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Abstract. Matlis showed that the injective hull of a simple module over

a commutative Noetherian ring is Artinian. In several recent papers, non-

commutative Noetherian rings whose injective hulls of simple modules are lo-

cally Artinian have been studied. This property had been denoted by property

(�). In this paper we investigate, which non-Noetherian semiprimary commu-

tative quasi-local rings (R,m) satisfy property (�). For quasi-local rings (R,m)

with m3 = 0, we prove a characterization of this property in terms of the dual

space of Soc(R). Furthermore, we show that (R,m) satisfies (�) if and only if

its associated graded ring gr(R) does.

Given a field F and vector spaces V and W and a symmetric bilinear

map β : V × V → W we consider commutative quasi-local rings of the form

F × V ×W , whose product is given by

(λ1, v1, w1)(λ2, v2, w2) = (λ1λ2, λ1v2 + λ2v1, λ1w2 + λ2w1 + β(v1, v2))

in order to build new examples and to illustrate our theory. In particular we

prove that a quasi-local commutative ring with radical cube-zero does not sat-

isfy (�) if and only if it has a factor, whose associated graded ring is of the

form F × V × F with V infinite dimensional and β non-degenerated.
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1. Introduction

The structure and in particular finiteness conditions of injective hulls of simple

modules have been widely studied. Rosenberg and Zelinsky’s work [15] is one of

the earliest studies of finiteness conditions on the injective hull of a simple module.

Matlis showed in his seminal paper [13] that any injective hull of a simple module
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over a commutative Noetherian module is Artinian. Jans in [11] has termed a ring

R to be left co-Noetherian if every simple left R-module has an Artinian injective

hull. Vamos showed in [20] that a commutative ring R is co-Noetherian if and only

if Rm is Noetherian for any maximal ideal m ∈ Max(R) - generalising in this way

Matlis’ result. In connection with the Jacobson Conjecture for non-commutative

Noetherian rings, Jategaonkar showed in [12] (see also [6,17]) that the injective

hulls of simple modules are locally Artinian, i.e. any finitely generated submodule

is Artinian, provided the ring R is fully bounded Noetherian. We say that a ring

R satisfies condition (�) if

Injective hulls of simple left R-modules are locally Artinian. (�)

In this paper we study (�) for, not necessarily Noetherian, quasi-local commutative

rings R with maximal ideal m such that m3 = 0. A description of such rings is given

in terms of the dual space of Soc(R) seen as a vector space over R/m (Theorem

4.4). Furthermore, we relate property (�) of (R,m) with its associated graded ring

gr(R) = R/m⊕ m/m2 ⊕ m2 in Corollary 4.6. Given a field F and vector spaces V

and W and a symmetric bilinear map β : V × V → W we consider commutative

quasi-local rings of the form F × V ×W , whose product is given by

(λ1, v1, w1)(λ2, v2, w2) = (λ1λ2, λ1v2 + λ2v1, λ1w2 + λ2w1 + β(v1, v2))

to build new examples and to illustrate our theory. In particular we prove in

Proposition 5.3 that a quasi-local commutative ring with radical cube-zero does

not satisfy (�) if and only if it has a factor whose associated graded ring is of the

form F × V × F with V of infinite dimension and β non-degenerate.

2. Preliminaries

The following lemma shows that condition (�) is intrinsically linked to Krull’s

intersection Theorem:

Lemma 2.1. Let R be a (not necessarily commutative) ring with Jacobson radical

J , such that finitely generated Artinian modules have finite length. If R has property

(�), then for any left ideal I of R one has

∞⋂
n=0

(I + Jn) = I.

Proof. Let I be any left ideal of R. Then by Birkhoff’s theorem R/I embeds

into a product of cyclic modules R/Ki with essential simple socle, where I ⊆ Ki

and
⋂
Ki = I. By hypothesis each of these modules R/Ki is Artinian and hence
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has finite length. Thus there exists a number ni ≥ 1 such that JniR/Ki = 0, or

equivalently Jni ⊆ Ki. Hence I + Jni ⊆ Ki for all i and as the intersection of the

Ki’s is I, we have

I =
⋂
i

Ki ⊇
⋂
i

(I + Jni) ⊇
⋂
n

(I + Jn) ⊇ I.

�

Remark 2.2. (1) Assuming the hypotheses of Lemma 2.1, one can easily adapt

the above proof to show that
⋂∞
n=0 (JnM) = 0, for any finitely generated left

R-module M . Furthermore, if M is a finitely generated essential extension

of a simple left R-module, then there exists n > 0 such that JnM = 0.

