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Abstract. We extend a lemma by Matsuda about the irreducibility of the

binomial Xπ − 1 in the semigroup ring F [X;G], where F is a field, G is an

abelian torsion-free group and π is an element of G of height (0, 0, 0, . . . ).

In our extension, G is replaced by any submonoid of (Q+,+). The field F ,

however, has to be of characteristic 0. We give an application of our main

result.
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1. Introduction and preliminaries

The goal of this paper is to extend a lemma by R. Matsuda about the irreducibi-

lity of the binomial Xπ − 1 in the semigroup ring F [X;G], where F is a field, G

is an abelian torsion-free group and π is an element of G of height (0, 0, 0, . . . ). In

our extension we will introduce the notion of height (0, 0, 0, . . . ) for the elements

of torsion-free monoids and prove the irreducibility of the binomial Xπ − 1 in the

semigroup ring F [X;M ], where M is any submonoid of (Q+,+) and π is an element

of M of height (0, 0, 0, . . . ). The field F has to be of characteristic 0, as there are

counterexamples for fields of positive characteristic. We need this extension for

our research on semigroup rings F [X;M ] for submonoids M of (Q+,+) (see [7,

Question 5.7]).

We denote by N0 the set {0, 1, 2, . . . } of nonnegative integers and by Q+,R+ the

sets of nonnegative rational and real numbers, respectively.

All monoids and groups in this paper are assumed to be commutative, written

additively. All rings are commutative with an identity.

All the notions that we use but not define in this paper can be found in the

classical reference books [5] by R. Gilmer and [10] by D. G. Northcott.
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Let Γ be a monoid. The elements of the semigroup ring F [X; Γ], where F is a

field and X is a variable, are the polynomial expressions, also called polynomials,

f(X) = a1X
α1 + · · ·+ anX

αn , (1)

where a1, . . . , an ∈ F , α1, . . . , αn ∈ Γ. The polynomials f(X) = a, a ∈ F , are

called the constant polynomials.

If a monoid M is a submonoid of (Q+,+), we assume, if we do not specifically

mention otherwise, that in (1) α1 > · · · > αn. We say that a1X
α1 is the leading

term of f , Xα1 is the leading monomial of f and α1 is the degree of f . The degree

of constant polynomials is 0, except for f(X) = 0, whose degree is −∞. F [X;M ]

is an integral domain, the nonzero constants are its only invertible elements. A

nonzero nonunit element f ∈ F [X;M ] is called an irreducible element or an atom

if it cannot be written as f = gh, where both g, h are nonzero nonunits. A nonzero

nonunit element f ∈ F [X;M ] is said to be prime if f | gh implies f | g or f | h for

all g, h ∈ F [X;M [. If every nonzero nonunit element of F [X;M ] can be written as

a finite product of atoms, we say that F [X;M ] is atomic. In general, in integral

domains every prime element is irreducible, but not vice-versa. Integral domains

in which every irreducible element is prime (i.e., where the notions irreducible and

prime coincide) are called AP domains. There is no relation between the notions

atomic and AP: an integral domain can be atomic but not AP, and vice-versa, AP

but not atomic. It can also be neither atomic, nor AP. Being both atomic and AP

is equivalent (as it is easy to show) to being a UFD.

A monoid Γ is called a cancellative monoid if it satisfies the following cancellation

property: for any α, β, γ ∈ Γ, α + γ = β + γ implies α = β. A monoid Γ is said to

be torsion-free if for any integer n ≥ 1 and any α, β ∈ Γ, nα = nβ implies α = β.

If Γ is torsion-free, then it satisfies the following weaker property: for any integer

n ≥ 1 and any α ∈ Γ, nα = 0 implies α = 0. If Γ is a group, then Γ is torsion-free

if and only if it satisfies this weaker property.

Let Γ,Γ′ be two monoids. A map µ : Γ→ Γ′ is called a monoid homomorphism

from Γ to Γ′ if µ(x+y) = µ(x)+µ(y) for every x, y ∈M and µ(0) = 0. If, in addition,

µ is bijective, it is called a monoid isomorphism between Γ and Γ′. (The inverse

bijection µ−1 : Γ′ → Γ preserves the operation.) To every monoid homomorphism

µ : Γ→ Γ′ we can naturally associate a ring homomorphism φ : F [X; Γ]→ F [X; Γ′],

defined by

φ(a1X
α1 + · · ·+ anX

αn) = a1X
µ(α1) + . . . anX

µ(αn).

