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Abstract. A ring R is called generalized ZI (or GZI for short) if for any

a ∈ N(R) and b ∈ R, ab = 0 implies aRba = 0, which is a proper generalization

of ZI rings. In this paper, many properties of GZI rings are introduced, some

known results are extended. Further, we introduce generalized GZI rings

as a generalization of GZI rings, and quasi-abel rings as a generalization of

generalized GZI rings. Some important results on Abel rings are extended to

generalized GZI rings and quasi-abel rings.
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1. Introduction

All rings considered in this paper are associative with identity, and all modules

are unital. Let R be a ring, write J(R), E(R), Z(R), U(R) and N(R) denote

the Jacobson radical, the set of all idempotents, the center, the set of all units

and the set of all nilpotents of R, respectively. For any nonempty subset X of R,

r(X) = rR(X) and l(X) = lR(X) denote the set of right annihilators of X and the

set of left annihilators of X, respectively. Especially, if X = a, we write l(X) = l(a)

and r(X) = r(a).

Recall that a ring R is zero commutative [11] if R satisfies the condition: ab = 0

implies ba = 0 for a, b ∈ R, while Cohn [6] used the term reversible for what is

called zero commutative. A generalization of a reversible ring is a ZI ring. A ring

R is ZI if ab = 0 implies aRb = 0 for a, b ∈ R. Historically, some of the earliest

results known to us about ZI rings was due to Shin [15]. He showed that a ring

R is ZI if and only if rR(a) is an ideal of R for each a ∈ R. In [4], ZI property

is called the insertion-of-factors property, or IFP . In [12], Mohammadi, Moussavi

and Zahiri introduce nil-semicommutative rings (that is, ab = 0 implies aRb = 0

for any a, b ∈ N(R)) as a generalization of ZI rings. The other studies of ZI rings

also can be found in [2,3].
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In this note, we call a ring R a generalized ZI ring (or, GZI ring for short) if

ab = 0 implies aRba = 0 for each a ∈ N(R) and b ∈ R. Clearly, ZI rings are GZI,

but the converse is not true by Example 2.2. By Theorem 2.3 and Proposition

2.9, we constructed a lot of GZI rings which are not ZI. By Proposition 2.10 and

Corollary 2.13, we know that GZI rings inherit many properties of ZI rings.

A ring R is called a generalized GZI ring if ae = 0 implies aRea = 0 for

each a ∈ N(R) and e ∈ E(R). Example 2.6 implies that generalized GZI rings

are proper generalization of GZI rings. In fact, generalized GZI rings are also

proper generalization of quasi-normal rings by Proposition 2.3(3) and [21, P1858].

Theorem 3.7 shows that a ring R is a quasi-normal ring if and only if V2(R) =

{

(
a b

0 a

)
|a, b ∈ R} is a generalized GZI ring. Theorem 3.3 shows that R is an

Abel ring if and only if T2(R) =

(
R R

0 R

)
is a quasi-normal ring.

A ring R is called quasi-abel if ea(1 − e)Rea(1 − e) = 0 for each e ∈ E(R) and

a ∈ R. Proposition 3.11 points out that quasi-abel rings are proper generalization

of generalized GZI rings. Some characterizations of quasi-abel rings are given by

Propositions 4.1, 4.2 and 4.3. In fact, in Section 4, many properties of quasi-normal

rings appeared in [21] are extended to quasi-abel rings.

2. Some examples of GZI rings

Definition 2.1. A ring R is called generalized ZI ring (or, GZI ring for short) if

for each a ∈ N(R) and b ∈ R, ab = 0 implies aRba = 0.

Clearly, ZI rings are GZI. But the following example illustrates that the con-

verse is not true in general.

Example 2.2. Let F be a field and R =

(
F F

0 F

)
, the upper triangular matrix

ring over F . Then N(R) =

(
0 F

0 0

)
is an ideal of R with N(R)2 = 0, this

implies that for each A ∈ N(R) and B ∈ R, ARBA = 0. Hence R is GZI, but R

is not ZI.

Example 2.2 inspires us to think about the following problems.

(1) If R be a commutative ring or reduced ring, is the 2 × 2 upper triangular

matrix ring T2(R) =

(
R R

0 R

)
over R GZI?
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(2) Let R be a field and n ≥ 3 a positive integer. Is the n× n upper triangular

matrix ring Tn(R) =


R R R · · · R

0 R R · · · R

0 0 R · · · R

· · · · · · · · · · · · · · ·
0 0 0 · · · R

 over R GZI?

Proposition 2.3. (1) If R is a commutative ring, then T2(R) is GZI.

(2) If R is a reduced ring, then T2(R) is GZI.

(3) R is a reduced ring if and only if T3(R) is a GZI ring.

(4) Nil-semicommutative rings are GZI.

(5) If T2(R) is a GZI ring, then R is nil-semicommutative.

Proof. (1) Assume that A =

(
a b

0 c

)
∈ N(T2(R)) and B =

(
x y

0 z

)
∈ T2(R)

with AB = 0. Then

ax = 0 (2.1)

cz = 0 (2.2)

ay + bz = 0 (2.3)

Now let C =

(
u v

0 w

)
∈ T2(R). Then

ACBA =

(
auxa auxb+ auyc+ avzc+ bwzc

0 cwzc

)
.

Since R is commutative, by (2.1) ∼ (2.3), one gets

auxa = axua = 0 (2.4)

cwzc = czwc = 0 (2.5)

auxb = axub = 0 (2.6)

avzc = czav = 0 (2.7)

bwzc = bwcz = 0 (2.8)

0 = uc(ay + bz) = auyc+ ucbz = ubcz + auyc = auyc (2.9)

all these imply that ACBA = 0. Thus AT2(R)BA = 0 and so T2(R) is GZI.
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(2) It is trivial.

(3) First we assume that A =

 0 a1 a2
0 0 a3
0 0 0

 ∈ N(T3(R)) =

 0 R R

0 0 R

0 0 0


and B =

 b1 b2 b3
0 b4 b5
0 0 b6

 ∈ T3(R) with AB = 0. Then

a1b4 = 0 (2.10)

a1b5 + a2b6 = 0 (2.11)

a3b6 = 0 (2.12)

Now let C =

 x1 x2 x3
0 x4 x5
0 0 x6

 ∈ T3(R). Then ACBA =

 0 0 a1x4b4a3
0 0 0

0 0 0

.

Since R is reduced, by (2.10), a1Rb4 = 0, which implies a1x4b4a3 = 0, one gets

ACBA = 0. Thus T3(R) is GZI.

