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ABSTRACT. Let R be a ring with identity. A right R-module M has the com-
plete max-property if the maximal submodules of M are completely coindepen-
dent (i.e., every maximal submodule of M does not contain the intersection
of the other maximal submodules of M). A right R-module is said to be a
good module provided every proper submodule of M containing Rad(M) is an
intersection of maximal submodules of M. We obtain a new characterization
of good modules. Also, we study good modules which have the complete max-
property. The second part of this paper is devoted to investigate supplements

in a coatomic module which has the complete max-property.
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1. Introduction

Let R be a unitary ring and M a right R-module. A submodule N of M is called
small in M (written N < M) if for every proper submodule L of M, N + L # M.
A submodule L of M is called coclosed in M if L/K is not small in M/K for any
proper submodule K of L. We denote by Rad(M) the radical of M. A module
M is called coatomic if every proper submodule of M is contained in a maximal
submodule, that is, Rad(M/N) # 0 for every proper submodule N < M. Let L
be a submodule of M. A submodule K of M is called a supplement of L in M if
K is minimal with respect to the property M = L + K; equivalently, M = L + K
and KN L <« K. A submodule P of M is called a supplement submodule if P is
a supplement of some submodule of M. The module M is called supplemented if
every submodule of M has a supplement in M. A module M is called semilocal if
M/ Rad(M) is semisimple. A module M is called cosemisimple (or a V-module) if
every simple R-module is M-injective, or equivalently, every proper submodule of

M is an intersection of maximal submodules (see [7, 23.1]). A module M is called a
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good module if M/Rad(M) is a cosemisimple module (see [7, 23.3]). A non-empty
family of submodules N; (i € I) of a module M is called coindependent if, for any
J € I and any finite subset J of I\ {j}, N; +(,c; Ni = M. The family N; (i € I)
is called completely coindependent if, for every j € I, N;j + ﬂi# N; = M (see [4, p.
8]). Following [6, p. 74], a module M is said to have the complete maz-property if
the maximal submodules of M form a completely coindependent set of submodules
of M. In this paper, we adopt the convention that the intersection of an empty set
of submodules of a module M is M itself.

In Section 2, we provide some new characterizations of good modules (Theorem
2.3). Also, we investigate the interplay between the complete max-property and
each one of the properties coatomic and good.

The investigations in Section 3 focus on supplements in a coatomic module which
has the complete max-property. After characterizing them, we show that for a
coatomic module M, if M has the complete max-property, then any supplement
submodule in M has also the complete max-property. In addition, we prove that if
M is a coatomic module which has the complete max-property and F' is a supple-
ment of a submodule K in M, then Ap(M) = K + Rad(F) = K + Rad(M) where
Ap(M) denotes the intersection of the maximal submodules of M not containing
F.

Throughout this paper, R will denote an associative ring with identity and all
modules are unitary right R-modules. By Q and Z we denote the ring of rational

and integer numbers, respectively.

2. Good modules having the complete max-property

Recall that a module M is said to be a good module if for any module N and
any homomorphism f : M — N, f(Rad(M)) = Rad(f(M)). In this section, we
obtain a new characterization of good modules. Moreover, we shed some light on
good modules which have the complete max-property.

Let F' be a submodule of a module M. We follow the notation of [3]. So
the intersection of all maximal submodules of M containing F' will be denoted by
Radpr(M). It is easily seen that F + Rad M C Radpr(M). On the other hand, we
do not have equality, in general, as shown in [3, Remark 3.4]. In the same vein, we

exhibit the following examples.

Example 2.1. (i) Consider the submodule F = p*Z of M = Z for some prime
integer p and some integer k > 2. We have Rad(M) = 0. So F + Rad(M) = F,
but Radp(M) = pZ.
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(i1) Let p and q be two prime integers such that p # q. Consider the submodule
F =p"¢™7Z of M =7, where n and m are natural numbers with n > 2 and m > 2.
Clearly, Rad(M) = 0. Then F' 4+ Rad(M) = F. However, Radp(M) = pqZ.

