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Abstract. The solvable graph of a finite group G, which is denoted by

Γs(G), is a simple graph whose vertex set is comprised of the prime divi-

sors of |G| and two distinct primes p and q are joined by an edge if and

only if there exists a solvable subgroup of G such that its order is divisi-

ble by pq. Let p1 < p2 < · · · < pk be all prime divisors of |G| and let

Ds(G) = (ds(p1), ds(p2), . . . , ds(pk)), where ds(p) signifies the degree of the

vertex p in Γs(G). We will simply call Ds(G) the degree pattern of solvable

graph of G. A finite group H is said to be ODs-characterizable if H ∼= G for

every finite group G such that |G| = |H| and Ds(G) = Ds(H). In this paper,

we study the solvable graph of some subgroups and some extensions of a finite

group. Furthermore, we prove that the linear groups L3(q) with certain prop-

erties, are ODs-characterizable.
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1. Introduction

All groups appearing here are supposed to be finite. For a natural number n,

we denote by π(n) the set of prime divisors of n and set π(G) = π(|G|). The set

of orders of all elements in a finite group G is denoted by ω(G) and called the

spectrum of G. This set is closed and partially ordered by the divisibility relation;

therefore, it is determined uniquely from the subset µ(G) of all maximal elements

of ω(G) with respect to divisibility. Recently, many new ways is discovered to

characterize a finite simple group. For more details, there are a lot of ways to

associate a quantitative property to the finite group G. One of the most important

is to consider some properties of the graphs associated with it. In fact, one of these

graphs is the solvable graph of G which is introduced by Abe and Iiyori in [2]. This



74 B. AKBARI

graph is denoted by Γs(G) and is a simple and undirected graph constructed as

follows. The vertex set is π(G) and two distinct prime p and q are adjacent (we

write p ≈ q) if and only if G has a solvable subgroup whose order is divisible by

pq. If this condition is replaced by “G has a cyclic subgroup of order pq”, then we

call this graph the prime graph of G denoted by GK(G). In fact, the prime graph

of G is a graph whose vertex set is π(G) and two vertices p and q are joined by an

edge if and if pq ∈ ω(G). Therefore, the solvable graph associated with a group is

a generalization of its prime graph.

The degree ds(p) (resp. d(p)) of a vertex p ∈ π(G) is the number of adjacent

vertices to p in Γs(G) (resp. GK(G)). Clearly, d(p) 6 ds(p) for every vertex

p ∈ π(G).

In the case when π(G) = {p1, p2, . . . , pk} with p1 < p2 < · · · < pk, we define

Ds(G) =
(
ds(p1), ds(p2), . . . , ds(pk)

)
,

which is called the degree pattern of the solvable graph of G. For every non-negative

integer m ∈ {0, 1, 2, . . . , k − 1}, we put

∆m(G) := {p ∈ π(G)| ds(p) = m}.

It is obvious that

π(G) =

k−1⋃
m=0

∆m(G).

When ∆k−1(G) 6= ∅, the prime p with ds(p) = k − 1 is called a complete prime.

One of the purpose of this paper is to consider the solvable graphs of some

groups. For more details, we examine the solvable graphs of some subgroups of a

group named local subgroups which introduced in section 3 completely. We also

investigate the solvable graph of a certain extension of groups.

Given a finite group G, denote by hODs(G) the number of isomorphism classes of

finite groups H such that |H| = |G| and Ds(H) = Ds(G). In terms of the function

hODs
(·), we have the following definition.

Definition 1.1. A finite groupG is said to be k-fold ODs-characterizable if hODs(G) =

k. The group G is ODs-characterizable if hODs
(G) = 1.

In this paper, we are going to characterize some simple groups by order and

degree pattern of solvable graph. In [3], it was shown that the following groups are

ODs-characterizable.

(1) All sporadic simple groups;

(2) Projective special linear groups L2(q) with one of the following conditions:
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(a) p = 2, |π(q + 1)| = 1 or |π(q − 1)| = 1,

(b) q ≡ 1 (mod 4), |π(q + 1)| = 2 or |π(q − 1)| 6 2,

(c) q ≡ −1 (mod 4).

(3) A finite group H such that H /∈ {Bn(q),Cn(q)} (n > 3 and q is odd),

|π(H)| = k > 3 and ∆k−1(H) = ∅.