Next we assume that T3(R) is GZI and a ∈ R with a2 = 0. Then we choose

A =

 a 1 1

0 a 1

0 0 0

 ∈ N(T3(R)), B =

 0 −1 1

0 a −a
0 0 0

 ∈ T3(R). Since T3(R) is

GZI and AB = 0, AT3(R)BA = 0. Choose C =

 1 1 0

0 0 0

0 0 0

 ∈ T3(R). Then

ACBA = 0, this implies

 0 0 −a
0 0 0

0 0 0

 = 0, so a = 0. Hence R is reduced.

(4) Assume that a ∈ N(R) and b ∈ R such that ab = 0. Then ba ∈ N(R) and

a(ba) = 0. Since R is nil-semicommutative, aRba = 0, this shows that R is GZI.

(5) Assume that a ∈ N(R) and x ∈ R such that ax = 0. Choose A =(
a 1

0 0

)
∈ N(T2(R)) and B =

(
x −1

0 a

)
∈ T2(R). By computing, we have

AB = 0. Since T2(R) is a GZI ring, A

(
r 0

0 0

)
BA = 0 for all r ∈ R, this gives

arx = 0. Hence aRx = 0 and so R is nil-semicommutative. �

The following example illustrates that if R is only a GZI ring, then T2(R) need

not be GZI.
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Example 2.4. Let R =

(
Z4 Z4

0 Z4

)
. Then by Proposition 2.3(1), R is GZI. Let

A =


(

2 0

0 0

) (
0 0

0 0

)
(

0 0

0 0

) (
0 1

0 2

)
. Then A ∈ N(T2(R)). Let

B =


(

2 0

0 1

) (
0 0

0 3

)
(

0 0

0 0

) (
1 1

0 0

)
 and C =


(

0 0

0 0

) (
1 0

0 0

)
(

0 0

0 0

) (
0 0

0 0

)
. Then

AB = 0 and ACBA =


(

0 0

0 0

) (
0 2

0 0

)
(

0 0

0 0

) (
0 0

0 0

)
 6= 0. Thus T2(R) is not GZI.

Remark 2.5. It is well known that ZI rings are Abel, but paying attention to the

ring R appeared in Example 2.2 is not Abel, one knows that GZI rings need not be

Abel. The following example also illustrates that Abel rings need not be GZI.

Example 2.6. Let R = {

(
a b

c d

)
|a, b, c, d ∈ Z, a ≡ d(mod2), b ≡ c ≡ 0(mod2)}.

Since E(R) = {

(
0 0

0 0

)
,

(
1 0

0 1

)
}, R is Abel. Now let A =

(
0 2

0 0

)
∈ N(R)

and B =

(
2 4

0 0

)
, C =

(
0 0

2 2

)
. Then by computing, we have AB = 0 and

ACBA =

(
0 16

0 0

)
6= 0. Thus R is not GZI.

Example 2.7. Let R = {

(
a b

0 a

)
|a, b ∈ Z2}. Then R is commutative. Let

A =



(
0 1

0 0

) (
0 0

0 0

) (
0 0

0 0

)
(

0 0

0 0

) (
0 0

0 0

) (
1 0

0 1

)
(

0 0

0 0

) (
0 0

0 0

) (
0 1

0 0

)


∈ N(T3(R)),
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B =



(
0 1

0 0

) (
0 0

0 0

) (
0 0

0 0

)
(

0 0

0 0

) (
1 0

0 1

) (
0 0

0 0

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)


,

C =



(
0 0

0 0

) (
1 0

0 1

) (
0 0

0 0

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)


∈ T3(R). Then AB = 0 and

ACBA =



(
0 0

0 0

) (
0 0

0 0

) (
0 1

0 0

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)


6= 0. Thus T3(R) is not GZI.

Example 2.7 illustrates that for a commutative ring R, T3(R) need not be GZI.

Example 2.8. Let F be a field and R = T4(F ). Choose A =



0 1 0 1

0 0 0 1

0 0 0 1

0 0 0 0


∈

N(R) and B =



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


, C =



0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0


∈ R. Then AB = 0 and

ACBA =



0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0


6= 0, so R is not GZI.

Example 2.8 illustrates that for a field F , T4(F ) need not be GZI.
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Let R be a ring and V4(R) = {



a a12 a13 a14
0 a a23 a24

0 0 a a34

0 0 0 a


|a, aij ∈ R}. Clearly,

V4(R) is a subring of T4(R). The following proposition implies the converse of

Proposition 2.3(4) is not true.

Proposition 2.9. Let F be a field. Then R = V4(F ) is a GZI ring, while R is

not nil-semicommutative.

Proof. Assume that A =



0 a1 a2 a3
0 0 a4 a5

0 0 0 a6

0 0 0 0


∈ N(R) =



0 F F F

0 0 F F

0 0 0 F

0 0 0 0


and

B =



b1 b2 b3 b4
0 b1 b5 b6

0 0 b1 b7

0 0 0 b1


, C =



c1 c2 c3 c4
0 c1 c5 c6

0 0 c1 c7

0 0 0 c1


∈ R with AB = 0. Then

a1b1 = 0 (2.13)

a1b5 + a2b1 = 0 (2.14)

a1b6 + a2b7 + a3b1 = 0 (2.15)

a4b1 = 0 (2.16)

a4b7 + a5b1 = 0 (2.17)

a6b1 = 0 (2.18)

and
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ACBA =



0 0 a1c1b1a4 a1c1b1a5 + a1c1b5a6 + a1c5b1a6 + a2c1b1a6
0 0 0 a4c1b1a6

0 0 0 0

0 0 0 0


. Clearly,

a1c1b1a4 = (a1b1)(c1a4) = 0 (2.19)

a4c1b1a6 = (a4b1)(c1a6) = 0 (2.20)

a1c1b1a5 = (a1b1)(c1a5) = 0 (2.21)

a1c5b1a6 = (a1b1)(c5a6) = 0 (2.22)

a1c1b5a6 + a2c1b1a6 = (a1b5 + a2b1)c1a6 = 0 (2.23)

Thus ACBA = 0 and so R = V4(F ) is GZI.