In [3], the authors provided some conditions under which Radp(M) = F+Rad M
for a submodule F' of M. Among other results, it is shown in [3, Proposition 3.8]
that if M is a good module, then Radp(M) = F + Rad M for any submodule F' of

M. The next proposition shows that the converse of this result is true.

Proposition 2.2. The following statements are equivalent for a module M :
(i) M is a good module;
(ii) Ewvery proper submodule of M containing Rad(M) is an intersection of

mazximal submodules of M ;
(iii) Radp(M) = F + Rad(M) for every submodule F of M.

Proof. (i) < (ii) This follows from [7, 23.1 and 23.3].

(i) = (iii) By [3, Proposition 3.8].

(iii) = (ii) Let L be a proper submodule of M such that Rad(M) C L. By
hypothesis, we have Radr (M) = L + Rad(M) = L. Hence L is an intersection of

maximal submodules of M. O

Let F be a submodule of a module M. The intersection of the maximal sub-

modules of M not containing F' will be denoted by Ap(M).

Theorem 2.3. The following statements are equivalent for a module M :

(i) M is a good module;

(ii) Radp(M) = F + Rad(M) for every submodule F' of M;
(iii) Radp(M) C F + Ap(M) for every submodule F' of M;
(iv) For any submodule F of M and any collection of mazimal submodules N;
(i € I) of M, we have F+([;c; Ni) = M or F+((;c; N:) is an intersection
of mazimal submodules of M ;
(v) For any submodule F of M, we have F + Ap(M) =M or F + Ap(M) is

an intersection of maximal submodules of M.

Proof. (i) < (ii) This follows from Proposition 2.2.
(ii) < (iii) By [3, Proposition 3.5].
(i) = (iv) This follows from Proposition 2.2.
(iv) = (v) = (iil) These are obvious.
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Remark 2.4. From Theorem 2.3, it follows that a module M for which
F4+Ap(M)=M forall F<M
is a good module.

Definition 2.5. A module M is said to have the strong maz-property if for every
submodule F of M, we have F + Ap(M) = M.

We shall say that a module M has the max-property if the maximal submodules
of M form a coindependent set of submodules of M (i.e., M = L+N?_, L; for every
positive integer n and distinct maximal submodules L, L; (1 < i < n) of M) (see
[6]).

It is clear that the following implications hold:

Strong max-property = complete max-property = max-property.

The following lemma is a direct consequence of [6, Proposition 4.2 and Theorem
6.8].

Lemma 2.6. Let M be an R-module which has the complete maz-property such
that M/ Rad(M) is coatomic. Then M is a semilocal module.

Proposition 2.7. Any module which has the strong max-property is semilocal.

Proof. Let M be a module with the strong max-property. By Theorem 2.3, M is a
good module. Thus M/ Rad(M) is a cosemisimple module. Hence M/ Rad(M) is a
coatomic module. Note that M has the complete max-property. Applying Lemma

2.6, we conclude that M is semilocal. O

Theorem 2.8. The following statements are equivalent for a module M :

(i) M is a good module and M has the complete max-property;
(ii) M has the strong maz-property.

Proof. (i) = (ii) Suppose that F'+ Ap(M) # M for some submodule F' of M.
Then F 4+ Apr(M) is an intersection of maximal submodules of M by Theorem 2.3.
Therefore Radp(M) C F + Ap(M) and hence Radp(M) + Ap(M) = F 4+ Ap(M).
But Radp(M) + Ap(M) = M by [6, Proposition 6.1]. So F'+ Ap(M) = M, a
contradiction. This shows that M has the strong max-property.

(ii) = (i) This is immediate. O

In the next example we present a coatomic good module which is not semilocal.

Example 2.9. Let R be a right cosemisimple ring (i.e., R is a right V-ring) which
is not semisimple (e.g., we take a field F and R = Hi21 F; where F; = F for
all i > 1). Then the R-module Rgr is coatomic, but Rr is not semilocal since

Rad(Rr) = 0. Moreover, it is clear that Rr is a good module.
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From Lemma 2.6, we get the following proposition which provides a sufficient

condition for a coatomic module to be semilocal.

Proposition 2.10. Let M be a coatomic module which has the complete maz-

property. Then M is semilocal. In particular, M is a good module.
Combining Theorem 2.8 and Proposition 2.10, we obtain the following result.

Corollary 2.11. Let M be a coatomic module. Then the following statements are

equivalent:

(i) M has the complete maz-property;
(ii) M has the strong maz-property.