φ is an isomorphism if and only if µ is an isomorphism.
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Let F be a field and k ∈ N. Consider the variables X1, X2, . . . , Xk over F . The

elementary symmetric polynomials in these variables are the elements of the ring

F [X1, . . . , Xk] defined in the following way:

σ1 =
∑

1≤i≤k

Xi

σ2 =
∑

1≤i<j≤n

XiXj

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σk = X1 · · ·Xk

and σe = 0 for e > k. The power sums in the variables X1, X2, . . . , Xk are the

elements of the ring F [X1, . . . , Xk] defined in the following way:

πe =
∑

1≤i≤k

Xe
i

for e ≥ 1. The following theorem, given in [1, page A.IV.70], gives the so-called

Newton’s relations between the elementary symmetric polynomials and the power

sums in the variables X1, X2, . . . , Xk in the ring F [X1, . . . , Xk].

Theorem 1.1 (Newton’s relations). For every integer e ∈ {1, 2, . . . , k} we have

πe = σ1πe−1 − σ2πe−2 + · · ·+ (−1)eσe−1π1 + (−1)e+1eσe.

If we replace each variable Xi by an element xi of the field F , we get Newton’s

relations between the elementary symmetric polynomials and the power sums of

the elements x1, x2, . . . , xk in the field F .

The following number theory theorem (called Lucas’ Theorem) is proved by

É. Lucas in 1878. A simpler proof is given by N. J. Fine in [3].

Theorem 1.2 (Lucas’ Theorem). Let p be a prime number and let

M = Mtp
t +Mt−1p

t−1 + · · ·+M2p
2 +M1p+M0,

N = Ntp
t +Nt−1p

t−1 + · · ·+N2p
2 +N1p+N0

be the expansions of the nonnegative integers M and N in base p (so that Mi, Ni ∈
{0, 1, . . . , p− 1}). Then(

M

N

)
≡
(
Mt

Nt

)(
Mt−1

Nt−1

)
· · ·
(
M2

N2

)(
M1

N1

)(
M0

N0

)
(mod p),

where we assume that
(
Mi

Ni

)
= 0 if Mi < Ni.
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For a given natural number n with the prime-power factorization n = pν11 p
ν2
2 · · · pνrr

consider the n-th roots of unity in the field of complex numbers C. The next theo-

rem is the main theorem (namely, Theorem 5.2) of the paper [8] by T Y. Lam and

K. H. Leung (we call it Lam-Leung Theorem). It describes all the numbers t such

that there are t n-th roots of unity in C whose sum is 0.

Theorem 1.3 (Lam-Leung Theorem). The set of all numbers t such that there are

t n-th roots of unity in C whose sum is 0 is equal to N0 p1 + N0 p2 + · · ·+ N0 pr.

2. Elements of height (0, 0, 0, . . . ) in torsion-free monoids

For a prime number p the notion of the p-height hp(a) of an element a of a

torsion-free group G is defined in [4, page 108] as the nonnegative integer r such

that a ∈ prG \ pr+1G if such an integer exists and as ∞ otherwise. The sequence

(h2(a), h3(a), h5(a), . . . ) of p-heights of a as p goes through all prime numbers in

the increasing order is called the height sequence of a. For the purpose of this

paper we will consider the elements of height (0, 0, 0, . . . ), but, more generally, in

the torsion-free monoids instead of groups.

Definition 2.1. We say that an element a of a torsion-free monoid Γ is of height

(0, 0, 0, . . . ) if for every prime number p the equation px = a cannot be solved for

an x ∈ Γ.

Examples 2.2. (1) There are no elements of height (0, 0, 0, . . . ) in the monoids

{0}, (Q+,+), (R+,+).

(2) In the monoid (N0,+) the only element of height (0, 0, 0, . . . ) is 1.

(3) In the submonoid 〈2, 3〉 of (N0,+) the elements of height (0, 0, 0, . . . ) are

precisely the prime numbers 2, 3, 5, . . . .