We will show that the projective special linear groups L3(q) with certain properties,

are ODs-characterizable. In fact, we prove the following Corollary.

Corollary A. The simple groups L3(q) with one of the following conditions are

ODs- characterizable:

(1) q is odd and 9 - q − 1;

(2) q is even and 3 ‖ q − 1;

(3) 9 | q − 1 and |π( q2+q+1
3 )| = 1;

(4) q is even, 3 | q + 1 and |π(q2 + q + 1)| = 1.

Notation and Terminology. Let Γ be a graph and V be the vertex set of Γ.

The complementary graph Γc of Γ is a graph whose vertex set is V and two vertices

of Γc are joined if and only if they are not joined in Γ. Let U be a subset of the

vertex set V . The graph Γ− U is defined to be a graph whose vertex set is V − U
and two vertices are joined if they are joined in Γ. A spanning subgraph of Γ is

a subgraph of Γ whose vertex set is V . A graph in which every pair of distinct

vertices are adjacent is called a complete graph. A graph is bipartite if its vertex

set can be partitioned into two subsets X and Y so that every edge has one end in

X and one end in Y . Moreover, if every two vertices from X and Y are adjacent,

then it is called a complete bipartite graph and denoted by K|X|,|Y |. A star graph

is a complete bipartite graph of the form K1,n which consists of one central vertex

having edges to other vertices in it.

2. Preliminary results

In this section, we first state some obtained results on solvable graph of finite

groups, and then we find the solvable graphs of the projective special linear groups

L3(q). Finally, we consider the solvable graph of the automorphism groups of some

simple groups.

Lemma 2.1. ([2, Corollary 2]) The solvable graph of a finite group is a connected

graph.

Lemma 2.2. ([2, Lemma 1, Theorem 2]) Let G be a finite group. Then the following

statements hold:
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(1) If G is a solvable group, then Γs(G) is complete.

(2) If G is a non-abelian simple group, then Γs(G) is not complete.

Lemma 2.3. ([1, Lemma 3]) Let G be a finite group with |π(G)| = k. If ∆k−1(G) =

∅, then G is a non-abelian simple group.

We continue this argument with the following lemma which considers the solvable

graphs of subgroups and quotient groups of a finite group.

Lemma 2.4. ([2, Lemma 2]) Let G be a group, H a subgroup of G and N a normal

subgroup of G.

(1) If p and q are joined in Γs(H) for p, q ∈ π(H), then p and q are joined in

Γs(G), that is, Γs(H) is a subgraph of Γs(G).

(2) If p and q are joined in Γs(G/N) for p, q ∈ π(G/N), then p and q are joined

in Γs(G), that is, Γs(G/N) is a subgraph of Γs(G).

(3) For p ∈ π(N) and q ∈ π(G) \ π(N), p and q are joined in Γs(G).

Lemma 2.5. ([3, Corollary 1]) Let N be a normal subgroup of a finite group G.

Then for two primes {p, q} ⊆ π(G) \ π(N), p ≈ q in Γs(G/N) if and only if p ≈ q

in Γs(G).

Lemma 2.6. ([2, Theorem 3]) Let G be a finite group and {p, q} ⊆ π(G). Then p

and q are not joined in Γs(G) if and only if there exists a series of normal subgroups

of G, say

1EM CN EG,

such that M and G/N are {p, q}′-groups and N/M is a non-abelian simple group

such that p and q are not joined in Γs(N/M).

Using the notation taken from [1] and [2], such a series as in Lemma 2.6 is called

a GKS-series of G and we will say p and q are expressed to be disjoint by this

GKS-series.

Lemma 2.7. ([1, Lemma 4]) Let G be a finite group with |π(G)| = k. If the number

of connected components of

Γ̃(G) = (Γs(G)−∆k−1(G))c

equals n, then at most n GKS-series of G is necessary to express any pair of vertices

of Γs(G) to be disjoined.

As a direct result of Lemma 2.7, we can point out the following Lemma (see [3]).



ODs-CHARACTERIZATION OF SOME LOW-DIMENSIONAL FINITE GROUPS 77

Lemma 2.8. [3, Lemma 6] Let G be a finite group with |π(G)| = k > 4 and

Γ̃(G) := (Γs(G) − ∆k−1(G))c. If one of the following conditions holds, then any

disjoined pair of vertices of Γs(G) can be expressed by only one GKS-series.