The next example shows that, in general, a good module need not be coatomic.

Example 2.12. (i) Let p be a prime integer and consider the Z-module M =
@n>1Z/p L. Since % is a semisimple module for alln > 1, Z/p"Z is a
good module for all m > 1. Thus M is a good module by [7, 23.4]. However, M is
not coatomic by [8, Lemma 1.2].

(ii) Let M be a module such that Rad(M) = M. Then M is a good module as
M/Rad(M) = 0 is semisimple. On the other hand, M is not coatomic.

In the next example, we exhibit a coatomic module which is not a good module.

Example 2.13. Let R be a ring which is not a right V-ring such that Rad(R) = 0
(e.g., we can take R = 7). Clearly, the R-module M = Rp is coatomic, but M is

not a good module.

Note that the class of semilocal modules is a proper subclass of the class of good
modules (see Example 2.9). From [4, 2.8(8)], it follows that any semilocal module
with a small radical is coatomic. This result can be extended to good modules as

shown below.

Proposition 2.14. Let M be a good module with a small radical. Then M is

coatomic.

Proof. Let N be a proper submodule of M. Then N+Rad(M) # M as Rad(M) <
M. Since M is a good module, N + Rad(M) is an intersection of maximal sub-
modules of M. The result follows. ]

3. Applications to supplement submodules

Our goal in this section is to characterize supplement submodules in a coatomic
module which has the complete max-property. We begin with the following result

on coclosed submodules of a coatomic good module.
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Proposition 3.1. Let M be a coatomic good module and let F' be a submodule of
M such that Rad(M) C F. Then the following assertions are equivalent:

(i) F is coclosed in M;
(ii) F is coatomic and Rad(F) = Rad(M).

Proof. (i) = (ii) From [2, Lemma 4.1], it follows that F' is coatomic. Moreover,
we have Rad(F) = FNRad(M) by [4, 3.7]. As Rad(M) C F, we obtain Rad(F) =
Rad(M).

(ii) = (i) Let L < F such that F/L < M/L. Then F/L C Rad(M/L). Since

M is a good module, we have
Rad(M/L) = (L + Rad(M))/L = (L + Rad(F))/L.

Therefore Rad(M/L) C Rad(F/L) by [4, 2.8 (1)]. So F/L C Rad(F/L). Hence,
F/L =Rad(F/L). As F is coatomic, it follows that F//L = 0; that is, L = F. This
completes the proof. O

It was shown in [5, Theorem 2.1] that if F' is a supplement of a submodule K
in a module M, then it is possible to define a bijective map between maximal sub-
modules of F' and maximal submodules of M which contain K. In the next result,

we use this fact to characterize supplement submodules in a coatomic module.

Proposition 3.2. Let F and K be submodules of a coatomic module M. Then the
following statements are equivalent:
(i) F is a supplement of K in M;
(ii) (1) F is coatomic, and
(2) for any submodule N of F', N is a maximal submodule of F if and only
if N =F N L for some mazimal submodule L of M with K C L.

Proof. (i) = (ii) This follows from [2, Lemma 4.1] and [5, Theorem 2.1].

(ii) = (i) Suppose that K + F # M. Since M is coatomic, there exists a
maximal submodule X of M such that K+ F C X. By (2), FNX = Fisa
maximal submodule of F', a contradiction. So K + F = M. Now let H be a proper
submodule of F'. Since F is coatomic, H C Y for some maximal submodule Y of
F. By hypothesis, there exists a maximal submodule Z of M such that K C Z
and Y = FNZ. Therefore H+ K CY + K = (FNZ)+ K C Z. Tt follows that
H + K # M. This proves that F' is a supplement of K in M. ([

Theorem 3.3. Let M be a coatomic module which has the complete max-property.

Then the following statements about a submodule F' of M are equivalent:

(i) F is a supplement in M;
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(ii) F is coatomic and F NRad(M) = Rad(F);
(ili) 7 NRad(M) < F;

(iv) F is coclosed in M ;

(v) F is a supplement of Ap(M) in M;

(vi) F is a supplement of Rad(M) in Radp(M);
(vii) FNAp(M) < F;
(viii) F is coatomic and F N Ap(M) = Rad(F).