(4) In the submonoid 〈2, 5〉 of (N0,+) the elements of height (0, 0, 0, . . . ) are

the prime numbers 2, 5, 7, 11, . . . and the composite number 9.

(5) There are infinitely many elements of height (0, 0, 0, . . . ) in the monoid〈
1

2
,

1

22
,

1

23
, . . . ;

1

5

〉
, but there are no elements of height (0, 0, 0, . . . ) in the

monoid

〈
1

2
,

1

22
,

1

23
, . . .

〉
.

Proposition 2.3. Let µ : Γ → Γ′ be an isomorphism between two torsion-free

monoids. For any a ∈ Γ, a is of height (0, 0, 0, . . . ) in Γ if and only if µ(a) is of

height (0, 0, 0, . . . ) in Γ′.

Proof. Easy. �
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3. Matsuda’s lemma and Matsuda monoids

Note that an element π of a monoid M is not of height (0, 0, 0, . . . ) if and only if

π = nα for some α ∈M and some integer n ≥ 2. In that case the binomial Xπ − 1

has the following factorization in F [X;M ]:

Xπ − 1 = (Xα − 1)(X(n−1)α +X(n−2)α + · · ·+Xα + 1).

It is natural to ask if these are the only possible factorizations in F [X;M ] of the

binomials Xπ − 1. In other words, if for every integer n ≥ 2 the equation nα = π

has no solutions for α in M , is Xπ − 1 necessarily irreducible in F [X;M ]? The

next theorem, which is Lemma 2.2 in the paper [9] by R. Matsuda, shows that it

indeed is if M is a non-zero torsion-free group. (For the sake of completness we

include Matsuda’s proof. The proof uses another lemma from [9], which in turn

uses a statement about pure subgroups from [4].) We will show in the next section

(in our main theorem 4.1) that an analogous result holds if M is any submonoid of

(Q+,+) and F is a field of characteristic 0.

Theorem 3.1 (Matsuda’s Lemma). Let F be a field, G 6= 0 a torsion-free group,

and π an element of G of height (0, 0, 0, . . . ). Then Xπ−1 is an irreducible element

of F [X;G].

Proof. Suppose Xπ − 1 = gh, where g, h ∈ F [X;G]. Let H be the subgroup

generated by π and the power exponents appearing in g and h. By [9, Lemma

2.1], Zπ is a direct summand of H. Let H = Zπ ⊕ Ze1 ⊕ · · · ⊕ Zen, Xπ = Y ,

Xei = Xi. The set Y,X1, . . . , Xn is algebraically independent over F . Hence Y − 1

is irreducible in FZ[Y,X1, . . . , Xn]. Here FZ[Y,X1, . . . , Xn] denotes the quotient ring

of F [Y,X1, . . . , Xn] by the multiplicative system generated by Y,X1, . . . , Xn. �

Inspired by Matsuda’s lemma, we introduce the following notion.

Definition 3.2. We call a cancellative torsion-free monoid Γ a Matsuda monoid if

for every element π ∈ Γ of height (0, 0, 0, . . . ) the binomial Xπ − 1 is irreducible in

F [X; Γ] for every field F . We call a cancellative torsion-free monoid Γ a Matsuda

monoid of type 0 (respectively, p, where p is a prime number) if for every element

π ∈ Γ of height (0, 0, 0, . . . ) the binomial Xπ − 1 is irreducible in F [X; Γ] for every

field F of characteristic 0 (respectively, p).

Every group is a Matsuda monoid by Theorem 3.1.

Examples 3.3. (1) The monoids {0}, (Q+,+), (R+,+) have no elements of

height (0, 0, 0, . . . ), so they are Matsuda monoids.
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(2) Let M = (N0,+). Then 1 is the only element of height (0, 0, 0, . . . ) in M .

Since X1 − 1 is irreducible in F [X;M ] for every field F , M is a Matsuda

monoid.

(3) In the monoid M = 〈2, 3〉, as we have seen earlier, the elements of height

(0, 0, 0, . . . ) are precisely the all prime numbers. M is not a Matsuda

monoid of type 2 since in F2[X;M ] we have

X7 − 1 = (X4 +X3 +X2 + 1)(X3 +X2 + 1).

M is not a Matsuda monoid of type 3 since in F3[X;M ] we have

X11 − 1 = (X6 −X5 + 2X4 −X3 +X2 − 1)(X5 +X4 + 2X3 +X2 + 2).