(1) ∆k−1(G) 6= ∅ and ∆1(G) 6= ∅;
(2) ∆k−1(G) 6= ∅ and ∆2(G) 6= ∅.

The following lemma is due to K. Zsigmondy (see [11]).

Lemma 2.9. [Zsigmondy Theorem] Let q and f be integers greater than 1. There

exists a prime divisor r of qf−1 such that r does not divide qe−1 for all 0 < e < f ,

except in the following cases:

(a) f = 6 and q = 2;

(b) f = 2 and q = 2l − 1 for some natural number l.

Such a prime r is called a primitive prime divisor of qf − 1.

We define a function η on N which will be used in the proof of Theorem 4.1, as

follows:

η(m) =

 m m ≡ 1 (mod 2),

m
2 m ≡ 0 (mod 2).

It is sometimes convenient to represent the graph Γs(G) in a compact form. By the

compact form we mean a graph whose vertices are displayed with disjoint subsets

of π(G). Actually, a vertex labeled U represents the complete subgraph of Γs(G) on

U . An edge connecting U and W represents the set of edges of Γs(G) that connect

each vertex in U with each vertex in W . Figures 1 − 7, for instance, depicts the

compact form of the solvable graph of the projective special linear groups L3(q) in

all cases.

To construct the solvable graph of this group, we need to state the following

facts:

• The prime graph of a group is the subgraph of its solvable graph. Therefore,

it is good to note that the set of maximal elements in the spectrum of L3(q)

is as follows:

µ(L3(q)) =


{q − 1, p(q−1)3 , q

2−1
3 , q

2+q+1
3 } if d = 3;

{p(q − 1), q2 − 1, q2 + q + 1} if d = 1,
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where q = pn is odd and d = (3, q − 1), and

µ(L3(2n)) =


{4, 2n − 1, 2(2

n−1)
3 , 2

2n−1
3 , 2

2n+2n+1
3 } if d = 3;

{4, 2(2n − 1), 22n − 1, 22n + 2n + 1} if d = 1,

where d = (3, 2n − 1), except n ∈ {1, 2}.
• Considering Lemma 2.4 the solvable graph of

L3(q) ∼=
SL3(q)

Z(SL3(q))
,

where |Z(SL3(q))| = (3, q−1), is a subgraph of SL3(q). We also found from

Lemma 2.5 that

Γs(L3(q))− {3} = Γs(SL3(q))− {3}.

On the other hand, if 3 ≈ p in Γs(SL3(q)), then there exists a solvable

subgroup H of SL3(q) such that 3p divides |H|. Obviously,

HZ

Z
∼=

H

H ∩ Z

where Z = Z(SL3(q)), is a solvable subgroup of L3(q). If either H ∩Z = 1,

or Z 6 H and 9 | |H|, then 3p divides |HZ
Z | and so 3 ≈ p in Γs(L3(q)).

In general, let G be a finite group possessing a normal cyclic subgroup

〈x〉 where o(x) = p for some prime p ∈ π(G). Then we can conclude from

Lemma 2.5 that for every prime q, r ∈ π(G) \ {p}, q ≈ r in Γs(G/〈x〉) if

and only if q ≈ r in Γs(G). It follows that

Γs(G/〈x〉)− {p} = Γs(G)− {p}.

• The maximal subgroups of SL3(q) which is collected in [4] (Table 8. 3) are

listed as follows.

Subgroup Conditions Subgroup Conditions

Eq
3 : GL2(q) SL3(q0).

(
q−1
q0−1 , 3

)
q = q0

r, r is a prime

Eq
1+2 : (q − 1)2 3+

1+2 : Q8.
(q−1,9)

3 p = q ≡ 1 (mod 3)

GL2(q) d× SO3(q) q is odd

(q − 1)2 : S3 q > 5 (q0 − 1, 3)× SU3(q0) q = q0
2

(q2 + q + 1) : 3
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According to the notation of [4], d = |Z(SL3(q))| = (3, q−1). The cyclic

group of order n is denoted by n. An elementary abelian group of order pn

is denoted by Epn or just by pn. By [n] we denote a group of order n, of

unspecified structure. For a prime p, p1+2n
+ or p1+2n

− is used for the particu-

lar case of an extraspecial group. For each prime number p and positive n,

there are just two types of extraspecial group, which are central products

of n non-abelian groups of order p3. For an odd prime p, the subscript is +

or − according as the group has exponent p or p2. For elementary abelian

groups A we write Am+n to mean a group with an elementary abelian nor-

mal subgroup Am such that the quotient is isomorphic to An. For two

groups A and B, a split extension (resp. a non-split extension) is denoted

by A : B (resp. A.B). Moreover, A × B denotes the direct product of A

and B. (See [6])