Proof. Note that M is a good module by Proposition 2.10. Applying Theorems
2.3 and 2.8, we conclude that Rady (M) = N+Rad(M) and N +Axy(M) = M for
every submodule N of M.

(i) = (v) Assume that F' is a supplement of a submodule U in M. Note that
Rad M <« M as M is coatomic. So F' is also a supplement of U + Rad M in M by
[4, 20.4 (4)]. Since Rady (M) = U+Rad(M), F is a supplement of Rady (M) in M.
Moreover, we have Arp(M) C Rady(M) as F 4+ U = M. Since F + Ap(M) = M,
it follows that F' is a supplement of Ap(M) in M by [4, 20.4 (1)].

(v) = (vii) This is obvious.

(vii) = (iv) Assume that Ap(M)NF < F. Since F + Ap(M) = M, it follows
that F' is a supplement of Ap(M) in M. Hence F is coclosed in M by [4, 20.2].

(iv) = (ii) From [2, Lemma 4.1], it follows that F is coatomic. Furthermore,
FNRad(M) = Rad(F) by [4, 3.7 (3)].

(ii) = (viii) Note that FNAp(M) = FNRadp(M) N Ap(M) = F NRad(M).
Then F N Ap(M) =Rad(F) by (ii).

(viii) = (iii) Since F' is coatomic, we have Rad(F) < F. Thus FNApr(M) < F.
But FNRad(M) C FNAR(M). So FNRad(M) < F.

(iii) = (vi) This follows from the fact that F' + Rad(M) = Radp(M).

(vi) = (i) Note that F'+ Ap(M) = M. In addition, we have F N Ap(M) C
FNnRadp(M)NAp(M) C FNRad(M) < F by (vi). Therefore F is a supplement
of Ap(M) in M. O

The next example shows that the conditions in the hypothesis of Theorem 3.3

are not superfluous.

Example 3.4. (i) Let p be a prime integer and consider the Z-module M = M, ® Mo
where My = Z/p*Z.®0 is a maximal submodule of M and My = 0©Z/pZ is simple.
It is clear that M is a coatomic module. However, the module M does not have
the complete max-property as M/ Rad(M) = Z/pZ ® Z/pZ (see [6, Theorems 2.3
and 6.8] or [6, Corollary 6.11]). Let N = (1,1)Z < M. It is easily seen that
N® My =M. So N is a mazximal submodule of M. Note that My is a supplement
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in M. Moreover, My ¢ My and My ¢ N. Hence Ay, (M) C MiNN C pZ/p*Z&0.
Thus My + Ay, (M) C (pZ/p*Z & 0) @ My. It follows that My + A, (M) # M.
This implies that Ms is not a supplement of A, (M) in M.

(ii) Let M be a nonzero module with Rad(M) = M. Then M is a supplement
in M, but M = M NRad(M) is not small in M. Note that M has the complete

maz-property but M is not coatomic.

Following [2], a module M is called an ms-module if every maximal submodule
of M is a supplement in M. As an application of Theorem 3.3, we get the following

corollaries.

Corollary 3.5. Let M be a coatomic module which has the complete maz-property.
Then M is an ms-module if and only if Rad(M) < K for every mazimal submodule
K of M.

Corollary 3.6. Let M be a coatomic module which has the complete max-property.
Let L and F be submodules of M such that F C L and FNRad(M) = LNRad(M).
If F is a supplement in M, then so is L.

Corollary 3.7. Let M be a coatomic module which has the complete maz-property.
Let L and F be submodules of M such that Rad(M) C F C L. If F is a supplement
in M, then so is L.

Corollary 3.8. Let M be a coatomic module which has the complete maz-property
and let N be a mazimal submodule of M. If N and An (M) are supplements in M,

then M is an ms-module.

Proof. Let K be a maximal submodule of M such that K # N. Then Rad(M) C
An(M) C K. By Corollary 3.7, it follows that K is a supplement in M. Since N

is a supplement in M, M is an ms-module. (I

Corollary 3.9. Let R be a right noetherian ring and let M be a finitely generated
R-module which has the complete maz-property. Then the following statements
about a submodule F' of M are equivalent:

(i) F is a supplement in M;

(i) FNRad(M) = Rad(F).

