fulfilling
distinct roles that collectively contribute to the
network’s overall function. The input layer
receives raw data, which is then processed and
transformed into  increasingly  abstract
representations by the hidden layers. Finally, the
output layer interprets the processed information

to produce the final result.

Thanks to this layered configuration, MLPs serve
as powerful and flexible models capable of
adapting to a wide range of challenges by
toggling
relationships as needed. Consequently, MLPs

between linear and nonlinear

have been found to be extensively used in various



domains, particularly in tasks such as

classification, regression, and time series

prediction [32]. Figure 4 provides a schematic

Bullet type O

illustration of the MLP architecture as applied to
the estimation of residual velocity, highlighting
its layered composition and operational flow..

Bullet muzzle velocity O — ,O O O N
< esidual velocity
Ceramic thickness Q > Q
Mesh size O
\ﬁ—l ;’—J

Input layer

Figure 4: MLP architecture.

3. FINDINGS

In this study, the ballistic properties of SiC body
armors with different thicknesses were analyzed

using the finite element method with 7.62 x 39

mm MSC and 5.56 x 45 mm SS109 bullets. While.

the 7.62 x 39 mm MSC bullet hit the targets®
speeds between 750 and 1000 m/s, the 5.56 x 4*
mm SS109 bullet hit the target at speeds
950 and 1200 m/s. The residual velocity
obtained from the analysis resuld\ were

estimated using machine le

ody armors of all

impact velocities. An

Figure 5 sOws the deformations that occur as a
result of a bullet impact on SiC body armor.
Ceramic materials, widely used in armor systems
due to their high hardness and compressive
strength, exhibit complex fracture behavior when
subjected to high-velocity ballistic impacts. A
factor

critical governing this behavior is

deviatoric stress—the component of stress

Hidden layers

Output layer
\ ’

(disgprtion) without

responsible for sh
a change. in drostatic stress,
ontributes to volumetric
ress directly drives the
gation of fractures in brittle
as ceramics. Under ballistic
ant role in determining the onset of failure.
As the intensity of deviatoric stress, particularly
that arising from shear forces, increases, the rate
and severity of fracture in ceramic materials also
rise. This is especially significant given ceramics’
inherent resistance to compressive loading. Once
the deviatoric stress surpasses a critical threshold,
localized shear deformation leads to crack
initiation, ultimately resulting in catastrophic

failure.

Fracture in ceramics occurs through a
combination of mechanisms that are activated by
the interaction of stress waves generated during
impact. Initially, the high-velocity impact
generates a compressive stress wave that
propagates through the ceramic body. Upon
reaching the free (unconfined) surface of the
ceramic, part of this compressive wave reflects

back as a tensile wave. The superposition of these



stress fields—compressive and tensile—induces
radial cracking that originates at the impact site
and spreads outward. In addition to radial
fractures, circumferential (or hoop) cracks also
develop due to bending moments induced along
the radial direction. These bending stresses arise
due to the differential deformation between the

impacted zone and the surrounding material,

leading to tensile stresses perpendicular to the

“mushrooigfng”—upon contact with the target.
This expansion significantly increases the
diameter of the projectile, resulting in a larger
wound channel and enhanced tissue disruption.
The strategic design of these projectiles plays a
critical role in applications where stopping power

and internal damage are prioritized over

radial cracks. This multi-modal cracking pattern,

comprising both radial and circumferential
fractures (Figure 5), is characteristic of brittle
materials subjected to dynamic loading and plays
a key role in energy dissipation and ballistic
resistance. Similar cracking patterns have been
documented in previous investigations of armor
systems subjected to high-velocit

impacts [33-36].

projectile

“

Circumferential .
crack

Radial crack

Circumferential
crack

Radial crack

penetration depth. Within the scope of the
numerical analysis presented in Fig. 6, it is
observed that the bullets undergoes substantial
plastic deformation as a result of stress levels that
significantly exceed the material's static yield
strength of 792 MPa during its interaction with
the target. This extreme deformation leads to a
pronounced mushrooming effect in the bullet
core, which is a critical indicator of energy
transfer and material failure mechanisms under
high-strain-rate conditions. The occurrence of
such deformation is not merely a byproduct of the
impact but is considered a key design feature, as
it enhances the terminal ballistic performance of

the projectile.
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Figure 6: Deformation of bullets.