(2) Finitely generated Artinian left R-modules have finite length if for example

R is left Noetherian or if R is commutative. For the latter case let M be an

Artinian module over a commutative ring R generated by x1, . . . , xk. Then

R/Ann(M)→ R(x1, ..., xk) ⊆Mk

is an embedding. Since Mk is Artinian, R/Ann(M) is Artinian and by

the Hopkins-Levitzki’s Theorem R/Ann(M) is Noetherian. As M is finitely

generated over R/Ann(M), M is also Noetherian, i.e. has finite length.

(3) We follow the terminology of commutative ring theory and call a commu-

tative ring R quasi-local if it has a unique maximal ideal m. A local ring is

a commutative Noetherian quasi-local ring. From Lemma 2.1 we see that

any commutative quasi-local ring (R,m), that satisfies (�), is separated in

the m-adic topology. Moreover if mn is idempotent, for some n ≥ 1, then

mn = 0.

Recall that a ring R with Jacobson radical J is called semilocal if R/J is

semisimple. A semilocal ring with nilpotent Jacobson radical is called semipri-

mary. The second socle of a module M is the submodule Soc2(M) of M with

Soc(M/Soc(M)) = Soc2(M)/Soc(M). For an ideal K of R, denote by AnnM (K)

the set of elements m ∈ M such that Km = 0. For a semilocal ring R, it is well-

known that AnnM (J) = Soc(M) and that AnnM (J2) = Soc2(M). For a left ideal

I set (I : K) = {r ∈ R | Kr ⊆ I}.

Proposition 2.3. The following statements are equivalent, for a semiprimary ring

R with Jacobson radical J .

(a) R has property (�).
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(b) Soc2(M) has finite length, for any finitely generated left R-module M with

Soc(M) finitely generated.

(c) (I : J2)/I is finitely generated, for any left ideal I of R with (I : J)/I

finitely generated.

Proof. Note first that since R is semiprimary, there exists n ≥ 0 such that Jn = 0.

Moreover since R is semilocal, Soc(M) = AnnM (J) = {m ∈ M | Jm = 0} for any

left R-module M . In particular any left R-module has an essential socle, since any

left R-module M has a finite socle series:

0 = JnM ⊆ Jn−1M ⊆ · · · ⊆ JM ⊆M.

(a) ⇒ (b) If R satisfies (�) then any finitely generated module with finitely

generated (essential) socle is Artinian. Hence if Soc(M) is finitely generated, M

must be Artinian and hence M/Soc(M) is Artinian.

(b) ⇒ (c) for M = R/I one has Soc(R/I) = (I : J)/I as mentioned above.

Moreover, (I : J2) = ((I : J) : J) and therefore (I : J2)/(I : J) = Soc(R/(I : J)) =

Soc(M/Soc(M)). Thus the statement follows from (b).

(c)⇒ (a) is clear since if I is a left ideal such that M = R/I is a cyclic essential

extension of a simple left R-module, then (I : J)/I is cyclic and by assumption

(I : J2)/I is finitely generated. Hence (I : J2)/I has finite length. Applying our

hypothesis to I ′ = (I : J), we can conclude that (I : J3)/I has finite length.

Continuing we have also that R/I = (I : Jn)/I has finite length. �

A sufficient condition for a ring to satisfy (�) is given by the following lemma.

Lemma 2.4. Any ring R, with R/Soc(RR) being left Artinian, satisfies (�).

Proof. Suppose I ⊂ K ⊆ R are left ideals such that K/I is a simple left R-module

and essential in R/I. If Soc(RR) ⊆ I, then R/I is a factor of R/Soc(RR) and hence

Artinian. If Soc(RR) * I, then (Soc(RR) + I)/I is a semisimple submodule of R/I

and hence must equal K/I, i.e. Soc(RR) + I = K. As a quotient of R/Soc(RR),

the module R/K = R/(Soc(RR) + I) is Artinian and so is R/I. �

Clearly it is not necessary for a ring R with (�) to satisfy R/Soc(RR) being

Artinian. Moreover, Example 5.2 shows that there are commutative rings R such

that R/Soc(R) satisfies (�), but R does not.

In recent papers [2,3,4,5,8,9,14,16], several non-commutative Noetherian rings

have been shown to satisfy (�). In this note we intend to study condition (�) for

commutative not necessarily Noetherian rings.
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3. Local-global argument

Jans in [11] defined a ring R to be left co-Noetherian if for every simple left R-

module its injective hull is Artinian. Vamos has shown in [20] that a commutative

ring R is co-Noetherian if and only if Rm is Noetherian for all m ∈ Max(R).

