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1. Introduction

Let KG denote the group algebra of the group G over the field K. Let U(KG)
be the set of invertible elements of KG. The homomorphism ¢ : KG — K given

by e Z agg | = Z ag is called the augmentation mapping of KG. It is a well
geG geq
known fact that U(KG) = U(K) x V(KG) where V(KG) = {u € U(KG) |e(u) =

1}.

Let G be a finite p-group and K a field of characteristic p, it is well known that
[V(KG)| = |K|'I=!. Sandling in [8], provides a basis for V(F,G) where G is an
abelian p-group and F, is the Galois field of p elements. In [10], it is shown that
Z(Vy) and V1/Z(V;) are elementary abelian 3-groups where V4 = 1+ J(F3x Ds),
J(F3x Dg) is the Jacobson radical of Fsr Dg and Z(V;) is the center of V;. The
structure of U(Fs5x Dg) was determined in terms of split extensions of elementary
abelian groups in [4]. The structure of F'A4 and F'Sy were established in [7,9] where
F is any finite field, A4 is the alternating group of degree 4 and Sy is the symmetric
group of degree 4. Additionally, the structure of U (F3x(C3 x Dg)) and U(FzrD12)
was established in [5,6] respectively. Consult [1] for an overview of modular group

algebras.
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The map * : KG — KG defined by Z agg | = Z agg*1 is an antiauto-
9eG geG
morphism of KG of order 2. An element v of V(KG) satisfying v~

unitary. We denote by V.(KG) the subgroup of V(KG) formed by the unitary
elements of KG. In [3] a basis for V,.(KG) is constructed for any field of charac-
teristic p > 2 and any finite abelian p-group. Additionally the order of V, (FxG) is

L = 9* is called

determined for special cases of G in [2]. Let § =2, ¢y h € RG. Our main results

are:

Theorem 1.1.
U(F3:(Cr x Ds)) = (C5™ % CF) x U(F3¢(Crp x C)).
Corollary 1.2.

(CF™t % O3ty % C2p_, ifnl(3* = 1)

(gt cgtyx (3 x e s V) 3y ) =3

)-

U(F4: (Cnx Dg)) = {

gi+1

where f;(V) = t(|C’3m3i71| - 2|O3m31:| +[C3m

2. The structure of U(Fs.(C,, x Dg))

Let G = Cy, x Dg = (m,y,z|2® =y? = 2" =1, 2Y = 271, 22 = 2z, yz = zy)
where n > 1. The natural group homomorphism G — G/(z) extends linearly to
the algebra homomorphism 6 : F3¢(C,, x Dg) — F3:(C,, x Cs) where

3

i—1 —1 —1
Z (@i aipsz 4 @iz F igsntsy + QitanteyZ + o+ Qigenyz” ) =
i=1
3
1 1
Z(Oéi + aitsb+ o+ Qigsnd" T+ Qigt3nt3a + Qitanteab + -+ aipenabd™ )

=1
and C,, x Co = (a,b|a? = b" = 1, ab = ba). If we restrict 0 to U(F3:(C,, x Dg)), we
can construct the group epimorphism 6" : U(F3:(C,, x Dg)) — U(F3:(C,, x C3)).
Consider the group homomorphism ¢ : U (F3:(C, x C3)) — U(F3:(C,, x Dg)) by

’yl—i—’ygb—‘r--'-l—’}’nbn_l+51a+52ab+"'+5nabn_l —

Y1+ Y2z + - _|_fynzn_1 —|—51y+52y2+ +5ny2n_1

where ;,9; € Fs:. Clearly 6’ o4 is the identity map of U (F3. (C), X C2)). Therefore
U(F5:(Cy, x Dg)) is a split extension of U(Fs:(Cy, x C2)) by ker(0") and U (Fs: (Cy, X
Dg)) &2 H x U(F5:(C,, x Cq)) where H = ker(0'). Now, 6 : Fs:(C,, x Dg) —
F3: ((Cnx Dg) /(@) = F3:(Cr x D) /T ({x)) where J ((z)) is the ideal of F5: (C, x D)
generated by all x — 1 where z € (z). Additionally, ¢ : U(F3:(C,, x Dg)) —
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UF3:((Cp, x Dg)/{x))) 2U(F3:(Cp, x Dg))/1+ T ({x)). As the characteristic of Fy:
is 3 and x is of order 3, J({(z)) is nilpotent of index 3. Therefore H has exponent
3.

Lemma 2.1. Cy(z) = C3™ where Cy(z) = {h € H|zh = ha}.