One wonders if M is a Matsuda monoid of any finite type. However, it

follows from the main theorem of this paper that M is a Matsuda monoid

of type 0.

4. Submonoids of (Q+,+) are Matsuda monoids of type 0

Here is our main theorem.

Theorem 4.1. Every submonoid of (Q+,+) is a Matsuda monoid of type 0.

Proof. We will first prove the statement for the submonoids of (N0,+).

By Example 3.3 (2), N0 is a Matsuda monoid. Let us assume that M is a

submonoid of (N0,+) such that 1 /∈ M . Let n = pν11 p
ν2
2 · · · pνrr be a prime-power

factorization (in the multiplicative semiring N0) of an element n ∈ M of type

(0, 0, 0, . . . ). It is enough to show that Xn − 1 cannot be factored into a product

of two polynomials of degree ≥ 1 in F [X;M ] for any algebraically closed field F

of characteristic 0. So let F be an algebraically closed field of characteristic 0.

Then F contains the field A of algebraic numbers. Suppose to the contrary, i.e.,

that the binomial Xn − 1 can be factored in F [X;M ] as g(X)h(X), where g and

h are two monic polynomials of degrees k ≥ 1 and l ≥ 1, respectively. We will

assume that k ≥ l. Since Xn − 1 can be factored in F [X] as a product of n

monic linear polynomials X − ζ, where ζ is an n-th root of unity (in A), we have

g(X) = (X−α1)(X−α2) · · · (X−αk), where α1, α2, . . . , αk are n-th roots of unity

(in A). Let βi = α−1i for i = 1, 2, . . . , k. Let us also write g(x) as

g(X) = Xk + gk−1X
k−1 + · · ·+ g1X + g0,

where g0, . . . , gk−1 ∈ F .
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Claim 1. Let e be an element of N0 such that e < k and e /∈M . Then

σe(β1, . . . , βk) = 0,

πe(β1, . . . , βk) = 0.

Proof of Claim 1. Since e /∈ M , the coefficient ge by Xe in g(X) is equal to 0,

hence ∑
αi1αi2 · · ·αik−e

= 0,

where the sum goes over all (k − e)-element subsets {i1, . . . , ik−e} of {1, 2, . . . , k}.
Hence ∑

βj1βj2 · · ·βje = 0,

where the sum goes over all e-element subsets {j1, . . . , je} of {1, 2, . . . , k}. Thus

σe(β1, . . . , βk) = 0.

We prove the second relation by induction on e. For e = 1 we have

π1(β1, . . . , βk) = σ1(β1, . . . , βk) = 0.

Suppose that

πf (β1, . . . , βk) = 0

for all elements f ∈ N0 such that f < e and f /∈M . We have the Newton relation

(see Theorem 1.1)

πe = σ1πe−1 − σ2πe−2 + · · ·+ (−1)eσe−1π1 + (−1)e+1eσe, (2)

where each of σi, πi is a function of β1, . . . , βk. Since e /∈ M , σe = 0 by the first

relation. Also, in each of the sets {1, e− 1}, {2, e− 2}, . . . , {be
2
c, be+ 1

2
c} at least

one of the elements is not in M , otherwise their sum, which is e, would be in M .

If in any of these sets {j, e− j} say j /∈M , then σj = 0 by the first relation of this

claim and πj = 0 by the inductive hypothesis. Hence σjπe−j = 0 and σe−jπj = 0.

Hence all the addends on the left hand side of (2) are 0 and so πe(β1, . . . , βk) = 0.

Claim 1 is proved.

Claim 2. Let d < n be a divisor of n. Let e be an element of N0 such that ed ≤ k
and ed /∈M . Then

πe(β
d
1 , . . . , β

d
k) = 0,

σe(β
d
1 , . . . , β

d
k) = 0.

Proof of Claim 2. We have

πe(β
d
1 , . . . , β

d
k) = πde(β1, . . . , βk) = 0
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by Claim 1 as ed /∈M . We prove the second relation by induction on e. For e = 1

we have

σ1(βd1 , . . . , β
d
k) = πd(β1, . . . , βk) = 0

by Claim 1 as d /∈ M . Let e be an element of N0 such that ed ≤ k and ed /∈ M .