Proof. Since R is right noetherian and M is finitely generated, every submodule of
M is finitely generated. So every submodule of M is coatomic. The result follows
from Theorem 3.3. (]

It is shown in [8, Lemma 1.1] that over a commutative noetherian ring, every
submodule of a coatomic module is coatomic. Combining this fact and Theorem

3.3, we obtain the following result.
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Corollary 3.10. Let R be a commutative noetherian ring and let M be a coatomic
R-module which has the complete maz-property. Then the following statements

about a submodule F of M are equivalent:

(i) F is a supplement in M;
(i) FNRad(M) = Rad(F).

As noted in [6, p. 80], the class of modules which have the complete max-
property is not closed under submodules. For example, the Z-module QQz has the
complete max-property, however the submodule Z does not have the complete max-
property. Next, we will show that for a coatomic module M, if M has the complete

max-property, then any supplement submodule in M inherits the property.

Proposition 3.11. Let M be a coatomic module. If M has the complete maz-

property, then every supplement submodule of M has the complete maz-property.

Proof. Assume that the module M has the complete max-property. Then M is a
good module by Proposition 2.10. Let F' be a supplement submodule in M. Then
M/Apr(M) has the complete max-property by [6, Lemma 3.4]. Moreover, from
Corollary 2.11 and Theorem 3.3, it follows that

F/Rad(F) = F/F N Ap(M) 2 (F + Ap(M))/Ap(M) = M/Ap(M).

So F/Rad(F) has the complete max-property. Using again [6, Lemma 3.4], it
follows that F' has the complete max-property. O

Proposition 3.12. Let M be a module. Assume that Rad(M) has a supplement
F in M such that F' has the complete mazx-property. Then M has the complete

maz-property.
Proof. By hypothesis, we have Rad(M) + F = M. Then
M/Rad(M) = (Rad(M) + F)/Rad(M) = F/(F NnRad(M)).

Since F has the complete max-property, F//(F N Rad(M)) has also the complete
max-property by [6, Lemma 3.4]. Therefore M/Rad(M) has the complete max-
property. Again by [6, Lemma 3.4], it follows that M has the complete max-
property. ([l

Proposition 3.13. Let M = My + M be a good module such that every maximal
submodule of M contains My or My. Assume that My and Ms are mutual sup-
plements in M and they both have the complete max-property. Then M has the

complete max-property.



SUPPLEMENTS IN COATOMIC MODULES 27

Proof. Let N be a maximal submodule of M. Without loss of generality we can
assume that M; C N. Since M, is a supplement of M7, the maximal submodules
of My are {N; N My | i € I} where {N; | i € I} are the maximal submodules of M
containing M; by [5, Theorem 2.1]. So N = N;, for some ig € I. Since M> has the
complete max-property, we have
(Nig N M) + () (Ni N My) = My, (%)

i#io

Let {N; | j € J} be the set of the maximal submodules of M containing M. Hence

Ny +An, (M) =N+ [N OOV

i#i0 JjeJ
Since M is a good module, from Theorem 2.3 we have
() N; = Rady, (M) = My + Rad(M).
jed
Thus,
Nig + Any (M) = Nig + | [] Vi | ()(Ma +Rad(M)).

i#io
By modularity, we get

Niy + An, (M) = Njy + Rad(M) + | | [ Ni | (| Mo
iio
But Rad(M) C N;,. Then, by using (*), we have

Niy + An,, (M) = Ny + () (N: 0 M)

i#io
= Ny + (Niy 0 M) + [ (N; N My)
i#io
= N;, + M,
=M.
This completes the proof. O

The next example illustrates that the assumption “every maximal submodule of

M contains M; or Ms”in Proposition 3.13 cannot be dropped.

Example 3.14. Let M be as in Example 3.4(i). The module M does not have
the complete maz-property. Since M/ Rad(M) is semisimple, M is a good module.
Also, My and My are mutual supplements in M. Let N = (1,1)Z < M. It is

easily seen that N is a maximal submodule of M such that neither My nor My is
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contained in N. Note that both of My and My have the complete maz-property since

each one of them has only one mazximal submodule.
Combining Proposition 3.13 and [6, Lemma 3.4], we obtain the following result.