The following lemma shows the relation between co-Noetherianess and condition

(�) for commutative quasi-local rings. The proof follows the ideas of [19, Theorem

1.8].

Lemma 3.1. The following statements are equivalent for a commutative quasi-local

ring R with maximal ideal m.

(a) R is Noetherian.

(b) R is co-Noetherian.

(c) R satisfies (�) and m/m2 is finitely generated.

(d) R satisfies
⋂∞
n=0(I + mn) = I for all (finitely generated) ideals I of R and

m/m2 is finitely generated.

Proof. (a)⇔ (b) follows from Vamos’ result [20, Theorem 2].

(a)⇒ (c) is clear and (c)⇒ (d) follows from Lemma 2.1.

(d)⇒ (a) There exists a finitely generated ideal B of R such that m = B + m2.

Then

m = B + m2 = B + (B + m2)2 ⊆ B + m3 ⊆ m,

and in general m = B + mn for every positive integer n. It follows from (d) that

m = B and hence m is finitely generated. Suppose that R is not Noetherian. Let Q

be maximal among the ideals C of R such that C is not finitely generated. Then Q

is a prime ideal of R by a standard argument (see [7, Theorem 2]). Clearly Q 6= m.

Let p ∈ m with p /∈ Q. By the choice of Q the ideal Q + Rp is finitely generated,

say

Q+Rp = R(q1 + r1p) + · · ·+R(qk + rkp), (1)

for some positive integer k, qi ∈ Q(1 ≤ i ≤ k), ri ∈ R(1 ≤ i ≤ k). Let D =

Rq1+ · · ·+Rqk ⊆ Q. Let q ∈ Q\D. Then by equation (1) there exist s1, . . . , sk ∈ R
and d ∈ D such that q− d = (s1r1 + · · ·+ skrk)p ∈ Q. Since Q is prime and p 6∈ Q,

(s1r1 + · · · + skrk) ∈ Q, i.e. Q = D + Qp. Now Q = D + Qpt for every positive

integer t and hence

Q =

∞⋂
s=1

(D +Qps) ⊆
∞⋂
s=1

(D + ms) = D.

It follows that Q = D and hence Q is finitely generated, a contradiction. Thus R

is Noetherian. �



96 PAULA A. A. B. CARVALHO, CHRISTIAN LOMP AND PATRICK F. SMITH

The diamond condition is equivalent to the condition that any injective hull of a

simple R-module is locally Artinian. By Remark 2.2, a commutative ring satisfies

(�) if and only if any injective hull E of a simple R-module is locally of finite length,

i.e. any finitely generated submodule of E has finite length.

The last result of this section gives us a local-global argument for condition

(�) similar to the one of Vamos for co-Noetherian rings. We start by restating a

well-known result that can be found for example in [18, Proposition 5.6].

Proposition 3.2. Let R be commutative ring, m a maximal ideal of R and denote

by Rm the localization of R at m. Then the injective hull E = E(R/m) of R/m as

R-module is also the injective hull of Rm/mRm as Rm-module.

Making use of Proposition 3.2 we can now prove the

Theorem 3.3. A commutative ring R satisfies (�) if and only if Rm satisfies (�),
for all m ∈ Max(R).

For the proof of Theorem 3.3 we need the following two lemmas. In what follows

AnnS(−) denotes the annihilator of an S-module.

Lemma 3.4. Let R be a commutative ring satisfying (�), m a maximal ideal of R

and x ∈ E(R/m) \ {0}. Then there exists k ≥ 1 such that mkx = 0.

Proof. Since R satisfies (�), Rx has a finite composition series (see Remark 2.2(2)).

Hence there exist maximal ideals m1, . . . ,mn of R such that AnnR(x) ⊆ mi, for all

i and

m1m2 · · ·mn ⊆ AnnR(x).

Write mkI = m1m2 · · ·mn for some k ≥ 0 and I the product of maximal ideals

mi 6= m. Now since Rmmi = Rm if m 6= mi, it follows

Rmm
k = Rmm

kI ⊆ RmAnnR(x) = AnnRm
(Rmx),

where AnnRm
(Rmx) = RmAnnR(x) follows from [1, Proposition 3.14]. As x 6= 0,

k ≥ 1 and the result follows. �

Lemma 3.5. Let R be a commutative ring, m a maximal ideal of R, Rm the

localization of R at m and x ∈ E(R/m) \ {0}. If there exists k ≥ 1 such that

mkx = 0, then Rmx = Rx and the R-submodules lattice of Rx coincides with the

Rm-submodule lattice of Rmx.

Proof. For any a ∈ R \m we have R = Ra+ m, which implies also R = Ra+ mk.