• The subgroups of L3(q) when q is odd and the maximal subgroups of L3(q)

when q is even, are as follows (see [7]):

(1) If q is odd:

Subgroup Conditions Subgroup Conditions

L3(q0) q is a power of q0 [q3(q + 1)(q − 1)2/d]

PGL3(q0) q is a power of q03, 3 | q0 − 1 [6(q − 1)2/d]

PSU3(q02) q is a power of q02 [3(q2 + q + 1)/d]

PU3(q02) q is a power of q06, 3 | q0 + 1 [q(q2 − 1)]

[720], [2520] q is an even power of 5 [216] 9 | q − 1

[168] −7 is square in GF (q) [36], [72] 3 | q − 1

[360] 5 is square in GF (q),

there is a nontrivial cube

root of unitary

(2) If q is even:

Subgroup Conditions Subgroup Conditions

L3(q0) q is a power of q0 [q3(q + 1)(q − 1)2/d]

PGL3(q0) q = q0
3, q0 is square [6(q − 1)2/d]

PSU3(q0
2) q is square [360] q = 4

PU3(q0
2) q = q0

6, q is not square
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Using the information above, the compact form of Γs(L3(q)) is found in Figures

1− 7. Note that in Figures 1− 3, q = pk where p 6= 2, 3.

Lemma 2.10. Let G be a simple group with |Aut(G) : G| = 2. Then we have:

Γs(Aut(G))− {2} = Γs(G)− {2}.

In particular, if r ∈ π(G) − {2}, then dsG(r) 6 dsAut(G)
(r) 6 dsG(r) + 1, and

moreover; if 2 is a complete prime in Γs(G), then dsAut(G)
(r) = dsG(r).

Proof. We first claim that every subgroup of Aut(G) of odd order is a subgroup

of G. Suppose that H is a subgroup of Aut(G) of odd order. Since |H : H ∩G| =
|HG : G| which divides 2, we have HG = G. Hence H 6 G.

Note that π(Aut(G)) = π(G). In what follows, we will show that, if p and q

are two odd primes such that p ≈ q in Γs(Aut(G)), then p ≈ q in Γs(G). Assume

that p ≈ q in Γs(Aut(G)). Hence, there is a solvable subgroup L 6 Aut(G) such

that pq | |L|. We consider {p, q}-Hall subgroup H of L. Now from the previous

paragraph of the proof, H is a subgroup of G and so p ≈ q in Γs(G). �

Remark 2.11. It is easy to see that in general, if G is a finite group and G.2

is an extension, then Γs(G.2) − {2} = Γs(G) − {2}. An example is provided by

G = L2(16). We can see from [6] that:

• the maximal subgroups of G are as follows: 24 : 15,A5, the dihedral groups

D30 and D34;

• the maximal subgroups of G.2 are as follows: 24 : (3×D10), A5 × 2, 17 : 4

and D10 × S3.

It is seen that Γs(G.2) = Γs(G) is as follow:

7 ≈ 2 ≈ 3 ≈ 5 ≈ 2.

It implies that

Γs(G.2)− {2} = Γs(G)− {2}.
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Fig. 1.Γs(L3(q)), 9 | q − 1.

t t t
t

t t
p

π(q − 1) \ {2, 3}

π(q + 1) \ {2}
2

3
π(q2 + q + 1) \ {3}

�
�
�

@
@
@

@
@
@

�
�
�

H
HHH

HH

Fig. 2. Γs(L3(q)), 3 | q − 1(9 - q − 1).
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Fig. 3. Γs(L3(q)), 3 | q + 1.
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Fig. 4. Γs(L3(q)), q = 2k, 9 | q − 1.
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Fig. 5. Γs(L3(q)), q = 2k, 3 | q − 1(9 - q − 1).
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Fig. 6. Γs(L3(q)), q = 2k, 3 | q + 1.
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Fig. 7. Γs(L3(q)), q = 3k.
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3. Local subgroups and their solvable graphs

A local subgroup of a group G is a subgroup H of G if there is a nontrivial

solvable subgroup K of G such that H = NG(K). A subgroup of a finite group is

p-local if it is the normalizer of some nontrivial p-subgroup. It is good to note that

we denote by Sylp(G) the set of all Sylow p-subgroups of G.

