

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA Volume 24 (2018) 68-72 DOI: 10.24330/ieja.440216

A NOTE ON THE DEPTH OF A SOURCE ALGEBRA OVER ITS DEFECT GROUP

Markus Linckelmann

Received: 30 October 2017; Accepted: 24 April 2018 Communicated by Burcu Üngör

Dedicated to the memory of Professor John Clark

ABSTRACT. By results of Boltje and Külshammer, if a source algebra A of a principal p-block of a finite group with a defect group P with inertial quotient E is a depth two extension of the group algebra of P, then A is isomorphic to a twisted group algebra of the group $P \rtimes E$. We show in this note that this is true for arbitrary blocks. We observe further that the results of Boltje and Külshammer imply that A is a depth two extension of its hyperfocal subalgebra, with a criterion for when this is a depth one extension. By a result of Watanabe, this criterion is satisfied if the defect groups are abelian.

Mathematics Subject Classification (2010): 20C05, 20C20, 16D20 Keywords: Source algebra, depth

Let p be a prime and \mathcal{O} a complete local principal ideal domain with an algebraically closed residue field k of characteristic p, allowing the case $\mathcal{O} = k$. We will make without further comment use of the fact that by [9, II, Prop. 8], the canonical group homomorphism $\mathcal{O}^{\times} \to k^{\times}$ splits canonically, and hence group cohomology with coefficients in k^{\times} can be viewed as cohomology with coefficients in \mathcal{O}^{\times} . Following terminology in [4], a ring extension $B \to A$ is called of *depth* one if A is isomorphic, as a B-B-bimodule, to a direct summand of B^n for some positive integer n, and a ring extension $B \to A$ is called of *depth* two if $A \otimes_B A$ is isomorphic, as an A-B-bimodule, to a direct summand of A^n , for some positive integer n. Tensoring by $A \otimes_B -$ shows that a ring extension of depth one is also an extension of depth two.

Let A be a source algebra of a block algebra over \mathcal{O} of a finite group, with a defect group P. Boltje and Külshammer showed in [2, 2.4] that if A is isomorphic to a twisted group algebra of the form $\mathcal{O}_{\alpha}(P \rtimes E)$ for some p'-subgroup E of Aut(P) and some $\alpha \in H^2(E; k^{\times})$, inflated trivially to $P \rtimes E$, then the canonical map $\mathcal{O}P \to$ A is an extension of depth two. Moreover, they showed that the converse holds for principal blocks. The following result shows that this converse holds for arbitrary blocks. See for instance [10, §11, §38] and [5, §6, §7] for background material on the Brauer homomorphism Br_P and fusion in source algebras.

Theorem 1. Let G be a finite group, b a block of $\mathcal{O}G$, P a defect group of b and $A = i\mathcal{O}Gi$ a source algebra of b, where i is a primitive idempotent in the P-fixed point algebra $(\mathcal{O}Gb)^P$ such that $\operatorname{Br}_P(i) \neq 0$. The following are equivalent:

- (i) The ring extension OP → A induced by the canonical map P → A[×] is of depth two.
- (ii) The ring extension kP → k ⊗_O A induced by the canonical map P → A[×] is of depth two.
- (iii) There is an isomorphism of interior P-algebras $A \cong \mathcal{O}_{\alpha}(P \rtimes E)$ for some p'-subgroup E of $\operatorname{Aut}(P)$ and some $\alpha \in H^2(E; k^{\times})$ inflated trivially to $P \rtimes E$.
- (iv) There is an isomorphism of interior P-algebras k ⊗_O A ≅ k_α(P ⋊ E) for some p'-subgroup E of Aut(P) and some α ∈ H²(E; k[×]) inflated trivially to P ⋊ E.

Proof. The equivalence of (iii) and (iv) is an immediate consequence of results of Puig (either apply [7, 14.6] over both \mathcal{O} and k, or use the lifting property [6, 7.8] for source algebras). Statement (iv) implies (i) and (ii) by Boltje and Külshammer [2, 2.4]. The implication (i) \Rightarrow (ii) is trivial. It suffices to show that (ii) implies (iv). We may therefore assume that $\mathcal{O} = k$. Suppose that (ii) holds but that (iv) does not hold. As an A-kP-bimodule, A is indecomposable since $1_A = i$ is primitive in A^P . Thus, if (ii) holds, then the Krull-Schmidt theorem implies that any indecomposable direct summand of $A \otimes_{kP} A$ as an A-kP-bimodule is isomorphic to A as an A-kP-bimodule. Now if (iv) does not hold, then by [7, 14.6], there is a proper subgroup Q of P and an injective group homomorphism φ from Q to P such that the indecomposable kP-kP-bimodule $kP \otimes_{kQ} (_{\varphi}kP)$ is isomorphic to a direct summand of A as a kP-kP-bimodule. Thus $A \otimes_{kQ} (_{\varphi} kP)$ is isomorphic to a direct summand of $A \otimes_{kP} A$ as an A-kP-bimodule, and hence so is $Aj \otimes_{kQ} ({}_{\varphi} kP)$, where j is a primitive idempotent in A^Q . Since Aj is indecomposable as an AkQ-bimodule, so is the $k(G \times Q)$ -module kGj. Green's indecomposability theorem implies that the $k(G \times P)$ -module $kGj \otimes_{kQ} ({}_{\varphi}kP)$ is indecomposable. Using that multiplication by i yields a Morita equivalence between kGb and A it follows that the A-kP-bimodule $Aj \otimes_{kQ} (_{\varphi} kP)$ is also indecomposable, hence isomorphic to A as an A-kP-bimodule, by the above. Since $\operatorname{Br}_P(i) \neq 0$ this is, however, only possible if Q = P, a contradiction. For the sake of completeness, we mention that the depth of an extension $D \rightarrow A$, where D is a hyperfocal subalgebra (cf. [8]) in a source algebra A of a block of a finite group, can be determined essentially as an application of the methods from [1] and [2]. The first statement of the following proposition is a special case of [1, 1.5].