Suppose that

σf (βd1 , . . . , β
d
k) = 0

for all elements f ∈ N0 such that f < e and fd /∈M . We have the Newton relation

σe =
(−1)e+1

e

[
πe − σ1πe−1 + σ2πe−2 − · · ·+ (−1)e−1σe−1π1

]
, (3)

where each of σi, πi is a function of βd1 , . . . , β
d
k . Since ed /∈ M , πe = 0 by the first

relation. Consider any of the sets {1, e − 1}, {2, e − 2}, . . . , {be
2
c, be+ 1

2
c}, say

{j, e−j}. At least one of the elements jd, (e−j)d is not in M , otherwise their sum,

which is ed, would be in M . If say jd /∈M , then πj = 0 by the first relation of this

claim and σj = 0 by the inductive hypothesis. Hence σjπe−j = 0 and σe−jπj = 0.

Hence all the addends on the right hand side of (3) are 0 and so σe(β
d
1 , . . . , β

d
k) = 0.

Claim 2 is proved.

Let now j ∈ {1, 2, . . . , r}. For e = pν11 · · · p̂
νj
j · · · pνrr (where ̂ means that the

factor is omitted), by Claim 1,

πe(β1, . . . , βk) = βe1 + · · ·+ βek = 0,

i.e.,

σ1(βe1 , . . . , β
e
k) = 0.

Each of the elements βe1 , . . . , β
e
k is a p

νj
j -th root of unity, hence, by Lam-Leung

Theorem,

k ∈ N0 pj .

We will prove by induction on s that k ∈ N0 p
s
j for every s = 1, 2, . . . , νj . For s = 1

we have already done that. Suppose that k ∈ N0 p
s−1
j for some s ∈ {2, . . . , νj}. We

want to show that k ∈ N0 p
s
j . Suppose to the contrary, i.e., that k /∈ N0 p

s
j . Then k

can be written as

k = ktp
t
j + kt−1p

t−1
j + · · ·+ ksp

s
j + ks−1p

s−1
j ,

where t is some number, kt, kt−1, . . . , ks, ks−1 are from {0, 1, . . . , p−1} and ks−1 6= 0.

Let d = pν11 · · · p̂
νj
j · · · pνrr and e = ps−1j . Then by Claim 2,

σe(β
d
1 , . . . , β

d
k) = 0.
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Since each βdj is p
νj
j -th root of unity, the last equation is a vanishing sum of

(
k
e

)
=(

k
ps−1
j

)
p
νj
j -th roots of unity, hence, by Lam-Leung Theorem,(

k

ps−1j

)
∈ N0 pj .

However, by Lucas’ Theorem,(
k

ps−1j

)
≡
(
ks−1

1

)
= ks−1 6= 0 (mod pj),

a contradiction. Thus k ∈ N0 p
s
j . Since this holds for any s ≤ νj , we have

k ∈ N0 p
νj
j .

This holds for all j = 1, 2, . . . , r, hence

k ≡ 0 (mod n),

which is in contradiction with our starting hypothesis that Xn − 1 can be factored

into two nonconstant polynomials, one of which is of degree k. Hence Xn − 1 is an

irreducible element of F [X;M ] and, in particular, of F [X;M ]. The statement is

proved for submonoids of (N0,+).

Let now M be a submonoid of (Q+,+). Let π be an element of M of height

(0, 0, 0, . . . ). Suppose to the contrary, i.e., that Xπ − 1 = g(X)h(X), where g

and h are two elements of F [X;M ] of degree 6= 0. Let N be the submonoid of

M generated by π and the exponents of the polynomials g and h. N is then a

finitely generated submonoid of M in which π is also of height (0, 0, 0, . . . ) and

the factorization Xπ − 1 = g(X)h(X) is in F [X;N ]. Let d be the least com-

mon denominator of all the generators of N . Then µd : N → dN is a monoid

isomorphism between N and the submonoid dN of (N0,+). By Proposition 2.3,

the element dπ is of height (0, 0, 0, . . . ) in dN . The associated ring isomorphism

φd : F [X;N ] → F [X; dN ] transports the factorization Xπ − 1 = g(X)h(X) from

F [X;N ] into the factorization Xdπ − 1 = φd(g)φd(h) in F [X; dN ], with both poly-

nomials φd(g), φd(h) nonconstant. We already proved that this is not possible for

submonoids of (N0,+), so we got a contradiction.