Now choose A =



0 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0


, B =



0 1 0 0

0 0 0 1

0 0 0 −1

0 0 0 0


∈ N(R) and C =



0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


∈ R. Then AB = 0 while ACB =



0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0


6= 0, this

shows that R is not nil-semicommutative. �

Let R be a ring and write MEl(R) = {e ∈ E(R)| Re is a minimal left ideal of

R}. A ring R is called left min-abel if every element of MEl(R) is left semicentral

in R, a ring R is said to be strongly left min-abel if every element of MEl(R)

is central, and a ring R is said to be left MC2 if aRe = 0 implies eRa = 0 for

each e ∈ MEl(R) and a ∈ R. [18, Theorem 1.8] showed that R is a strongly left

min-abel ring if and only if R is a left min-abel left MC2 ring. A ring R is called

left quasi-duo if every maximal left ideal of R is ideal, and R is said to be MELT if

every essential maximal left ideal of R is an ideal. Clearly, left quasi-duo rings are

MELT . In [18, Theorem 1.2], it is shown that a ring R is a left quasi-duo ring if

and only if R is a left min-abel MELT ring. Recall that a ring R is directly finite if
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ab = 1 implies ba = 1, and R is said to be NCI if either N(R) = 0 or N(R) contains

a nonzero ideal of R. By [9, Example 1.2], one knows that NCI rings need not

be directly finite. Hence the following proposition implies NCI rings need not be

GZI.

Proposition 2.10. If R is a GZI ring, then

(1) R is NCI;

(2) R is directly finite;

(3) R is left min-abel;

(4) R is left MC2 if and only if R is strongly left min-abel;

(5) R is left quasi-duo if and only if R is MELT .

Proof. (1) If N(R) = 0, we are done. Now assume that N(R) 6= 0. Then there

exists 0 6= a ∈ N(R) such that a2 = 0. Since R is GZI and a(ar) = 0, aR(ar)a = 0

for each r ∈ R, this gives aRaRa = 0 and (RaR)3 = 0. Thus R is NCI.

(2) Let ab = 1 and write e = ba. Then ae = a and eb = b. Let h = a− ea. Then

he = h, eh = 0 and h2 = 0. By the proof of (1), one has hRhRh = 0, this gives

hbhbh = 0. Since hb = 1 − e, hbhbh = (1 − e)h = h. Thus h = 0 and a = ea, this

leads to 1 = ab = eab = e = ba. Hence R is directly finite.

(3) Let e ∈MEl(R) and a ∈ R. If h = ae− eae 6= 0, then Rh = Re and h2 = 0.

Let e = ch for some c ∈ R. Then h = he = hch. By the proof of (1), one has

hRhRh = 0, this gives Re = (Re)3 = (Rh)3 = 0, which is a contradiction. Hence

h = 0 and ae = eae for each a ∈ R, this implies R is left min-abel.

(4) and (5) are immediate results of (1) and [18, Theorem 1.2 and Theorem

1.8]. �

Since Abel rings are directly finite and left min-abel, Example 2.6 illustrates that

neither directly finite rings nor left min-abel rings need be GZI.

Example 2.11. Let F be a field and R =

(
Z3 Z3

0 Z3

)
. Then e =

(
1 0

0 0

)
∈

MEl(R). Since

(
0 1

0 1

)
Re = 0, but e

(
1 1

0 0

)(
0 1

0 1

)
=

(
0 2

0 0

)
6= 0.

Thus R is not left MC2. By Example 2.1, one knows that R is GZI. Hence GZI

rings need not be left MC2, and so GZI rings need not be strongly left min-abel.

Corollary 2.12. Let R be a GZI ring and e ∈MEl(R). Then RRe is injective if

and only if aRe = 0 implies eRa = 0 for each a ∈ R.

Proof. First we assume that aRe = 0 implies eRa = 0 for each a ∈ R. Since R

is GZI, R is left min-abel by Proposition 2.10(3), this implies (1 − e)Re = 0, by

hypothesis, eR(1 − e) = 0. Hence e is central in R. By [22, Lemma 2.2], RRe is

injective.
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Conversely, assume that aRe = 0. If eRa 6= 0, then there exists b ∈ R such

that eba 6= 0. Since l(e) = l(eba), RReba ∼=R Re. Since RRe is injective, RReba is

injective, this leads to Reba = Rg for some g ∈ E(R). Thus Reba = (Reba)2 = 0,

which is a contradiction. Hence eRa = 0. �

It is well known that a ring R is a reduced ring if and only if R is a semiprime

ZI ring. By the proof of Proposition 2.10(1), one has the following corollary.

Corollary 2.13. The following conditions are equivalent for a ring R:

(1) R is a reduced ring;

(2) R is a semiprime nil-semicommutative ring;

(3) R is a semiprime GZI ring.

The following proposition is a direct result of the definition of GZI ring.

Proposition 2.14. (1) Every subring of GZI rings is GZI;

(2) If R is a GZI ring and e ∈ E(R), then eRe is GZI.

Recall that an ideal I of a ring R is reduced if N(R) ∩ I = 0. With the help of

reduced ideal, one has the following proposition.

Proposition 2.15. Let I be a reduced ideal of R. If R/I is a GZI ring, then R is

GZI.

Proof. Let a ∈ N(R) and b ∈ R satisfy ab = 0. Then ā ∈ N(R̄) and āb̄ = 0̄ where

R̄ = R/I. Since R̄ is GZI, āx̄b̄ā = 0̄ for each x ∈ R, this gives axba ∈ I. Clearly,

(baxba)2 = 0 and baxba ∈ I. Since I is reduced, baxba = 0 for each x ∈ R. For

each y ∈ R, (ayba)2 = (ay)(ba(ay)ba) = 0, so ayba = 0 because ayba ∈ I. Thus

aRba = 0 and R is GZI. �

A ring R is called left WNV if every singular simple left R-module is Wnil-

injective ([19]). Clearly, left V -rings and reduced rings are left WNV . The following

proposition generalizes [10, Lemma 3].

Proposition 2.16. The following conditions are equivalent for a left MC2 ring R:

(1) R is a reduced ring;

(2) R is a ZI left WNV ring;

(3) R is a nil-semicommutative left WNV ring;

(4) R is a GZI left WNV ring.