Proof. Let h=1+ ZQlj + Z‘Bky € H where
j=1 k=1

2 2
2 = Za¢+2(j—1)zj*1(xi —1) and By = Zaiﬂ(km_l)zkﬂ(xi _1)

i=1 =1

and a; € F3:. Now

zh —hr =2 1+Zﬂj+i%ky — 1+§:Qlj+i%ky x
j=1 k=1

j=1 k=1
=z (Z%;w) — (Z%w) x.
k=1 k=1

2By — Bryz = 2" H(azkpan—1(2% — ) + aopyon(l — 2)) — (2pton—1(1 — 22) + azpian(z — 22))]y

Now,

k—1
= TYyz (O<2k+2n - a2k+2n—1)-

Therefore, every element of Cy(x) takes the form

n n
1+ Zﬂj + Zal“niﬂyzl*l
j=1 =1

2

where 2; = Zai_s_g(j_l)zjfl(xi — 1) and o; € For. Clearly (£)? = 3% = 0 and
i—1

#2; = A;&. Therefore Cy(z) is an abelian group of order 32"t . 3" = 3371, O

Next, consider a subset S of H where the elements of S take the form:
1+ %
Jj=1

2
where R; = Zirjxi(l +9)22 71 and r; € Fa:.
i=1

Lemma 2.2. S~ (O3
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n

Proof. Letsl—l—i-ZiR eSand52—1+ZT € S where

Jj=1 Jj=1

R, era (1+y)z2~1 . E szt:v (14 )z~ 1andrl,t € F3:. Now

=1

S5182 = 1+ZSRJ 1+Z‘3:J
j=1 j=1
—1+Zm +%)) Zm

j=1

and

R;Ty = (er] (1+y)2i~ 1) <Zzth 1+y)z

n

2.5

Jj=1

)

= (rjz + rjoy + 2rj2? + 2r;2%y) (L + tpey + 2tpx? + 2tpa?y) 2 TR2

3
Z (12 — 3i)rjtpa’ 1 (1 + y) 2 TF2

Clearly s1s9 € S and S is abelian, therefore S = C*.

Theorem 2.3.

U(F3:(C,, x Dg)) =2 (C2™ 3 CF) 5 U(F3: (Cy x C)).

Proof. Let c=1+ ZQIJ- + Zal“niyzl*l € Cy(x) and s =1+ Z‘ﬁj es

j=1 =1
2

where 2, = ZaiJrg(j,l)zj_l(x -1), R/, = erj
i=1
Now

¢’ = s%cs

n n n
= |1+ Z i)‘ij 1+ Zgl] + Zal+2n£yzl_1 1+ Z %j
j=1 j=1 1=1

1+ 22 R |1+ ij + Zamniyzl*l 14+ %,
j=1 j=1 =1

Jj=1

(1+y) zJ ! and o, 15 € Fae.

n

j=1

J=1
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Now %, = 0 and #9R; = 347, (1 4+ y)2/ ' = 0 = R, therefore
eSS 2 (S ) (S (S (S
j=1 =1 =1 =1 =1

2 (D] (D
j=1 j=1 j=1

Now, R,y = rj(aor—azk—1)E(1—y) 2T TF=2 AR, = 1 (aop—aok—1)E(1+y)z/ TF2
and
2080, + WA = 1) (ap — qop—1)2[2(1 — y) + (1 +y)]2d TH2

=Ty (a2k71 — agk)iyzj+k72.

Additionally, R;A,%R; = 0 since #R; = 0. Therefore ¢® € Cy(x) and consequently
Cp () is a normal subgroup of H. Note that |H| = 3*"* and that C(z)NS = {1}.
By the Second Isomorphism Theorem, H = Cp(x).S. Thus, H = Cy(z) x § =
it 0 Ot 0
Corollary 2.4.

(ant « Cézt) Cgtn ) ifn|(3t — 1)

(gt cptyx (3 % o) s Y X Ry ) if =3

-

Proof. It is well known that F3: (Cy x C),) =2 (F3:C2)C,, & (F3e ®F3:)C,, 2 F3e C,, B
F3:Cy. It is well known that if n|(3* — 1), then F3:C, = & Fz:. Therefore
U(F5:(Co x Cp)) = C3" | when n|(3" — 1). When n = 3™, the number of cyclic
groups f;(V) of order 3’ in the direct product of V(F:G) is f;(V) = ¢(|C3m® | —
2/C5n | +Csn ™)) ([8)- 0

U(F5 (Crx Dg)) 2 {

37’,+1

where f;(V) = t(|C3n® | = 2|C3m® | + |Cgm
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