Proposition 2. Let A be a source algebra of a block of a finite group algebra over \mathcal{O} with defect group P, and let D be a hyperfocal subalgebra of A. The following hold.

- (i) The extension $D \to A$ is of depth two.
- (ii) The extension D → A is of depth one if and only if P acts by inner automorphisms on D.

Proof. As mentioned above, statement (i) is a special case of [1, 1.5], as A is P/Qgraded, with D as 1-component. Since the argument is short and some parts of the notation will be useful in the proof of (ii), we sketch this briefly. We identify P with its canonical image in A^{\times} . The following definitions and facts on the hyperfocal subalgebra D of A are from [8]. The subalgebra D is P-stable, and the group Q = $P \cap D^{\times}$ is the \mathcal{F} -hyperfocal subgroup of P, where \mathcal{F} is the fusion system of A on P. An immediate consequence of these properties is that D is indecomposable as an \mathcal{O} -algebra. Indeed, we have $D^P \subseteq A^P$, which is local, and hence P permutes the blocks of D transitively. But we also have $\operatorname{Br}_P(1_A) \neq 0$, and hence D has a unique block. By [8, Theorem 1.8] we have $A = \bigoplus_{u \in [P/Q]} Du$, where [P/Q] is a set of representatives in P of P/Q. Since D is P-stable, this is a decomposition of A as a *D-D*-bimodule. Thus $A \otimes_D A = \bigoplus_{u \in [P/Q]} A \otimes_D Du$ is a decomposition of $A \otimes_D A$ as an A-D-bimodule. For $u \in P$, a trivial verification shows that the A-D-bimodule $A \otimes_D Du$ is isomorphic to A via the map sending $a \otimes du$ to adu, where $a \in A$ and $d \in D$. Thus any indecomposable direct summand of the A-D-bimodule $A \otimes_D A$ is isomorphic to a direct summand of A as an A-D-bimodule. This proves (i). The summands Du in the D-D-bimodule decomposition $A = \bigoplus_{u \in [P/Q]} Du$ are all indecomposable as D-D-bimodules. Indeed, D is indecomposable by the above, and Du is isomorphic to the image of D under the Morita equivalence on $\operatorname{mod}(D \otimes_{\mathcal{O}} D^{\operatorname{op}})$ obtained from twisting the right *D*-module structure by the automorphism induced by conjugation with u. Thus the extension $D \to A$ is of depth one if and only if $Du \cong D$ as D-D-bimodules, for all $u \in [P/Q]$, hence for all $u \in P$. By standard facts on automorphisms (cf. [3, 55A]) this is equivalent to the condition that uinduces an inner automorphism of D, for all $u \in P$. This proves (ii). In conjunction with a result of Watanabe [11], this yields the following consequence.

Corollary 3. With the notation of Proposition 2, if P is abelian, then the extension $D \rightarrow A$ is of depth one.

Proof. By [11, Theorem 2], if P is abelian, then P acts as inner automorphisms on D. Thus the result follows from Proposition 2 (ii).

Remark 4. What we have called depth two in this note is called right D2 in [4, 3.1], with left D2 being the obvious analogue, requiring $A \otimes_B A$ to be a direct summand, as a B-A-bimodule, of A^n for some positive integer n. It is easy to see directly that left and right D2 are equivalent conditions for the extensions $\mathcal{OP} \to A$ and $D \to$ A considered in the results above; this follows also from a more general result in [4, 6.4]. See [2, §2.3] for a related discussion.

References

- R. Boltje and B. Külshammer, On the depth 2 condition for group algebra and Hopf algebra extensions, J. Algebra, 323(6) (2010), 1783-1796.
- [2] R. Boltje and B. Külshammer, Group algebra extensions of depth one, Algebra Number Theory, 5(1) (2011), 63-73.
- [3] C. W. Curtis and I. Reiner, Methods of Representation Theory, Vol. II, with applications to finite groups and orders, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1987.
- [4] L. Kadison and K. Szlachányi, Bialgebroid actions on depth two extensions, Adv. Math., 179(1) (2003), 75-121.
- [5] M. Linckelmann, On splendid derived and stable equivalences between blocks of finite groups, J. Algebra, 242(2) (2001), 819-843.
- [6] L. Puig, Nilpotent blocks and their source algebras, Invent. Math., 93(1) (1988), 77-116.
- [7] L. Puig, Pointed groups and construction of modules, J. Algebra, 116(1) (1988), 7-129.
- [8] L. Puig, The hyperfocal subalgebra of a block, Invent. Math., 141(2) (2000), 365-397.
- [9] J.-P. Serre, Corps Locaux, Deuxième édition, Publications de l'Université de Nancago, No. VIII, Hermann, Paris, 1968.

MARKUS LINCKELMANN

- [10] J. Thévenaz, G-Algebras and Modular Representation Theory, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.
- [11] A. Watanabe, Note on hyperfocal subalgebras of blocks of finite groups, J. Algebra, 322(2) (2009), 449-452.

Markus Linckelmann

Department of Mathematics City, University of London London EC1V 0HB United Kingdom e-mail: Markus.Linckelmann.1@city.ac.uk

72