Proof. We only need to show (4) ⇒ (1). Let a ∈ R with a2 = 0. If a 6= 0,

then there exists a maximal left ideal M of R containing l(a). We claim that

M is essential in RR. If not, then M = l(e) for some e ∈ MEl(R). Since R is

GZI, R is strongly left min-abel by Proposition 2.10(4). Thus e ∈ Z(R), this

gives ea = ae = 0 because a ∈ l(a) ⊆ M = l(e), so e ∈ l(a) ⊆ l(e), which

is a contradiction. Therefore M is essential in RR, R/M is singular simple left
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R-module, by (4), R/M is Wnil-injective. Clearly, the map f : Ra −→ R/M

defined by f(ra) = r + M is a well-defined left R-homomorphism, this illustrates

that there exists c ∈ R such that f(ra) = rac + M for each r ∈ R, especially,

1 + M = f(a) = ac + M , so 1 − ac ∈ M . Since R is GZI and a2 = 0, by the

proof of Proposition 2.10(1), (aR)3 = 0, this implies 1 − ac ∈ U(R), which is a

contradiction. Thus a = 0 and so R is reduced. �

A ring R is called biregular if for every a ∈ R, RaR is generated by a central

idempotent of R. A ring R is called weakly regular if for any a ∈ R, a ∈ RaRa ∩
aRaR. Clearly, biregular rings are weak regular, but the converse is not true, in

general. Certainly, reduced weakly regular rings are biregular. In [10, Theorem

4], it is proved that if R is a ZI ring whose every singular simple left module is

Y J-injective, then R is a reduced weakly regular ring. Hence, by Proposition 2.16,

we have the following corollary.

Corollary 2.17. Let R be a GZI ring. If every singular simple left R-module is

Y J-injective, then R is a reduced biregular ring.

In [17, Theorem 16], it is proved that R is a strongly regular ring if and only if

R is a ZI MELT ring whose singular simple left modules are Y J-injective. Hence,

by Proposition 2.16, we have the following corollary.

Corollary 2.18. R is a strongly regular ring if and only if R is a GZI MELT

ring whose singular simple left modules are Y J-injective.

Evidently, the class of GZI rings is closed under subrings and direct product.

Proposition 2.19. Let R be a ring and ∆ a multiplicatively closed subset of R

consisting of central regular elements. Then R is a GZI ring if and only if ∆−1R

is a quasi-semicommutative ring.

Proof. The sufficiency is clear.

Now let αβ = 0 with α = u−1a ∈ N(∆−1R), β = v−1b ∈ ∆−1R, u, v ∈ ∆ and

a, b ∈ R. Since ∆ is contained in the center of R, we have 0 = αβ = u−1av−1b =

(u−1v−1)ab = (uv)−1ab, a ∈ N(R) and ab = 0. Since R is a GZI ring, aRba = 0.

Hence α(∆−1R)βα = (u−1)2v−1∆−1aRba = 0, this shows that ∆−1R is a GZI

ring. �

The ring of Laurent polynomials in x, coefficients in a ring R, consists of all

formal sums Σn
i=kmix

i with obvious addition and multiplication, where mi ∈ R

and k, n are (possibly negative) integers; denote it by R[x;x−1].

Corollary 2.20. For a ring R, R[x] is a GZI ring if and only if R[x;x−1] is a

GZI ring.

Proof. It suffices to establish necessity. Let ∆ = {1, x, x2, · · · , xn, · · · }. Then,

clearly, ∆ is a multiplicatively closed subset of R[x]. Since R[x;x−1] = ∆−1R[x]
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and ∆ is contained in the center of R[x], it follows that R[x;x−1] is a GZI ring by

Proposition 2.19. �

Proposition 2.21. Let R be a GZI ring and f(x) = a+ bx, g(x) = c+ dx ∈ R[x].

If f(x)g(x) = 0, then ac, ad, bc, bd ∈ N(R).

Proof. Since f(x)g(x) = 0, one obtains

ac = 0 (2.24)

ad+ bc = 0 (2.25)

bd = 0 (2.26)

Multiply (2.25) on the left by c and on the right by b, it follows that

cadb+ (cb)2 = 0 (2.27)

By (2.24), one has ca ∈ N(R) and (ca)(cadb) = 0, this gives (ca)R(cadbca) = 0,

so cadb ∈ N(R). By (2.27), one has (cb)8 = 0. Hence bc ∈ N(R). Again by (2.25),

we have ad ∈ N(R). �

3. Some generalizations of GZI rings

Definition 3.1. A ring R is called generalized GZI if ae = 0 implies aRea = 0 for

each a ∈ N(R) and e ∈ E(R).

Clearly, GZI rings are generalized GZI. Since Abel rings are generalized GZI

and Abel rings need not be GZI by Example 2.6, one knows that generalized GZI

rings need not be GZI.

Recall that a ring R is quasi-normal if ae = 0 implies eaRe = 0 for each a ∈ N(R)

and e ∈ E(R). In [21, Theorem 2.1], it is shown that a ring R is quasi-normal if

and only if eR(1− e)Re = 0 for each e ∈ E(R).

Let F be a field and R = T3(F ). Then [21, P1858] implies that R is not

quasi-normal. But by Proposition 2.3(3), R is GZI, so R is generalized GZI.

Hence generalized GZI rings need not be quasi-normal. But quasi-normal rings are

generalized GZI. (In fact, if a ∈ N(R) and e ∈ E(R), with ae = 0, then area =

a(1− e)rea(1− e) for each r ∈ R. Since R is quasi-normal, (1− e)ReR(1− e) = 0,

this gives area = 0. Thus R is generalized GZI.)

Proposition 3.2. Let R be a ring. If T2(R) is a generalized GZI ring, then R is

quasi-normal.

Proof. Let e ∈ E(R) and a, b ∈ R, write h = ea(1 − e). Then h2 = 0, eh = h,

so A =

(
h 1

0 h

)
∈ N(T2(R)) and B =

(
e 0

0 0

)
∈ E(T2(R)) with AB = 0.
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Choose C =

(
b 0

0 0

)
∈ T2(R). Since T2(R) is a generalized GZI ring, ACBA =

0, that is

(
hbh hbe

0 0

)
= 0, this gives ea(1 − e)be = hbe = 0 for each a, b ∈ R.

Hence eR(1− e)Re = 0 for each e ∈ E(R) and so R is quasi-normal. �

Theorem 3.3. A ring R is Abel if and only if T2(R) =

(
R R

0 R

)
is quasi-

normal.

Proof. First, we assume that R is Abel and A =

(
a b

0 c

)
∈ E(T2(R)). Then

a2 = a (3.1)

c2 = c (3.2)

b = ab+ bc (3.3)

Now for any B =

(
x y

0 z

)
, C =

(
u v

0 w

)
∈ T2(R), one has AB(1−A)CA =(

ax(1− a)ua ax(1− a)ub+ ax(1− a)vc− axbwc+ ay(1− c)wc+ bz(1− c)wc
0 cz(1− c)wc

)
Since R is Abel, (3.1), (3.2) and (3.3) imply a, c ∈ Z(R). Hence

ax(1− a)ua = ax(1− a)ub = ax(1− a)vc = 0 (3.4)

cz(1− c)wc = ay(1− c)wc = bz(1− c)wc = 0 (3.5)

By (3.3), one gets

axbwc = ax(ab+ bc)wc = axabwc+ axbcwc = axbwc+ axbwc (3.6)

this gives

axbwc = 0 (3.7)

Thus AB(1−A)CA = 0 and so T2(R) is quasi-normal.