Corollary 3.15. Let M = My @ My be a good module such that every maximal
submodule of M contains My or Ms. Then M has the complete max-property if
and only if My and My have the complete max-property.

In the next result, we evaluate Ap(M) for a supplement submodule F' of a

coatomic module M which has the complete max-property.

Theorem 3.16. Let M be a coatomic module which has the complete maz-property
and let K be a submodule of M. Let F be a supplement of K in M. Then

Ap(M) = K +Rad(F) = K + Rad(M).

Proof. Set I' = {L < M | L is maximal in M and F ¢ L} and A = {N < M |
N is maximal in M and K C N}. Clearly A C T'. Let us show that A = T.
Note that F' is a supplement of Ap(M) in M by Theorem 3.3. It follows that
for a maximal submodule X of M, F ¢ X if and only if Ap(M) C X. Let
L € T. Then Ap(M) C L. By [5, Proof of Theorem 2.1], L N F' is a maximal
submodule of F and N = (LN F) + K is a maximal submodule of M. Note that
NNF=(LNF)+K)NF=(LNF)+ (KNF). As F is a supplement of K in
M, wehave KNF < F. So KNF CRad(M) C L. Thus KNF C LNF. Hence
NNF =LNF. Note that F ¢ N. Then Ap(M) C N. By modularity, we have

L=LN(F+Arp(M)) = (LNF)+Ap(M) = (NNF)+Ap(M) = NN(F+Ap(M)) = N.

It follows that L € A. So A = T'. Thus Ap(M) = Radg(M). Since M is good,
Ap(M)=Radg (M) =K + Rad(M) by Theorem 2.3. Moreover, by Theorem 3.3,
we have FNAp(M) = Rad(F). So Ap(M) = (K+F)NAp(M) =K+ (FnN
Ap(M)) = K + Rad(F). O

Remark 3.17. Let M be a coatomic module which has the complete max-property
and let F' be a supplement in M. From the previous result, it follows that if F' is a
supplement of a submodule K in M, then

(i) K C Ap(M), and

(ii) every mazimal submodule of M contains F' or K.

By the following example we see that the condition “M has the complete max-

property” cannot be omitted from the hypothesis of Theorem 3.16.
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Example 3.18. Let M be as in Example 3.4(i). So Ms is a supplement of both
My and N in M. Since My and N are maximal submodules of M, we have N +
Rad(M) = N and My +Rad(M) = M;. Thus N+Rad(M) # M; +Rad(M). Note

that M is a coatomic module which does not have the complete maz-property.

As an application of Theorem 3.16, we obtain the following two propositions.

Recall that following [1], two submodules X and Y of a module M are said to be
B* equivalent (denoted as X5*Y) if (X +Y)/X <« M/X and (X+Y)/Y < M/Y.
It was shown in [1, Theorem 2.6 (ii)] that if X, Y are submodules of M such that
X(5*Y, then X has a supplement C' in M if and only if C' is a supplement of Y in
M.

Proposition 3.19. Let M be a coatomic module which has the complete maz-
property and let H, K and F' be submodules of M. Assume that F' is a supplement
of both H and K in M. Then HB*K.

Proof. By Theorem 3.16, we have H + Rad(M) = K + Rad(M) = Ar(M). From
[1, Corollary 2.4], it follows that HB*K. |

Following [1], a module M is called Goldie*-supplemented if for every submodule
X of M, there exists a supplement submodule F' in M such that X5*F. It was
shown in [1, Theorem 3.6 and Example 3.9 (iii)] that any Goldie*-supplemented
module is supplemented but the converse is not true, in general. In the next
proposition, we present some sufficient conditions for a supplemented module to

be Goldie*-supplemented.

Proposition 3.20. Let M be a coatomic module which has the complete max-

property. If M is supplemented, then M is Goldie*-supplemented

Proof. Assume that M is a supplemented module. Let X be a submodule of
M. Let F be a supplement of X in M and let T be a supplement of F' in M.
Then F is a supplement of T in M by [4, 20.4 (9)]. Using Theorem 3.16, we get
X +Rad(M) =T+ Rad(M) = Ap(M). Note that Rad(M) < M. Therefore M is
Goldie*-supplemented by [1, Corollary 3.4]. O
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