Thus there exists b ∈ R such that 1−ab ∈ mk, i.e. x = abx. Hence a−1x = bx ∈ Rx
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shows that Rmx = Rx. We have just shown that any principal R-submodule of

E = E(R/m) is also a principal Rm-submodule of E. Hence the R-submodule

generated by any set of elements of E coincides with the Rm-submodule generated

by that set. �

Proof of Theorem 3.3. Let m ∈ Max(R). By Proposition 3.2, E = E(R/m) is

also the injective hull of the unique simple Rm-module Rm/mRm.

Assume that R satisfies (�). For x ∈ E \ {0}, Rx is an Artinian R-module and

by Lemmas 3.4 and 3.5 also Rmx = Rx is Artinian as Rm-module, so Rm satisfies

(�).
Now assume that Rm satisfies (�). By hypothesis E is a locally Artinian Rm-

module and hence has finite length by Remark 2.2. Hence there exist k ≥ 1 such

that (mRm)kx = 0, for any x ∈ E. In particular mkx = 0 and by Lemma 3.5 it

follows that Rx = Rmx has finite length as R-module. �

Theorem 3.3 shows that in order to characterize commutative rings satisfying

(�), we need only to focus on quasi-local commutative rings.

4. Commutative semiprimary quasi-local rings

By Lemma 3.1, a quasi-local commutative ring is co-Noetherian if and only if it

is Noetherian. Recall, that an ideal I of a ring R is called subdirectly irreducible if

R/I has an essential simple socle. Clearly a ring R satisfies (�) if and only if R/I

is Artinian, for all subdirectly irreducible ideals I of R.

4.1. Commutative quasi-local rings with square-zero maximal ideal. Given

any vector space V over a field F , the trivial extension (or idealization) is defined on

the vector space R = F×V with multiplication given by (a, v)(b, w) = (ab, aw+vb),

for all a, b ∈ F and v, w ∈ V . Any such trivial extension R is a commutative quasi-

local ring that satisfies (�). However R is Noetherian if and only if V is finite

dimensional.

Lemma 4.1. Any commutative quasi-local ring with square-zero maximal ideal

satisfies (�).

Proof. Let (R,m) be a commutative quasi-local ring with m2 = 0. Since m is a

vector space over R/m, it is semisimple. Let K be any subdirectly irreducible ideal

of R. If K = m, then R/m is simple. So assume K ⊂ m. Then there exists a

complement L such that m = L⊕K and Soc(R/K) = m/K ' L is simple.

0 −−−−→ m/K −−−−→ R/K −−−−→ R/m −−−−→ 0
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is a short exact sequence. Hence R/K has length 2. �

4.2. Commutative quasi-local rings with cube-zero maximal ideal. In this

section we will characterize commutative quasi-local rings (R,m) with m3 = 0 that

satisfy (�). Recall that Soc(R) = Ann(m) = {r ∈ R : rm = 0}. Hence m2 ⊆ Soc(R).

We start with a simple observation.

Lemma 4.2. Let (R,m) be a commutative quasi-local ring with m3 = 0.

(1) If m/Soc(R) is finitely generated, then R satisfies (�).

(2) If Soc(R) is finitely generated, then R satisfies (�) if and only if m/Soc(R)

is finitely generated.

Proof. (1) If m/Soc(R) is finitely generated, then R/Soc(R) is Artinian and by

Lemma 2.4, R satisfies (�).
(2) If Soc(R) is finitely generated and R satisfies (�), then Soc2(R) = m is finitely

generated, by Proposition 2.3 and in particular m/Soc(R) is finitely generated.

Conversely if m/Soc(R) is finitely generated and Soc(R) is finitely generated, then

m, and so R, has finite length. In particular, R satisfies (�). �

The last lemma raises the question, whether the reverse conclusion of (1) holds.

That is, whether m/Soc(R) needs to be finitely generated for a commutative quasi-

local ring R with m3 = 0 and satisfying property (�). As we will see in Example

5.4, this need not be the case.

Lemma 4.3. Let (R,m) be a commutative quasi-local ring with residue field F =

R/m. Suppose m3 = 0. Then there exists a correspondence between subdirectly irre-

ducible ideals of R that do not contain Soc(R) and non-zero linear maps

f : Soc(R)→ F . Each corresponding pair (I, f) satisfies

Soc(R) ∩ I = ker(f) and Soc(R) + I = Vf := {a ∈ m | f(ma) = 0}.