Let P ∈ Sylp(G) for a prime p ∈ π(G) and NG(P ) be a p-local subgroup. If

x ∈ NG(P ) is an element, then 〈x〉P is a solvable subgroup of G. Therefore,

ds(p) > |π(NG(P ))| − 1. Moreover, the spanning subgraph of the solvable graph of

NG(P ) is a star graph with central vertex p.

In general, it is easy to see that if NG(H) is a local subgroup of G for some

solvable subgroup H of G, then for all prime p ∈ π(H), ds(p) > |π(NG(H))| − 1.

Let G be a finite group which is not a non-abelian simple group. Then G has

a normal nontrivial subgroup K1. Suppose that p1 ∈ π(K1). If P1 ∈ Sylp1
(K1),

then we obtain from Frattini’s argument that G = NG(P1)K1. Again, if K1 is not

a simple group, then by a similar way we have K1 = NK1
(P2)K2 where K2 is a

nontrivial normal subgroup of K1 and P2 ∈ Sylp2
(K2). By continuing this way, we

get

G = NG(P1)NK1
(P2)NK2

(P3) . . . NKn−1
(Pk)Kn,

where Kn C Kn−1 C · · · C K1 C G and Kn is a simple group. Furthermore, it

is easily seen that for every two subgroups H and K of G such that H 6 K,

NK(H) 6 NG(H). Therefore, we can study the p-local subgroups of G and their

influence on the structure of the solvable graph of G.

We can ask this question that if G is a non-solvable group which is not a non-

abelian simple group and all of whose local subgroups are solvable, is the solvable

graph of G complete? Actually, the answer is no. To explain it, we should mention

that the structures of these groups are completely classified.

An N -group is a group that all of whose local subgroups are solvable groups.

It is clear that every solvable group is an N -group. The simple N -groups were

classified by John Thompson in series of papers. In fact, the simple N -groups are

as follows: L2(q) (q = pf where p is prime), L3(3), 2B2(22m+1), U3(3), A7, M11,
2F4(2)′. More generally, Thompson showed that any non-solvable N -group is a

subgroup of Aut(G) where G is a simple N -group.
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Now, we consider the group G = Aut(U3(3)). In fact, G = U3(3).2 and so by

the structures of the maximal subgroups of G in [6], we can see that the solvable

graph of G is as follows: 2 ≈ 3 ≈ 7. Hence, Γs(G) is not complete.

4. ODs-characterization of some projective special linear groups

As mentioned before, it was shown in [3] that all sporadic groups and the pro-

jective special linear groups L2(q) with certain properties are ODs-characterizable.

Moreover, the following Lemma was proved.

Lemma 4.1. Suppose that H is a finite group and |π(H)| = k > 3. If ∆k−1(H) = ∅
and

H /∈ {Bn(q),Cn(q) : n > 3 and q is odd},

then H is ODs-characterizable.

In this section, we are going to examine ODs-characterizability of projective

special linear groups L3(q). Considering the Figures 1−7, we can find from Lemma

4.1 that if either q is odd and 9 - q − 1, or q is even and 3 ‖ q − 1, these groups

are ODs-characterizable. So we only examine other cases whose solvable graphs are

shown in Figures 1, 4 and 6.

In [1], the author introduced a new terminology. Let m be a positive integer

with the following factorization into distinct prime power factors m = pe11 p
e2
2 · · · p

ek
k

for some positive integers ei and k. Then we put

mpf(m) := max{peii | 1 6 i 6 k}.

In [3], mpf(|S|) for sporadic simple groups and all simple groups of Lie type S

were completely listed. For convenience, we tabulate |S| and mpf(|S|) for sporadic

simple groups and all simple groups of Lie type S in Tables 1 and 2.
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Table 1. The order and mpf of a sporadic simple group.