Conversely, assume that T2(R) is quasi-normal and e ∈ E(R). Then

(
e 0

0 1

)
∈

E(T2(R)), so for each x ∈ R, one has(
e 0

0 1

)(
x 0

0 0

)(
1− e 0

0 0

)(
0 1

0 0

)(
e 0

0 1

)
= 0

that is,

(
0 ex(1− e)
0 0

)
= 0. Thus ex(1− e) = 0 for each x ∈ R, this implies

R is Abel. �
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Corollary 3.4. If R is an Abel ring, then T2(R) is generalized GZI.

If R is a quasi-normal ring, is T2(R) generalized GZI?

Lemma 3.5. Let R be a generalized GZI ring and a ∈ R. If a ∈ aRa, then

a ∈ Ra2.

Proof. Assume that a = aba for some b ∈ R and write e = ba. Then a = ae and

e ∈ E(R). Let h = a−ea. Then he = h, eh = 0 and h2 = 0. Since R is a generalized

GZI ring and h(1− e) = 0, hR(1− e)h = 0, this gives hbh = hb(1− e)h = 0. Since

bh = e − bea, 0 = hbh = h − hbea, one has h = hbea, this leads to a = h + ea =

(hb+ 1)ea ∈ Ra2. �

Recall that a ring R is

n-regular if a ∈ aRa for each a ∈ N(R) ([19]);

Von Neumann regular if a ∈ aRa for each a ∈ R;

strongly regular if a ∈ a2R ∩Ra2 for each a ∈ R;

π-regular if for each a ∈ R, there exists a positive integer n such that an ∈ anRan;

strongly π-regular if for each a ∈ R, there exists a positive integer n such that

an ∈ an+1R ∩Ran+1;

left universally mininjective if k ∈ kRk for each k ∈ Ml(R) = {k ∈ R|Rk is a

minimal left ideal of R} ([14]);

strongly left DS if k2 6= 0 for each k ∈Ml(R) ([20]).

The following theorem generalizes [21, Theorem 2.4, Theorem 2.5 and Corollary

2.7].

Theorem 3.6. Let R be a generalized GZI ring. Then

(1) R is directly finite;

(2) R is left min-abel;

(3) R is reduced if and only if R is n-regular;

(4) R is strongly regular if and only if R is von Neumann regular;

(5) R is strongly π-regular if and only if R is π-regular;

(6) R is strongly left DS if and only if R is left universally mininjective.

Proof. (1) Let a, b ∈ R with ab = 1. Then a = aba, this implies a = ca2 for some

c ∈ R by Lemma 3.5. Hence 1 = ab = ca2b = ca and b = 1b = cab = c, one gets

ba = ca = 1, this shows that R is directly finite.

(2) Let e ∈ MEl(R) and a ∈ R. If h = (1 − e)ae 6= 0, then Rh = Re. Clearly,

h ∈ hRh, by Theorem 3.5, h ∈ Rh2 = 0, which is a contradiction. Thus (1−e)ae = 0

for each a ∈ R, so R is left min-abel.

(3) Assume that R is n-regular and a ∈ R with a2 = 0. Then a = aba for some

b ∈ R. By Lemma 3.5, a ∈ Ra2 = 0, that is a = 0, so R is reduced.

(4) It is an immediate result of (3).

(5) and (6) are direct results of Lemma 3.5. �
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Theorem 3.7. A ring R is a quasi-normal ring if and only if V2(R) is a generalized

GZI ring.

Proof. If R is a quasi-normal ring, then by [21, Theorem 2.9], V2(R) is quasi-

normal, hence V2(R) is generalized GZI.

Conversely, assume that V2(R) is a generalized GZI ring and e ∈ E(R) and

a ∈ R. Write h = ea(1 − e) and g = e + h. Then he = 0, eh = h, h2 = 0, hg = 0,

gh = h, g2 = g, ge = e and eg = g. Clearly, A =

(
h 1− e
0 h

)
∈ N(V2(R)) and

E =

(
e e− g
0 e

)
∈ E(V2(R)) with AE = 0. Since V2(R) is a generalized GZI

ring, A

(
x y

0 x

)
EA = 0 for each x, y ∈ R, that is

hxh = 0 (3.8)

hyh+ (1− e)xh = 0 (3.9)

Insteading y for x, one gets

(1− e)xh = 0 (3.10)

Hence (1− e)xea(1− e) = 0 for each x, a ∈ R, so R is quasi-normal. �

Let R be a ring and let T (R,R) = {(a, b)|a, b ∈ R} with addition and multiplica-

tion are defined as follows: (a, b)+(c, d) = (a+c, b+d) and (a, b)(c, d) = (ac, ad+bc).

Then T (R,R) forms a ring. Clearly, T (R,R) ∼= V2(R) ∼= R[x]/(x2).

Corollary 3.8. The following conditions are equivalent for a ring R:

(1) R is quasi-normal;

(2) T (R,R) is generalized GZI;

(3) R[x]/(x2) is generalized GZI.

A ring R is called quasi-abel if ea(1 − e)Rea(1 − e) = 0 for each e ∈ E(R) and

a ∈ R, and R is called quasi-normal if eR(1 − e)Re = 0 for each e ∈ E(R) (c.f.

[21]). Clearly, quasi-normal rings are quasi-abel.

A ring R is called idempotent semiprime if for each e ∈ E(R) and a ∈ R,

ea(1 − e)Rea(1 − e) = 0 implies ea(1 − e) = 0. Clearly, Abel rings and semiprime

rings are idempotent semiprime.

Proposition 3.9. (1) A ring R is an Abel ring if and only if R an idempotent

semiprime quasi-abel ring.

(2) Generalized GZI rings are quasi-abel.
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Proof. (1) It is trivial.

(2) Let e ∈ E(R) and a ∈ R. Write h = ea(1 − e). Then he = 0, eh = h and

h2 = 0. Since R is generalized GZI, hReh = 0, that is hRh = 0. Hence, for each

a ∈ R, one has ea(1− e)Rea(1− e) = 0, this implies R is quasi-abel. �

Since Abel rings are quasi-abel, by Example 2.6, one knows that quasi-abel rings

need not be GZI.

Example 3.10. Let F be a field and R = T3(F ). By Proposition 2.3(3), R is GZI,

so R is generalized GZI. By Proposition 3.9, R is quasi-abel. But by [21, P1858],

R is not quasi-normal. Hence quasi-abel rings need not be quasi-normal.