Proof. Let I be a subdirectly irreducible ideal that does not contain Soc(R), then

Soc(R/I) = (Soc(R) + I)/I is simple. Thus Soc(R) = Fx ⊕ (Soc(R) ∩ I), for a

non-zero element x ∈ Soc(R). Let f : Soc(R) → F be the linear map such that

ker(f) = Soc(R) ∩ I and f(x) = 1. Clearly Soc(R) + I ⊆ Vf , because

m(Soc(R) + I) = mI ⊆ m2 ∩ I ⊆ Soc(R) ∩ I = ker(f).

To show that Vf = Soc(R)+I we use the essentiality of Soc(R/I) = (Soc(R)+I)/I

in R/I as follows: For any a ∈ Vf \ I, there exists r ∈ R such that ra + I is a

non-zero element of Soc(R/I) = (Soc(R) + I)/I. Note that r 6∈ m since otherwise
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f(ra) = 0 and hence ra ∈ ker(f) ⊆ I. Therefore r is invertible and a + I =

r−1ra+ I ∈ Soc(R/I), i.e. Vf = Soc(R) + I.

On the contrary, let f be any non-zero element of Soc(R)∗ = HomF (Soc(R), F ).

Then there exists an element x ∈ Soc(R) with f(x) = 1, such that Soc(R) =

Fx⊕ ker(f). Let I be an ideal of R that contains ker(f) and that is maximal with

respect to x 6∈ I. Thus I is subdirectly irreducible and Soc(R/I) = (Soc(R)+I)/I =

(Fx⊕ I)/I is simple and essential in R/I. By construction ker(f) = I ∩ Soc(R).

Note that m(Soc(R)+I) = mI ⊆ m2∩I ⊆ Soc(R)∩I = ker(f), i.e. Soc(R)+I ⊆
Vf . To show the reverse inclusion, let a ∈ Vf \ I, then by essentiality there exists

r ∈ R with ra = u+ v ∈ Soc(R) + I, u ∈ Soc(R), v ∈ I and ra 6∈ I. If r ∈ m, then

ra ∈ ker(f) ⊆ I, contradicting essentiality. Hence r 6∈ m and a ∈ Soc(R) + I, i.e.

Vf = Soc(R) + I. �

Theorem 4.4. Retain the notation Vf from Lemma 4.3. Let (R,m) be a commu-

tative quasi-local ring with residue field F and m3 = 0. Then R satisfies (�) if and

only if m/Vf is finite dimensional over F , for any f ∈ Soc(R)∗.

Proof. Suppose that R satisfies (�) and let f ∈ Hom(Soc(R), F ). If f = 0, then

Vf = m and m/Vf has dimension zero. If f 6= 0, then by Lemma 4.3, there exists a

subdirectly irreducible ideal I with Vf = Soc(R) + I and I not containing Soc(R).

As R satisfies (�), R/I is Artinian and as a subquotient m/Vf = (m/I)/(Vf/I) is

also Artinian. The R-module m/Vf is semisimple since m2 ⊆ Vf . Hence m/Vf must

be finite dimensional as vector space over F .

Suppose m/Vf is finite dimensional for any f ∈ Hom(Soc(R), F ). Let I be a

subdirectly irreducible ideal of R. If Soc(R) ⊆ I, then R/I is an R/m2-module.

Since R/m2 is a quasi-local ring with square-zero radical, we have by Lemma 4.1,

that R/m2 satisfies (�). Hence R/I must be Artinian. If Soc(R) 6⊆ I, then by

Lemma 4.3, there exists a non-zero map f : Soc(R)→ F such that Soc(R)+I = Vf .

By hypothesis m/Vf is finite dimensional and is therefore Artinian as R-module.

As R/m and Vf/I are simple modules, also R/I is Artinian, proving that R/I is

Artinian for any subdirectly irreducible ideal I of R, i.e. R satisfies (�). �

Let (R,m) be any commutative quasi-local ring. The associated graded ring of R

with respect to the m-filtration is the commutative ring gr(R) =
⊕

n≥0 m
n/mn+1

with multiplication given by

(a+ mi+1)(b+ mj+1) = ab+ mi+j+1, ∀a ∈ mi, b ∈ mj , and i, j ≥ 0.

For any ideal I of R, the associated graded ideal is gr(I) =
⊕

n≥0(I ∩ mn +

mn+1)/mn+1. In particular gr(m) =
⊕

n≥1 m
n/mn+1 is the unique maximal ideal
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of gr(R). Hence (gr(R), gr(m)) is a commutative quasi-local ring with residue field

F = R/m. Furthermore, gr(Soc(R)) is contained in Soc(gr(R)).