The theorem is proved. �

5. An application: a submonoid M of (Q+,+) without essential

generators, such that F [X;M ] is not AP

We introduced in [7] the following notion of an essential generator of a monoid.
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Definition 5.1. An element a of a monoid Γ is called an essential generator of Γ

if 〈Γ \ {a}〉 6= Γ.

Note that if an element of Γ is an essential generator, it is of height (0, 0, 0, . . . ).

The converse, however, does not hold.

If a submonoid M 6= {0} of Q has no essential generators, then it is non-atomic

by [7, Proposition 2.10]. An example is M = Q+. However, it was shown by

Daileda in [2] that for this monoid, F [X;M ] is AP for any field F . We asked in

[7] if there is an example of a submonoid M of (Q+,+) which has no essential

generators, but F [X;M ] is not AP for some field F . Specifically, we asked if

M =

〈
1

2
,

1

22
,

1

23
, . . . ;

1

5
,

1

52
,

1

53
, . . .

〉
is such a monoid. Using the main theorem of

this paper we can show that it indeed is.

Proposition 5.2. Let M =

〈
1

2
,

1

22
,

1

23
, . . . ;

1

5
,

1

52
,

1

53
, . . .

〉
and let F be a field of

characteristics 0. Then the semigroup ring F [X;M ] is not AP.

Proof. We have
1

2
+

1

52
=

27

2 · 52
=

27

50
∈M . Let us show that this element is of

height (0, 0, 0, . . . ). Indeed, from
27

2 · 52
= p (

a

2m
+

b

5n
), where p is a prime number,

a, b ≥ 1,
a

2m
and

b

5n
are in reduced form, and m,n ≥ 1, we get 33 · 2m · 5n =

p · 2 · 52 · (a5n + b2n). Since a5n + b2m is not divisible by 2 nor by 5, we have three

cases:

(a) p = 3; then m = 1, n = 2 and a52 + b21 = 3, which is not possible;

(b) p = 2; then m = n = 2 and 27 = 25a+ 4b, which is not possible;

(c) p = 5; then m = 1, n = 3 and 27 = a53 + b21, which is not possible.

Thus we showed that
27

50
is of height (0, 0, 0, . . . ). By Theorem 4.1, the binomial

X27/50 − 1 is an irreducible element of F [X;M ]. Let us show that it is not prime.

We have

(X27/50 − 1) | (X27/25 − 1) = (X9/25 − 1)(X18/25 +X9/25 + 1).

However X27/50 − 1 does not divide X9/25 − 1 since this polynomial has a smaller

degree and it does not divide X18/25 + X9/25 + 1 since the relation (X27/50 − 1) ·
f(X) = X18/25 +X9/25 + 1 would imply deg(f) =

9

50
, but

9

50
/∈M .

The proof is finished. �

6. Concluding remarks and questions

In connection with the main theorem of this paper, the following two questions

are natural to ask:
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(a) Is any proper submonoid of (N0,+) a Matsuda monoid of any finite type?

(b) Is every cancellative torsion-free monoid a Matsuda monoid of type 0?

Now about Section 5. In view of the facts that for M = Q+, F [X;M ] is AP and

for M =

〈
1

2
,

1

22
,

1

23
, . . . ;

1

5
,

1

52
,

1

53
, . . .

〉
, F [X;M ] is non-AP, a natural question is

to characterize all submonoids M of (Q+,+) such that F [X;M ] is AP (at least

for some class of fields, for example, the fields of characteristics 0). The only case

which remains to be considered is when M has no essential generators (then it has

to be infinitely generated), the other cases are resolved in [7].

This question is in the spirit of the following “generic question” (QE), raised by

R. Gilmer in [6]: if R is a ring, Γ a monoid and E some ring-theoretic property,

under what conditions does the semigroup ring R[X; Γ] have the property E? He

mentioned that “in most cases, the answer to (QE) isn’t known unless some restric-

tions are placed on R and/or Γ.” He also mentioned that “in general, polynomial

rings over R serve as fair models of what may be expected in answer to generic

questions (QE) in the case where Γ is torsion-free and cancellative.”
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