The following proposition illustrates that quasi-abel rings need not be generalized

GZI.

Proposition 3.11. Let R = {

(
a1 a2
0 a1

)
|a1, a2 ∈ Z2} and S = T3(R). Then

(1) S is a quasi-abel ring;

(2) S is not a generalized GZI ring.

Proof. (1) Clearly, R is commutative and

E(S) = {



(
e1 0

0 e1

) (
a2 a3
0 a2

) (
a4 a5
0 a4

)
(

0 0

0 0

) (
e2 0

0 e2

) (
a6 a7
0 a6

)
(

0 0

0 0

) (
0 0

0 0

) (
e3 0

0 e3

)


|e2i = ei,

a2 = (e1 + e2)a2; a3 = (e1 + e2)a3; a6 = (e2 + e3)a6; a7 = (e2 + e3)a7; a4 = (e1 +

e3)a4 + a2a6; a5 = (e1 + e3)a5 + a2a7 + a3a6, ei, ai ∈ Z2}. Choose

E =



(
e1 0

0 e1

) (
a2 a3
0 a2

) (
a4 a5
0 a4

)
(

0 0

0 0

) (
e2 0

0 e2

) (
a6 a7
0 a6

)
(

0 0

0 0

) (
0 0

0 0

) (
e3 0

0 e3

)


∈ E(S) and

B =



(
b1 b2
0 b1

) (
b3 b4
0 b3

) (
b5 b6
0 b5

)
(

0 0

0 0

) (
b7 b8
0 b7

) (
b9 b10
0 b9

)
(

0 0

0 0

) (
0 0

0 0

) (
b11 b12
0 b11

)


∈ S.

Case 1 : If e1 = e2 = e3 = 1, then ai = 0, i = 2, 3, 4, 5, 6, 7 and EB(1− E) = 0.

Case 2 : if e1 = e2 = 1 and e3 = 0, then a2 = a3 = 0 and EB(1− E) =
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(
0 0

0 0

) (
0 0

0 0

) (
−b1a4 + b5 + a4b11 c1

0 −b1a4 + b5 + a4b11

)
(

0 0

0 0

) (
0 0

0 0

) (
b9 b10 + a7b11 − b7a7
0 b9

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)


where c1 = −b1a5 − b2a4 − b3a7 − b7a7 + b6 + a4b12 + a5b11.

Case 3 : If e1 = e3 = 1 and e2 = 0, then EB(1− E) =

(
0 0

0 0

) (
−b1a2 + b3 + a2b7 c4

0 −b1a2 + b3 + a2b7

) (
c2 c3
0 c2

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)


where c2 = −b1a4−b3a6−a2b7a6, c3 = −b1a5−b3a7−b4a6−a2b7a7−a2b8a6−a3b7a6
and c4 = −b1a3 − b2a2 + a4 + a2b8 + a3b7.

Case 4 : If e1 = 0 and e2 = e3 = 1, then a6 = a7 = 0 and EB(1− E) = 0.

Case 5 : If e1 = 1 and e2 = e3 = 0, then a6 = a7 = 0 and EB(1− E) =

(
0 0

0 0

) (
−b1a2 + b3 + a2b7 c5

0 −b1a2 + b3 + a2b7

) (
c6 c7
0 c6

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)


where c5 = −b1a3 − b2a2 + b4 + a2b8 + a3b7, c6 = −b1a4 + b5 + a2b9 + a4b11 and

c7 = −b1a5 − b2a4 + b6 + a2b10 + a3b9 + a4b12 + a5b11.

Case 6 : If e2 = 1 and e1 = e3 = 0, then a4 = a2a6, a5 = a2a7 + a3a6 and

EB(1− E) =

(
0 0

0 0

) (
0 0

0 0

) (
−b7a4 + a2b9 + a4b11 c8

0 −b7a4 + a2b9 + a4b11

)
(

0 0

0 0

) (
0 0

0 0

) (
−b7a6 + b9 + a6b11 −b7a7 − b8a6 + b10 + a7b11

0 −b7a6 + b9 + a6b11

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)


where c8 = −b7a5 − b8a4 + a2b10 + a3b9 + a4b12 + a5b11.

Case 7 : If e3 = 1 and e1 = e2 = 0, then a2 = a3 = 0 and EB(1− E) = 0.

Case 8 : If e1 = e2 = e3 = 0, then EB(1− E) = 0.

In any case, one can easy to see that EB(1 − E)SEB(1 − E) = 0, hence S is

quasi-abel.
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(2) Choose A =



(
0 1

0 0

) (
0 0

0 0

) (
0 0

0 0

)
(

0 0

0 0

) (
0 0

0 0

) (
1 0

0 1

)
(

0 0

0 0

) (
0 0

0 0

) (
0 1

0 0

)


∈ N(S) and

E =



(
0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)
(

0 0

0 0

) (
1 0

0 1

) (
0 0

0 0

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)


∈ E(S) and

C =



(
0 0

0 0

) (
1 0

0 1

) (
0 0

0 0

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)


∈ S. Then AE = 0 and

ACEA =



(
0 0

0 0

) (
0 0

0 0

) (
0 1

0 0

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)
(

0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)


6= 0. Hence S is not general-

ized GZI. �

4. Some properties of quasi-abel rings

Let R be a ring and e ∈ E(R). Then (1− e)Re = (1− e)N(R)e, this implies the

following proposition.

Proposition 4.1. The following conditions are equivalent for a ring R:

(1) R is quasi-abel;

(2) ea(1− e)N(R)ea(1− e) = 0 for each e ∈ E(R) and a ∈ R;

(3) ea(1− e)Rea(1− e) = 0 for each e ∈ E(R) and a ∈ N(R);

(4) ea(1− e)N(R)ea(1− e) = 0 for each e ∈ E(R) and a ∈ N(R).

Proposition 4.2. The following conditions are equivalent for a ring R:

(1) R is quasi-abel;

(2) ae = 0 implies eaRea = 0 for each e ∈ E(R) and a ∈ R;

(3) ea = 0 implies aeRae = 0 for each e ∈ E(R) and a ∈ R.
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Proof. (1)⇒ (2) It is clear.

(2)⇒ (3) Let ea = 0. Then (ae)(1− e) = 0, by (2), (1− e)(ae)R(1− e)(ae) = 0,

that is aeRae = 0.