In case m3 = 0, the associated graded ring of (R,m) is grR = F × m/m2 × m2,

where F = R/m is the residue field of R. For any proper ideal I of R one has

gr(I) = 0× (I + m2)/m2 × (I ∩m2)

and in particular gr(Soc(R)) = 0 × Soc(R)/m2 × m2 = Soc(gr(R)), because for

(0, a + m2, b) ∈ Soc(gr(R)) we have that (0, a + m2, b)(0, x + m2, 0) = (0, 0, ax) =

(0, 0, 0), for all x ∈ m if and only if a ∈ Soc(R). To shorten notation we will

write the elements of gr(R) as (a0, a1, a2) for ai ∈ mi, where the ith component is

understood to be modulo mi+1.

Lemma 4.5. Let (R,m) be a commutative quasi-local ring with residue field F and

m3 = 0. For any f ∈ Soc(gr(R))∗ = gr(Soc(R))∗ there exists g ∈ Soc(R)∗ such that

Vf = {a ∈ gr(m) : f(gr(m)a) = 0} = gr(Vg),

where Vg is the ideal of R defined in Lemma 4.3.

Proof. Let f : gr(Soc(R)) → F and denote by π : Soc(R) → m2 the projection

onto m2, since m2 is a direct summand of Soc(R). Define g : Soc(R)→ F by g(a) =

f(0, a, π(a)), for all a ∈ Soc(R). Then (0, x, y) ∈ Vf if and only if f(0, 0, tx) = 0,

for all t ∈ m. Since tx = π(tx) ∈ m2, the latter is equivalent to g(tx) = 0 for all

t ∈ m, i.e. x ∈ Vg (in the ring R). Hence Vf = {(0, x, y) ∈ gr(m) | x ∈ Vg, y ∈
m2} = gr(Vg). �

Corollary 4.6. Let (R,m) be a quasi-local ring with m3 = 0. Then R satisfies (�)
if and only if its associated graded ring gr(R) does.

Proof. If R satisfies (�) and f : Soc(gr(R))→ F is a non-zero map, then by Lemma

4.5 there exists g : Soc(R) → F such that Vf = gr(Vg). Since Vg contains Soc(R)

and hence m2, we have Vf = gr(Vg) = 0 × Vg/m2 × m2. Thus, gr(m)/Vf ' m/Vg.

By Theorem 4.4, m/Vg is finite dimensional as R satisfies (�). Hence gr(m)/Vf is

finite dimensional for all f ∈ Soc(gr(R))∗. Again by Theorem 4.4, gr(R) satisfies

(�).
Let f : Soc(R)→ F be any non-zero linear map and let Vf = {a ∈ m | f(ma) =

0}. If m2 ⊆ ker(f), then Vf = m. If m2 6⊆ ker(f), then there exists x ∈ m2 with

f(x) = 1. Note that V 2
f ⊆ ker(f) ∩ m2, hence I = 0 ×

(
Vf/m

2
)
×
(
ker(f) ∩m2

)
is a subdirectly irreducible ideal of gr(R). To see this note that E = 0 × 0 × Fx
is a simple submodule of gr(R)/I ' F × m/Vf × Fx. We will show that E is
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essential in gr(R)/I. Let (0, a, b) ∈ gr(R)/I. If a 6∈ Vf , there exists c ∈ m such that

f(ac) 6= 0 and ac−f(ac)x ∈ ker(f)∩m2. Hence (0, a, b)(0, c, 0) = (0, 0, f(ac)x) ∈ E
is non-zero. If a ∈ Vf , i.e. a = 0, and b 6= 0, then (0, 0, b) is a non-zero element

of E. Hence E is an essential simple submodule of gr(R)/I and if gr(R) satisfies

(�), the quotient gr(R)/I and therefore also m/Vf must be Artinian, thus finite

dimensional. By Theorem 4.4, R satisfies (�). �

5. Examples

Let (R,m) be a commutative quasi-local ring with m3 = 0. The associated graded

ring gr(R) is of the form gr(R) = F ⊕ V ⊕W where F = R/m and V = m/m2

and W = m2 are vector spaces over F . Moreover, the multiplication of R induces

a symmetric bilinear map β : V × V → W . Hence gr(R) is uniquely determined

by (F, V,W, β) and its multiplication can be identified with the multiplication of

a generalised matrix ring. Writing the elements of S = F × V ×W as 3-tuples

(λ, v, w) we have that the multiplication is given by

(λ1, v1, w1)(λ2, v2, w2) = (λ1λ2, λ1v2 + λ2v1, λ1w2 + λ2w1 + β(v1, v2)).