S |S| mpf(|S|) S |S| mpf(|S|)

J2 27 · 33 · 52 · 7 27 Co2 218 · 36 · 53 · 7 · 11 · 23 218

M11 24 · 32 · 5 · 11 24 Fi23 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23 313

M12 26 · 33 · 5 · 11 26 Co1 221 · 39 · 54 · 72 · 11 · 13 · 23 221

M22 27 · 32 · 5 · 7 · 11 27 Ru 214 · 33 · 53 · 7 · 13 · 29 214

HS 29 · 32 · 53 · 7 · 11 29 Fi′24 221 · 316 · 52 · 73 · 11 · 13 · 17· 316

McL 27 · 36 · 53 · 7 · 11 36 23 · 29

Suz 213 · 37 · 52 · 7 · 11 · 13 213 O′N 29 · 34 · 5 · 73 · 11 · 19 · 31 29

Fi22 217 · 39 · 52 · 7 · 11 · 13 217 Th 215 · 310 · 53 · 72 · 13 · 19 · 31 310

He 210 · 33 · 52 · 73 · 17 210 J4 221 · 33 · 5 · 7 · 113 · 23 · 29· 221

J1 23 · 3 · 5 · 7 · 11 · 19 19 31 · 37 · 43

J3 27 · 35 · 5 · 17 · 19 35 B 241 · 313 · 56 · 72 · 11 · 13 · 17· 241

HN 214 · 36 · 56 · 7 · 11 · 19 214 19 · 23 · 31 · 47

M23 27 · 32 · 5 · 7 · 11 · 23 27 Ly 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67 56

M24 210 · 33 · 5 · 7 · 11 · 23 210 M 246 · 320 · 59 · 76 · 112 · 133 · 17· 246

Co3 210 · 37 · 53 · 7 · 11 · 23 37 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
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Table 2. The order and mpf of a simple group of Lie type.

S Restrictions on S |S| mpf(|S|)

Ln+1(q) n > 2 (n+ 1, q − 1)−1qn(n+1)/2
∏n+1

i=2 (qi − 1) qn(n+1)/2

L2(q) |π(q + 1)| = 1 (2, q − 1)−1q(q − 1)(q + 1) q + 1

L2(q) |π(q + 1)| > 2 (2, q − 1)−1q(q − 1)(q + 1) q

Bn(q) n > 2 (2, q − 1)−1qn
2 ∏n

i=1(q2i − 1) qn
2

Cn(q) n > 3 (2, q − 1)−1qn
2 ∏n

i=1(q2i − 1) qn
2

Dn(q) n > 4 (4, qn − 1)−1qn(n−1)(qn − 1)
∏n−1

i=1 (q2i − 1) qn(n−1)

G2(q) q6(q6 − 1)(q2 − 1) q6

F4(q) q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1) q24

E6(q) (3, q − 1)−1q12(q9 − 1)(q5 − 1)|F4(q)| q36

E7(q) (2, q − 1)−1q39(q18 − 1)(q14 − 1)(q10 − 1)|F4(q)| q63

E8(q) q96(q30 − 1)(q12 + 1)(q20 − 1)(q18 − 1)(q14 − 1) q120

(q6 + 1)|F4(q)|

Un+1(q) (n, q) 6= (2, 3), (3, 2) (n+ 1, q + 1)−1qn(n+1)/2
∏n+1

i=2 (qi − (−1)i) qn(n+1)/2

n > 2

U4(2) 26 · 34 · 5 34

U3(3) 25 · 33 · 7 25

2B2(q) q = 22m+1 q2(q2 + 1)(q − 1) q2

|π(q2 + 1)| > 2

2B2(q) q = 22m+1 q2(q2 + 1)(q − 1) q2 + 1

|π(q2 + 1)| = 1

2Dn(q) n > 4 (4, qn + 1)−1qn(n−1)(qn + 1)
∏n−1

i=1 (q2i − 1) qn(n−1)

3D4(q) q12(q8 + q4 + 1)(q6 − 1)(q2 − 1) q12

2G2(q) q = 32m+1 q3(q3 + 1)(q − 1) q3

2F4(q) q = 22m+1 q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1) q12

2E6(q) (3, q + 1)−1q12(q9 + 1)(q5 + 1)|F4(q)| q36
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Theorem 4.2. Let G be a finite group satisfying |G| = |L3(q)| and Ds(G) =

Ds(L3(q)), where q = pf is odd. In addition, assume 9 | q − 1 and |π( q2+q+1
3 )| = 1.

Then G ∼= L3(q).