(3) ⇒ (1) Let a ∈ R and e ∈ E(R). Then (1 − e)(ea) = 0, by (3), (ea)(1 −
e)R(ea)(1− e) = 0. Thus R is quasi-abel. �

It is well known that a ring R is Abel if and only if ab = 0 implies aE(R)b = 0

for each a, b ∈ R.

Proposition 4.3. The following conditions are equivalent for a ring R:

(1) R is quasi-abel;

(2) ae = 0 implies eaE(R)ea = 0 for each e ∈ E(R) and a ∈ R;

(3) ea = 0 implies aeE(R)ae = 0 for each e ∈ E(R) and a ∈ R.

Proof. By Proposition 4.2, (1)⇒ (2) and (1)⇒ (3) are trivial.

(2)⇒ (1) Let ae = 0. For any r ∈ R, write g = e+(1−e)re. Then eg = e, ge = g

and g2 = g. By (2), eagea = 0. But eagea = earea, this gives earea = 0 for each

r ∈ R. Thus eaRea = 0, by Proposition 4.2, R is quasi-abel.

Similarly, we can show (3)⇒ (1). �

Similarly, we can give the following characterization of quasi-normal rings.

Proposition 4.4. The following conditions are equivalent for a ring R:

(1) R is quasi-normal;

(2) ae = 0 implies eaE(R)e = 0 for each e ∈ E(R) and a ∈ R;

(3) ea = 0 implies eE(R)ae = 0 for each e ∈ E(R) and a ∈ R.

Proposition 4.5. Let R be a quasi-abel ring and e ∈ E(R). Then

(1) For every maximal left ideal M of R, either e ∈M or 1− e ∈M .

(2) For each a ∈ R, Ra+R(ae− 1) = R.

(3) For every maximal left ideal M of R, Me ⊆M .

(4) If ReR = R, then e = 1.

Proof. (1) If e /∈M , then M+Re = R. Let 1 = m+ae for some a ∈ R and m ∈M .

Since R is quasi-abel, (1 − e)aeR(1 − e)ae = 0, this gives (1 − e)ae ∈ J(R) ⊆ M ,

so 1− e = (1− e)m+ (1− e)ae ∈M .

(2) If Ra + R(ae − 1) 6= R, then there exists a maximal left ideal M such that

Ra+R(ae−1) ⊆M . Since ae−1 ∈M , e /∈M , by (1), 1−e ∈M , so a(1−e) ∈M .

Since a ∈ M , ae ∈ M , so 1 = ae − (ae − 1) ∈ m, which is a contradiction. Thus

Ra+R(ae− 1) = R.

(3) If Me "M , then M +Me = R. Let 1 = m+ ae for some a,m ∈M . By (2),

R = Ra+R(ae− 1) = Ra+Rm ⊆M , which is a contradiction. Thus Me ⊆M .

(4) Let 1 = Σn
i=1aiebi. Since ebi(1 − e)Rebi(1 − e) = 0, ebi(1 − e) ∈ J(R), this

gives 1− e = Σn
i=1aieb1(1− e) ∈ J(R). Thus e = 1. �



148 YINCHUN QU AND JUNCHAO WEI

A ring R is called left pp if for any a ∈ R,RRa is a projective module.

Corollary 4.6. Let R be a quasi-abel ring. If R is left pp, then al(a) ⊆ J(R) for

each a ∈ R.

Proof. Let a ∈ R. Since R is a left pp ring, RRa is projective. Thus there exists

e ∈ E(R) such that l(a) = l(e) and ea = a. Since R is a quasi-abel ring and

(1 − e)ar = 0 for each r ∈ R, by Proposition 4.2, ar(1 − e)Rar(1 − e) = 0, this

gives ar(1 − e) ∈ J(R) for each r ∈ R. Thus aR(1 − e) ⊆ J(R), which implies

al(a) = aR(1− e) ⊆ J(R). �

Corollary 4.7. Let R be a quasi-abel ring. If x, z ∈ R are such that x+z ∈ zxE(R),

then xR = zR.

Proof. Let x + z = zxe for some e ∈ E(R). Then x = z(xe − 1). Since R is a

quasi-abel ring, R = Rx+R(xe−1) by Proposition 4.5, this implies R = R(xe−1).

Let 1 = u(xe − 1) for some u ∈ R. Write g = (xe − 1)u. Then g2 = g and

xe− 1 = g(xe− 1). By Proposition 4.2, (xe− 1)(1− g)R(xe− 1)(1− g) = 0, this

gives (xe − 1)(1 − g)R(1 − g) = 0 because R = R(xe − 1), and so R(1 − g) =

R(1 − g)R(1 − g) = R(xe − 1)(1 − g)R(1 − g) = 0, one obtains g = 1, that is

(xe− 1)u = 1. Hence xe− 1 is invertible, this leads to xR = z(xe− 1)R = zR. �

Following [13], an element a of a ring R is called clean if a is a sum of a unit and

an idempotent of R, and a is said to be exchange if there exists e ∈ E(R) such that

e ∈ aR and 1− e ∈ (1−a)R. A ring R is called clean if every element of R is clean,

and R is said to be exchange if every element of R is exchange. According to [13],

clean rings are always exchange, but the converse is not true unless R satisfies one

of the following conditions (1) R is a left quasi-duo ring [24]; (2) R is an Abelian

ring [25]; (3) R is a quasi-normal ring [21]; (4) R is a weakly normal ring [20].

Theorem 4.8. Let R be a quasi-abel ring and a ∈ R. Then

(1) If a is exchange, then a is clean.

(2) If R is an exchange ring, then R is clean.

(3) If an is clean for some n ≥ 1, then a is clean.

(4) If a2 is clean, then a and −a are clean.

Proof. (1) Let e ∈ E(R) such that e ∈ aR and 1 − e ∈ (1 − a)R. Write e = ab

and 1− e = (1− a)c for some b = be, c = c(1− e) ∈ R. Then (a− (1− e))(b− c) =

ab − ac − (1 − e)b + (1 − e)c = ab + (1 − a)c − (1 − e)b − ec = 1 − (1 − e)b − ec.
Since R is a quasi-abel ring, (1− e)bR(1− e)b = (1− e)beR(1− e)be = 0, this gives

(1− e)b ∈ J(R). Similarly, ec ∈ J(R). Hence v = 1− (1− e)b− ec is a unit of R, so

(a− (1− e))(b− c)u = 1 where u = v−1. Let g = (b− c)u(a− (1− e)). Then g2 = g

and g(b−c)u = (b−c)u. Since R is quasi-abel, g(b−c)u(1−g)Rg(b−c)u(1−g) = 0,

this implies g(b− c)u(1− g)(a− (1− e))g(b− c)u(1− g) = 0, that is, (b− c)u(1−
g)(a− (1−e))(b−c)u(1−g) = 0. Since (a− (1−e))(b−c)u = 1, (b−c)u(1−g) = 0,
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this leads to 1−g = (a− (1−e))(b−c)u(1−g) = 0, so (b−c)u(a− (1−e)) = g = 1,

one obtains a− (1− e) is an unit of R. Hence a is a clean element.