The units are precisely the elements (λ, v, w) with λ 6= 0 and the unique maximal

ideal of S is given by Jac(S) = 0× V ×W . Let

V ⊥β = {a ∈ V | β(V, a) = 0},

then Soc(S) = 0× V ⊥β ×W , while Jac(S)2 = 0× 0× Im(β).

Recall, that β is called non-degenerate or non-singular if V ⊥β = 0. In general β

need not be non-degenerate:

Example 5.1. Let F be any field and V be any vector space over F with countably

infinite basis {v0, v1, v2, . . .}. Define the symmetric bilinear form β : V × V → F

with β(v0, v0) = 1 and β(vi, vj) = 0 for any (i, j) 6= (0, 0). Then S = F × V × F
is a commutative quasi-local ring that satisfies (�), because V ⊥β = span(vi | i > 0)

and hence

Jac(S)/Soc(S) = (0× V × F )/(0× V ⊥β × F ) ' F

is one-dimensional. By Lemma 4.2, S satisfies (�). Note that S is not Artinian.

Moreover, S = gr(R), where R = F [x0, x1, x2 . . .]/〈x30, xixj | (i, j) 6= (0, 0)〉.

The bilinear form of the last example was not non-degenerate. Since 0×V ⊥β ×0 is

always an ideal, we can pass to F×V/V ⊥β ×W where the bilinear form β is now non-

degenerate. The following is a natural example of such a ring with non-degenerate

bilinear form:
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Example 5.2. Let F = R and let V = C([0, 1]) be the space of continuous real

valued functions on [0, 1]. Set

〈f, g〉 =

∫ 1

0

f(x)g(x)dx, ∀f, g ∈ C([0, 1]).

Then 〈 , 〉 : V × V → R is a non-degenerate symmetric bilinear form on V . Hence,

by Lemma 4.2, R = R × V × R is a commutative quasi-local ring with cube-zero

radical, that does not satisfy (�), because its socle Soc(R) = 0 × 0 × R is one-

dimensional, hence finitely generated, but Jac(R)/Soc(R) is infinite dimensional,

hence not finitely generated as R-module.

These kind of rings must occur as the associated graded ring of a quotient of a

commutative quasi-local ring (R,m) with m3 = 0 that does not satisfy (�).

Proposition 5.3. A commutative quasi-local ring (R,m) with m3 = 0 and residue

field F does not satisfy (�) if and only if it has a factor R/I whose associated graded

ring gr(R/I) is of the form F×V ×F with dim(V ) =∞ and non-degenerate bilinear

form β : V × V → F .

Proof. By Theorem 4.4, R does not satisfy (�) if and only if there exists f ∈
Soc(R)∗ such that m/Vf has infinite dimension. Suppose that R does not satisfy

(�) and choose such f . Note that f 6= 0 since Vf 6= m. By Lemma 4.3 there exists

a subdirectly irreducible ideal I of R such that Vf = Soc(R) + I and ker(f) =

Soc(R) ∩ I. In particular (m/I)2 = Vf/I = Soc(R/I) ' F , because if m2 ⊆ I,

then m/I ⊆ Soc(R/I) = Vf/I and hence m = Vf , contradicting Vf 6= m. Hence

m2 6⊆ I and (m/I)2 = Soc(R/I) as R/I has a simple socle. Moreover, gr(R/I) =

F ×m/Vf × F , with bilinear form β : m/Vf ×m/Vf → F , which is non-degenerate

by the definition of Vf .

On the other hand if R has a factor R/I whose associated graded ring gr(R/I) is

of the form F ×V ×F with infinite dimensional vector space V and non-degenerate

bilinear form β : V ×V → F , then Soc(gr(R/I)) = 0×0×F is a simple submodule

of gr(R/I), which is essential since β is non-degenerate. As V is infinite dimen-

sional, the semisimple gr(R/I)-module (0× V ×F )/(0× 0×F ) is not artinian and

hence gr(R/I) does not satisfy (�). By Corollary 4.6, R/I does not satisfy (�) and

therefore also R does not. �

Let V = A be any unital commutative F -algebra. Consider the multiplication

of A as a symmetric non-degenerate bilinear map µ : A×A→ A and form the ring

S = F ×A×A as before. In order to apply Theorem 4.4 recall that m = 0×A×A
and Soc(S) = 0 × 0 × A, as the multiplication of A is non-degenerate. Hence
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elements of Soc(S)∗ can be identified with elements of A∗. For any f ∈ A∗ we

defined

Vf = {(0, a, b) ∈ m | f(Aa) = 0} = 0× I(f)×A,

where I(f) is the largest ideal of A that is contained in ker(f). Theorem 4.4 says

that S satisfies (�) if and only if m/Vf ' A/I(f) is finite dimensional for any

f ∈ A∗. From the theory of coalgebras, we borrow the notion of the finite dual A◦

of an algebra, which is the subspace of A∗ consisting of the elements f ∈ A∗ that

contain an ideal of finite codimension in their kernel. Hence S satisfies (�) if and

only if A◦ = A∗.