Proof. The solvable graph of L3(q) with given conditions are shown in Figures

1− 7.

By the hypothesis

|G| = |L3(q)| = 1

3
q3(q2 − 1)(q3 − 1).

Moreover, Ds(G) = Ds(L3(q)) which implies from Figure 1 that

• ds(3) = |π(G)| − 1,

• ds(t) = |π(q2 + q + 1)| − 1 for every prime t ∈ π( q2+q+1
3 ).

Since |π( q2+q+1
3 )| = 1 and 9 - q2 + q + 1, so there exists a prime p′ such that

π( q2+q+1
3 ) = {p′}. We can see from Lemma 2.8 that Γ̃(G) = (Γs(G) − {3})c is

connected and any disjoint pair of vertices of Γs(G) can be expressed by only one

GKS-series, say 1EM CN EG, such that M and G/N are 3-groups. Furthermore,

using the structure of the degree pattern of the solvable graph of G, we can get

that 3 is adjacent to p′. It is also seen from Lemma 2.6 that p′ ∈ π(N/M). Let

|M | = 3m and |G/N | = 3n. Thus we can conclude that

|N/M | = 3−m−n−1q3(q2 − 1)(q3 − 1).

On the other hand, N/M is a non-abelian simple group and so according to the

classification of finite simple groups, the possibilities for N/M are: an alternating

group Al on l > 5 letters, one of the 26 sporadic simple groups, and a simple group

of Lie type. If N/M ∼= L3(q), then M = 1, N = G and thus G ∼= L3(q), as required.

Therefore, we assume that N/M is isomorphic to the non-abelian simple group

S � L3(q) and we will try to get a contradiction. To this aim, we use the following

facts.

First, the solvable graph of N/M is a subgraph of the solvable graph of G. It

yields that ds(p
′) 6 1 in the solvable graph of N/M . Second,

mpf(|S|) = mpf(|N/M |).

Therefore, we need to compute the value mpf(3−m−n−1q3(q2 − 1)(q3 − 1)).

It is easily seen that

q − 1 < q2 − 1 < q2 + q + 1 < q3,

because q > 3. So we can conclude that

mpf(3−m−n−1q3(q2−1)(q3−1)) = mpf(3−m−n−1q3(q−1)(q2−1)(q2 +q+1)) = q3.
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Hence, mpf(|S|) = q3.

(1) S is not isomorphic to an alternating group Al, l > 5.

Suppose that S is isomorphic to an alternating group Al, l > 5. Thus

p′ divides |Al| which yields that p′ 6 l. If l > p′ + 4, then we can obtain

from [10] that d(p′) > 2 and hence ds(p
′) > 2 that is impossible. So we

may assume that p′ 6 l 6 p′ + 3.

It is good to mention that π(q2 + q + 1) = {3, p′} and 3 ‖ q2 + q + 1.

Then according to the order of Al, we deduce that q2 + q+ 1 = 3p′. On the

other hand, we have

l!

2
= |Al| = |S| = |N/M | = 3−m−n−1q3(q − 1)(q2 − 1)(q2 + q + 1),

which follows that p′−1 = (q2 +q−2)/3 divides 3−m−n−1q3(q−1)(q2−1),

a contradiction.

(2) S is not isomorphic to one of the 26 sporadic simple groups.

Suppose that S is isomorphic to one of the 26 sporadic simple groups. As

mentioned above, mpf(|S|) = mpf(|N/M |). It implies that mpf(|S|) = q3.

Hence, we obtain from Table 1 that S is one of the following groups:

M12,HS,McL,Co2,Co1,O
′N, J4,Ly,M.

On the other hand, p 6= 2 which forces that S ∼= Ly. So we can conclude

that q = 25. It follows that q2 + q + 1 = 651 which is a contradiction.

(3) S is not isomorphic to a simple group of Lie type, except L3(q).

We only examine the cases when S is isomorphic to the groups Ln+1(q0),

Cn(q0), Dn(q0), 2E6(q0). We omit other cases because they are similar.

• Let S be isomorphic to Ln+1(q0) for some integer n 6= 2 and a power q0

of a prime p0. If n > 4, then considering the spectrum of Ln+1(q0) in [5],

we can find that ds(p
′) > 2 in the solvable graph of S that is impossible.