(2) It is an immediate result of (1).

(3) Since an is clean, there exist u ∈ U(R) and f ∈ E(R) such that an = u+ f .

Let e = u(1− f)u−1. Then (an − e)u = (u+ f)u− u(1− f) = an(an − 1) ∈ aR, so

e = an + (an − a2n)u−1 ∈ aR and 1− e ∈ (1− a)R, this implies a is exchange, by

(1), a is clean.

(4) Since a2 = (−1a)2 is clean, by (3), a and −a are clean. �

Corollary 4.9. Let R be a quasi-abel ring and idempotent can be lifted modulo

J(R). If a ∈ R is clean and e ∈ E(R). Then

(1) ae is clean.

(2) If −a is also clean, then a+ e is clean.

Proof. Since a is clean, ā is clean in R̄ = R/J(R). Since R is a quasi-abel ring

and idempotent can be lifted modulo J(R), R̄ is Abel, this illustrates that ē is a

central idempotent in R̄. Since a is clean in R, there exist u ∈ U(R) and f ∈ E(R)

such that a = u + f . Let v ∈ R such that uv = vu = 1. Then, in R̄, āē =

(ūē+ē−1̄)+(f̄ ē+1̄−ē). Clearly, (ūē+ē−1̄)(v̄ē+ē−1̄) = (v̄ē+ē−1̄)(ūē+ē−1̄) = 1̄

and (f̄ ē+ 1̄− ē)2 = f̄ ē+ 1̄− ē, so āē is clean in R̄. Since idempotent can be lifted

modulo J(R), there exists g ∈ E(R) such that ḡ = f̄ ē+ 1̄− ē. Let w ∈ R such that

w̄ = ūē+ ē− 1̄. Then w ∈ U(R) and ae−w−g ∈ J(R). Let ae−w−g = x ∈ J(R).

Then ae = g + w(1 + w−1x). Since w(1 + w−1x) ∈ U(R), ae is clean in R.

(2) Since −a is clean in R, 1 + a is clean in R. Hence ā and 1̄ + ā are all clean in

R̄ = R/J(R). Let ā = ū+ f̄ and 1̄ + ā = v̄+ ḡ where u, v ∈ U(R) and f, g ∈ E(R).

Clearly, ā+ ē = ā(1̄− ē) + (1̄ + ā)ē, so ā+ ē = v̄ē+ ū(1̄− ē) + ḡē+ f̄(1̄− ē). Clearly,

(v̄ē+ ū(1̄− ē))(v̄−1ē+ ū−1(1̄− ē)) = 1̄ and ḡē+ f̄(1̄− ē) ∈ E(R̄). Therefore, ā+ ē

is clean in R̄, similar to (1), we obtain a+ e is clean in R. �

In [7], it is showed that if R is a unit regular ring, then every element of R is a

sum of two units. A ring R is called an (S, 2)-ring ([8]), if every element of R is a

sum of two units of R. In [1], it is proved that if R is an Abel π-regular ring, then

R is an (S, 2)-ring if and only if Z/2Z is not a homomorphic image of R.

Theorem 4.10. Let R be a quasi-abel π-regular ring. Then R is an (S, 2)-ring if

and only if Z/2Z is not a homomorphic image of R.

Proof. Since R is a quasi-abel π-regular ring, R/J(R) is π-regular ring. Since R is

an exchange ring, idempotent can be lifted modulo J(R), this implies R/J(R) is an

Abel ring. By [1], R/J(R) is an (S, 2)-ring if and only if Z/2Z is not a homomorphic

image of R/J(R). By [21, Lemma 4.3], we are done. �

In light of Theorem 4.10, we have the following corollaries:



150 YINCHUN QU AND JUNCHAO WEI

Corollary 4.11. Let R be a quasi-abel π-regular ring such that 2 = 1 + 1 ∈ U(R).

Then R is an (S, 2)-ring.

Corollary 4.12. Let R be a quasi-abel π-regular ring. Then R is an (S, 2)-ring if

and only if for some d ∈ U(R), 1 + d ∈ U(R).

Recall that a ring R is said to have stable range 1 ([16]), if for any a, b ∈ R

satisfying aR + bR = R, there exists y ∈ R such that a + by is right invertible.

Clearly, R has stable range 1 if and only if R/J(R) has stable range 1. In [25,

Theorem 6], it is showed that exchange rings with all idempotents central have

stable range 1.

Theorem 4.13. Quasi-abel exchange rings have stable range 1.

Proof. Let R be a quasi-abel exchange ring. Then R/J(R) is exchange with all

idempotents central, so, by [25, Theorem 6], R/J(R) has stable range 1. Therefore

R has stable range 1. �

In [23], a ring R is said to satisfy the unit 1-stable condition if for any a, b, c ∈ R
with ab+ c = 1, there exists u ∈ U(R) such that au+ c ∈ U(R). It is easy to prove

that R satisfies the unit 1-stable condition if and only if R/J(R) satisfies the unit

1-stable condition.

Theorem 4.14. Let R be a quasi-abel exchange ring, then the following conditions

are equivalent:

(1) R is an (S, 2)-ring.

(2) R satisfies the unit 1-stable condition.

(3) Every factor ring R1 of R is an (S, 2)-ring.

(4) Z2 is not a homomorphic image of R.

A ring R is called left topologically boolean, or a left tb-ring ([5]) for short, if for

every pair of distinct maximal left ideals of R there is an idempotent in exactly one

of them.

Theorem 4.15. Let R be a quasi-abel clean ring. Then R is a left tb-ring.

Proof. Suppose that M and N are distinct maximal left ideals of R. Let a ∈M\N .

Then Ra + N = R and 1 − xa ∈ N for some x ∈ R. Clearly, xa ∈ M\N . Since

R is clean, there exist an idempotent e ∈ E(R) and a unit u in R such that

xa = e + u. If e ∈ M , then u = xa − e ∈ M from which it follows that R = M , a

contradiction. Thus e /∈M . If e /∈ N , then 1− e ∈ N by Proposition 4.5, this gives

u = (1− e) + (xa− 1) ∈ N . It follows that N = R which is also not possible. We

thus have that e is an idempotent belonging to N only. �
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