Example 5.4. The trivial extension A = F ×V of a vector space V (see 4.1) is an

example of an algebra A satisfying A◦ = A∗. To see this, note that for any linear

subspace U of A, U ∩ V is an ideal of A. Thus, if f ∈ A∗, then ker(f) ∩ V is an

ideal of codimension less or equal to 2 and f ∈ A◦. In particular for such A, S =

F×A×A satisfies (�). However if V is infinite dimensional, then m/Soc(S) ' V is

not finitely generated as S-module, which shows that the converse of Lemma 4.2(1)

does not hold.

However, it might happen that the kernel of an element of A∗ does not contain

an ideal of finite codimension as the following example shows.

Example 5.5. Let A be a commutative unital F -algebra with multiplication µ and

f ∈ A∗. Note that the composition β = f ◦µ is a non-degenerate bilinear form if and

only if f(Aa) 6= 0, for all non-zero a ∈ A. Or, in other words, β is non-degenerate

if and only if ker(f) does not contain any non-zero ideal of A. Such a map f can be

constructed in case A = F [x] and F has characteristic zero. Suppose f : F [x]→ F

is a linear map and let 0 6= a =
∑n
i=0 λix

i ∈ F [x] be such that f(F [x]a) = 0. For

any m ≥ 0, we have

f(xma) =

n∑
i=0

λif(xm+i) = 0.

Thus v = (λ0, λ1, . . . , λn) is in the kernel of the linear map given by the matrix:

Bn =



f(1) f(x) f(x2) · · · f(xn)

f(x) f(x2) f(x3) · · · f(xn+1)

f(x2) f(x3) f(x4) · · · f(xn+2)

...
...

...
. . .

...

f(xn) f(xn+1) f(xn+2) · · · f(x2n+1)
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In particular det(Bn) = 0. Hence if the sequence (f(xn))n∈N produces a sequence

of matrices (Bn) that have all non-zero determinant, then for each 0 6= a =∑n
i=0 λix

i ∈ A, there exists 0 ≤ m ≤ n such that f(xma) 6= 0, i.e. β = f ◦ β
is non-degenerate.

Matrices of the form of Bn are called Toeplitz or Hankel matrices. A particular

example of such a matrix is the Hilbert matrix, which is the matrix

Bn−1 =



1 1
2

1
3 · · · 1

n

1
2

1
3

1
4 · · · 1

n+1

1
3

1
4

1
5 · · · 1

n+2

...
...

...
. . .

...

1
n

1
n+1

1
n+2 · · · 1

2n−1


in case F has characteristic 0. In 1894, Hilbert computed that det(Bn−1) =

c4n
c2n

,

where cn =
∏n−1
i=1 i

n−i (see [10]). Hence if we define f(xn) = 1
n+1 for any n ≥ 0,

then the kernel of f does not contain any non-zero ideal and the bilinear form

β = f ◦ µ is non-degenerate. Hence S = F × F [x] × F [x] does not satisfy (�) by

Proposition 5.3.

Acknowledgement. The authors would like to thank the referee for his/her care-

ful reading and many suggestions, including the idea behind Theorem 3.3. The

authors would also like to thank Miodrag Iovanov for pointing out Example 5.4

and for interesting discussions about an earlier draft of this paper. This paper

started with a visit of the last named author to the University of Porto in Sep-

tember 2011. The authors would also like to thank Alveri Sant’Ana for having

discussed the results of this paper during his visit to Porto.

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Alge-

bra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont.,

1969.

[2] K. Brown, P. A. A. B. Carvalho and J. Matczuk, Simple modules and their

essential extensions for skew polynomial rings, ArXiv e-prints, (2017), available

at 1705.06596.

[3] P. A. A. B. Carvalho, C. Lomp and D. Pusat-Yilmaz, Injective modules over

down-up algebras, Glasg. Math. J., 52(A) (2010), 53-59.



SIMPLE MODULES OVER QUASI-LOCAL RINGS 105

[4] P. A. A. B. Carvalho and I. M. Musson, Monolithic modules over Noetherian

rings, Glasg. Math. J., 53(3) (2011), 683-692.

[5] P. A. A. B. Carvalho, C. Hatipoglu and C. Lomp, Injective hulls of simple

modules over differential operator rings, Comm. Algebra, 43(10) (2015), 4221-

4230.
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