Crouch et al. [37] investigated the penetration
behavior of AK47 MSC ammunition against
boron carbide-based armor systems through
experimental and numerical methods. In their
study, the presence of relatively soft intermediate
layers (the lead-filled jacket on the bullet and the.
fiber-reinforced polymer layer on the ceram®
between the steel core and the ceramic strikefacd

was evaluated. Their findings revealed ghat th
projectile core exhibited prorRnced
as it

two-stage

stress levels

stresses significantly exceeding the static yield
strength of 792 MPa, resulting in a pronounced
mushrooming effect in the bullet core. In both
studies, such deformation is emphasized not
merely as a byproduct of impact, but as a key
design feature that enhances the terminal ballistic

performance of the projectile.

ion, ElasticNet,
study was based on

pr Iytics. Linear Regression was

baseline model due to its simplicity,
pretability, and effectiveness in capturing
near relationships between input parameters and
residual velocity. ElasticNet was selected to
address potential multicollinearity among input
features, as it combines the regularization
benefits of both Lasso and Ridge regression,
improving  model  generalization  while
maintaining interpretability. MLP, a type of
feedforward neural network, was employed to
capture the highly nonlinear and intricate

interactions inherent in ballistic impact
phenomena, which linear models may fail to
represent accurately. By comparing these three
methods, the evaluates

study not only

straightforward linear approaches but also
demonstrates the superior predictive performance

of MLP in complex, high-dimensional datasets.

As a result of ballistic analysis, three different

performance metrics were included in this study



to evaluate the performance of machine learning
models in order to make more accurate velocity
estimates. These metrics were determined as R,
MAE, and RMSE.

The linear R shows how well the model's
estimates match the real data, and as the R value
approaches 1, the accuracy of the model's
estimates increases. In other words, a high R
indicates that the model provides more reliable
results. MAE is another important criterion
determining how close the predictions are to the
actual values. A low MAE indicates that the
model's prediction errors are minor, meaning that
the model is more successful. RMSE is calculated
by taking the square root of the average of the
squares and comparing the differences between

the model's predicted values and the act@’

values. A low RMSE indicates that the model’
margin of error is smaller and, therefgr€ Yhe

predictions are more accurate.

Thus, the best-
and the

—- 1 _ Zn(y—f/)z (6)

MAE = =3y — 3| )

RMSE = /%Z"(y — )2 (8)

In these equations, y represents the FEA data, y
the predicted value, y the mean value of the FEA
data, and n the number of samples in the dataset.

Table 5 shows the training and tegt data of 3

different machine learning algorith

Table 5: Training and tggtin L
algorithms. .‘
M:‘ge\ ML Model IT \\\\\ @ \ )Testingset
R . MAE RMSE R MAE RMSE
\ 143.3826, 0.6311 136.4468 161.3921
N 4

1 LinearRegression 0.5897 124.0397
2

EliincNe( 0.928 52.7159, 64.8966 0.9331 67.0142 81.8513

0.985¢ 28.6245 36.1583 0.9884 36.6704 43.5008
pS

3 M.yerPer Aot
Figure sents e?gidual velocity estimation

§ b raining and test sets using the
i

n on method. From Figure 7, it is

r
veyrthat the LinearRegression method
gved an R value of 0.5897, an MAE of
124.0397, and a RMSE of 143.3826 for the
training set. For the test set, the LinearRegression
method yielded an R value of 0.6311, an MAE of
136.4468, and an RMSE of 161.3921. Figure 7
also illustrates the residual velocity estimation
errors obtained using the LinearRegression
methods. The error values on the y-axis represent
the difference between the predicted and FEA
residual velocity values. The prediction errors for
the LinearRegression technique is shown as
orange lines in Figure 7(C) for both training and
test sets. A larger deviation from the zero point
on the y-axis indicates poorer prediction
performance, while a smaller deviation indicates

superior prediction accuracy.
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Figure 7: LineatRed@ession ir%onresults.