Assume now that n = 3. By Table 2, it is seen that

mpf(|L4(q0)|) = q60 ,

and so

q60 = mpf(|S|) = mpf(|N/M |) = q3.

Hence, we have q = q20 . On the other hand,

|S| = |L4(q0)| = (4, q0 − 1)−1q60(q20 − 1)(q30 − 1)(q40 − 1).

It follows that

(4, q0 − 1)−1(q0 − 1) = 3−m−n−1(q20 − q0 + 1),
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which is a contradiction. Therefore, we may suppose that n = 1. It is seen

from Table 2 that mpf(|L2(q0)|) = q0 or q0 + 1. If mpf(|L2(q0)|) = q0 + 1,

then by an easy computation it is found that

2(q2 − 1) = 3m+n+1(q3 − 2),

a contradiction. In the case when mpf(|L2(q0)|) = q0 by a similar way, we

can get a contradiction.

• Assume that S is isomorphic to Cn(q0). Then we observe that

qn
2

0 = mpf(|Cn(q0)|) = mpf(|S|) = mpf(|N/M |) = q3.

Note that

|Cn(q0)| = 1

2
qn

2
n∏

i=1

(q2i − 1).

Let r be a prime dividing the order of S. Then by Proposition 2.4 in [9],

and Propositions 3.1 and 4.3 in [8], we can easily find that in the case when

η(e(r, q0)) 6 n− 1, r is adjacent to at least two primes in the prime graph

of G which follows that ds(r) > 2. Hence, if ds(r) 6 1, then r is a primitive

prime of qn0 − 1 or q2n0 − 1. Thus we have q2 + q + 1 = rm for a natural

number m. It yields that q2 + q + 1 divides qn0 − 1 or qn0 + 1. Now using

the fact that q3 = qn
2

0 , we can obtain a contradiction.

• Suppose that S is isomorphic to Dn(q0). Then we have

q
n(n−1)
0 = mpf(|Dn(q0)|) = mpf(|S|) = mpf(|N/M |) = q3.

Note that

|Dn(q0)| = (4, qn0 − 1)−1qn(n−1)(qn − 1)

n−1∏
i=1

(q2i − 1).

Let r be a prime dividing the order of S. According to Proposition 2.5 in

[9], and Propositions 4.3, 3.1 and 4.4 in [8], it is seen that in the case when

η(e(r, q0)) 6 n− 1, r is adjacent to at least two primes in the prime graph

of G which implies that ds(r) > 2. It follows that if ds(r) 6 1, then r is

probably a primitive prime of qn0 −1, qn−10 −1 or q
2(n−1)
0 −1. Then we have

q2 + q + 1 = rm for a natural number m. We can conclude that q2 + q + 1

divides qn0 − 1, qn−10 − 1 or qn−10 + 1. Now using the fact that q3 = q
n(n−1)
0 ,

we get a contradiction.

• Let S be isomorphic to 2E6(q0). We can see from Table 2 that

mpf(|2E6(q0)|) = q360 . It follows that q = q120 . On the other hand,

|S| = |2E6(q0)| = q360 (q120 − 1)(q90 + 1)(q80 − 1)(q60 − 1)(q50 + 1)(q20 − 1).
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So we deduce that q360 = q3. Then we have

|N/M | = 3−m−n−1q3(q2 − 1)(q3 − 1) = 3−m−n−1q360 (q240 − 1)(q360 − 1),

and it follows that a primitive prime of q240 − 1 belongs to π(2E6(q0)), a

contradiction. �

Now by a similar way to the proof of Theorem 4.2, we can prove the following

Theorem.

Theorem 4.3. Let G be a finite group satisfying |G| = |L3(2f )| and Ds(G) =

Ds(L3(2f )). If one of the following conditions holds, then G ∼= L3(2f ).

(1) 9 | 2f − 1 and |π( 22f+2f+1
3 )| = 1;

(2) 3 | 2f + 1 and |π(22f + 2f + 1)| = 1.

Finally, considering Theorems 4.2 and 4.3, we state the following Corollary.

Corollary 4.4. The simple groups L3(q) with the following conditions are ODs-

characterizable:

(1) q is odd and 9 - q − 1;

(2) q is even and 3 ‖ q − 1;

(3) 9 | q − 1 and |π( q2+q+1
3 )| = 1;

(4) q is even, 3 | q + 1 and |π(q2 + q + 1)| = 1.
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