Figure 8 illustrates the residual roach. The y-axis denotes the discrepancy

estimation outcomes for both the trgining between the predicted and FEA-obtained residual

velocities. In Figure 8(C), the prediction errors
corresponding to the ElasticNet technique are
depicted with purple lines for both datasets. A
greater deviation from zero on the y-axis reflects
reduced prediction performance, whereas a
smaller deviation signifies higher predictive

Esidual velocity estimation accuracy.

rom the LinearRegression



600 600 4

550 550 ®
L )
500 e ® ® 500 4 r ®
Training data Test data
@ e
£ 450 E450
P z °
2 400 2400 4
o} 3
s g
£ 350 2350
3 3
Z z
= 300 1 = 300 4
2 £
= 2
T 250 E 250 4
~ R
200 200 4
150 150 A
e o
100 r : : " : 100 . . . . . s
100 200 300 400 500 600 700 100 200 300 400 500 600 700
Actual residual velocity (m/s) Actual residual velocity (m/s)
320 4
C) Training data Test data
240
160 -
Q
E 80 -
e
£
20
£
K
£
£ 80 4
160
240
320

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120
Data No

Figure 8: Elastiq@let estirgatien results.

rs obtained via the MLP method. The error
values on the y-axis indicate the difference
between the predicted and FEA-based residual
velocities. In Figure 9(C), the prediction errors
associated with the MLP method are represented
by red lines for both datasets. Greater deviations
from zero on the y-axis reflect lower prediction
performance, whereas smaller deviations

correspond to higher estimation accuracy.
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Table 6: Generated equations with thg lin

regression and the elastic net algorithms.

Predicted parameter with linear regressi

Residual velocity = 204.5635 * Bullet type + 1.6

uzgle ity +-14.357 *
88

Residual velocity = 7.691 * Bullet type'+ D
Ceramic thickr¥ .

ity of projectiles after impact.

incorporate four predictor
variables: projectile type, bullet muzzle velocity,
Each

coefficient in the equations reflects the strength

ceramic thickness, and mesh size.
and direction of the relationship between the
corresponding variable and the predicted residual
velocity. The Elastic Net model produces a
relatively balanced set of coefficients, with

smaller magnitudes and both positive and

ative values. This suggests a regularized
model that penalizes extreme weights, reducing
the risk of overfitting. Notably, the variable
ceramic thickness exhibits a strong negative
coefficient (—14.357), indicating its considerable
inverse effect on residual velocity. The mesh size
(0.548) and bullet muzzle velocity (0.554)
contribute positively, while the bullet type
variable (7.691) also shows a direct relationship.
Conversely, the Linear Regression model yields
significantly ~ larger  coefficient  values,
particularly for the bullet type (204.5635) and
ceramic thickness (—71.9645) variables, implying
The

absence of a regularization term in this method

higher sensitivity to those predictors.

may lead to overfitting in the presence of

multicollinearity or noise, especially when

dealing with relatively small datasets. From a



modeling perspective, while linear regression
provides a straightforward interpretation, the
elastic net’s use of both L; and L. regularization
enables better generalization, especially when
predictor variables are correlated. Therefore, in
practical  applications such as ballistic
performance prediction, the elastic net model

may offer more robust and reliable estimations.

4. CONCLUSION

This study has demonstrated the effectiveness of
ML algorithms in predicting the residual velocity
of projectiles impacting SiC ceramic armor
plates, based on simulation data derived from
explicit finite element analyses. By incorporating
input features such as projectile type, bullet

muzzle velocity, ceramic thickness, and mesh

L]
size, a predictive framework was established®q

estimate post-impact projectile velocity with hig
accuracy. Among the three algorithms evfluate

the MLP model significantly outperform® both

contrast, the Linear
howed limited capability in
near patterns, while ElasticNet
offered rloderate improvement due to its
regularization properties, though still inferior to
the neural network approach. The results suggest
that ML models—particularly deep learning
architectures—can serve as reliable surrogates for
computationally intensive numerical simulations
in early-stage armor design. By enabling fast and

reasonably accurate predictions, such models can

support rapid evaluation of ballistic performance
across different material configurations without
the need for repeated physical testing or high-
fidelity simulations. In addition, the study
highlights the importance of data quality and
diversity in training robust ML models. Although
the dataset used here was derived from

simulations, future research should aim to

space to include Rdditi
multilayer
configlg&i her improve the

ability and practical

dies, the predictive framework
in this work will be extended to

igate hybrid body armor systems composed
of different ceramic and composite material
combinations. These analyses will incorporate a
variety of projectile types and employ a broader
range of machine learning algorithms to evaluate
residual  velocity and overall ballistic
performance. Such investigations are expected to
provide deeper insights into material selection,
optimization, and the development of more
efficient and lightweight protective armor

systems.
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