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1. Introduction

In the last decades categorical techniques turned out to be very effective in

algebra and representation theory. Hereby, it was a key observation that module

theory of an algebra A over a field K is essentially the theory of the functor

A⊗K − : MK →MK ,

an endofunctor of the category of K-vector spaces. An algebra A is defined by

K-linear maps, multiplication A ⊗K A → A and unit e : K → A, subject to

associativity and unitality conditions. Left A-modules are given by a K-vector

space V with K-linear maps % : A ⊗K V → V , also subject to associativity and

unitality conditions. Together with A-linear maps, this yields the category AM of

left A-modules. The tensor product with multiplication (A⊗K V,m⊗K V ) is a left

A-module and this leads to the free and forgetful functors

φA : MK → AM, V 7→ (A⊗K V,m⊗K V ),

UA : AM→MK , (M,ρ) 7→M,
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and the bijection

HomA(A⊗K V,M)→ HomK(V,UA(M)),

that is, the functor UA is right adjoint to A⊗K −.

These basic structures can be defined for arbitrary categories A, replacing MK ,

and any functor F : A→ A, replacing A⊗K− : MK →MK . Multiplication and unit

are replaced by natural transformations, m : FF → F and η : 1→ F , satisfying the

respective associativity and unitality conditions. This gives F a monad structure.

An F -module is an object V ∈ A with a morphism % : F (V ) → V and for

any W ∈ A, (F (W ),mW ) is an example for this. Morphisms of F -modules are

morphisms from A respecting the module structures and they yield the category

AF of F -modules with free and forgetful functors

φF : A→ AF , V 7→ (F (V ),mV ),

UF : AF → A, (M,%) 7→M,

and the bijection

MorAF
(F (V ),M) → MorA(V,UF (M)),

F (V )
f→M 7→ V

ηV→ F (V )
f→M,

shows that the functor UF is right adjoint to φF .

Thus structures from module theory can be formulated in great generality. As

we will see, if the functor F : A→ A has a right adjoint G : A→ A, then the monad

structure on F provides G with the structure of a comonad. This approach leads

naturally to comonads (coalgebras, bocses) and comodules and we will highlight

this interplay. Notice that the categorical tools developed are also successfully

applied in theoretical computer science and logic (e.g. [26], [35]).

2. Category theory

The idea that the role of elements in algebraic structures should be taken over

by homomorphisms came up from the beginning of the last century. It has finally

been poured into a solid frame 1945 by Samuel Eilenberg and Saunders Mac Lane

in the seminal paper [5]. For convenience, and to fix notation, we recall the basic

notions and refer to [12] for more details.

2.1. Categories. A category A consists of a class of objects, and

(i) for each pair (A,A′) of objects, there is a set of morphisms MorA(A,A′),

usually denoted by arrows A→ A′,
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(ii) for any triple A,A′, A′′ of objects there is a composition of morphisms,

MorA(A,A′)×MorA(A′, A′′)→ MorA(A,A′′)

which is associative in an obvious sense,

(iii) for any object A, MorA(A,A) contains an identity morphism 1A, leaving any

composition with it unchanged.

2.2. Functors. A covariant functor F : A→ B between categories sends

(i) an object A from A to an object F (A) in B,

(ii) a morphism f : A→ A′ to F (f) : F (A)→ F (A′) in B,

(iii) a composit fg of morphisms in A to F (fg) = F (f)F (g) in B,

(iv) the identity 1A for A in A, to the identity of F (A), F (1A) = 1F (A).

It follows from this definition that F induces a set map

ΦF : MorA(A,A′)→ MorB(F (A), F (A′)),

and F is called faithful if ΦF is injective, and full if ΦF is surjective.

F defines an equivalence of categories provided there exists a functor G : B→ A
such that FG and GF both are isomorphic to the respective identities.

A fully faithful functor F : A→ B induces an equivalence between A and a full

subcategory of B, the image of F .

2.3. Natural transformations. Given two functors F,G : A → B between cat-

egories, a natural transformation ψ : F → G is given by a family of morphisms

ψA : F (A) → G(A), A ∈ A, with commutative diagrams, for any morphism

h : A→ A′ in A,

A

h��
A′,

F (A)
ψA //

F (h)
��

G(A)

G(h)
��

F (A′)
ψA′ // G(A′).

ψ is called a (natural) isomorphism if all ψA are isomorphisms in B.

2.4. Separable functors. A functor F : A→ B is said to be separable if, for any

A,A′ ∈ A, the canonical map ΦF (from 2.2) is a naturally split monomorphism,

that is, there is a map

ΨF : MorB(F (A), F (A′))→ MorA(A,A′),

natural in A,A′, with ΨF · ΦF the identity on MorA(A,A′).
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Clearly, for a separable functor F , ΦF is always injective, and every fully faithful

functor is separable. A survey on separability in algebra and category theory is

given in [34].

It turned out that the following notion, formulated by D.M. Kan in [10] and

further investigated by S. Eilenberg and J.C. Moore in [6] and others, is a milestone

in category theory.

2.5. Adjoint pair of functors. A pair of (covariant) functors F : A → B,

G : B → A between any categories A, B, is said to be adjoint, we write F a G,

provided there is a bijection

αA,B : MorB(F (A), B)→ MorA(A,G(B)),

natural in A ∈ A and B ∈ B. Such a bijection can be described by natural

transformations, called unit and counit,

η : 1→ GF, ε : FG→ 1,

satisfying the triangular identities

F
Fη−−→ FGF

εF−−→ F = 1F , G
ηG−−→ GFG

Gε−−→ G = 1G.

They are obtained as images of the identities of F (A) and G(B), respectively, in

the defining bijection.

Adjointness of contravariant functors A → B is defined by relating them with

covariant functors between opposite categories.

2.6. Remark. The notion of adjointness can be weakened in various ways. For

example, instead of being invertible one may require α to be regular, that is, there

exists βA,B : MorA(A,G(B))→ MorB(F (A), B), natural in A ∈ A and B ∈ B, such

that αβα = α (and βαβ = β). This yields a weaker form of the triangular identities

(see [19], [32]).

A short argument shows that for adjoint functors F a G,

- F preserves epimorphisms and coproducts,

- G preserves monomorphisms and products.

2.7. Properties of units and counits. Let F a G : B → A be an adjoint pair

of functors (notation from 2.5).

(1) ε is an isomorphism if and only if G is a fully faithful functor:

G yields an equivalence between B and the image of G.
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(2) η is an isomorphism if and only if F is a fully faithful functor:

F yields an equivalence between A and the image of F .

(3) ε and η are isomorphisms if and only if F and G both are fully faithful: F

and G determine an equivalence between A and B.

(4) ε is a split epimorphism if and only if G is a separable functor.

(5) η is a split monomorphism if and only if F is a separable functor.

2.8. Rings and modules. We follow the notation from [27]. For associative rings

R and S, denote by RM and MS the category of left and right modules, respectively.

Then any bimodule RPS induces an adjoint pair of functors

RP ⊗S − : SM→ RM, HomR(P,−) : RM→ SM

with bijection, counit, and unit

HomR(P ⊗S Y,X) ' HomS(Y,HomR(P,X)),

εX : P ⊗S HomR(P,X)→ X, p⊗ f 7→ f(p)

ηY : Y → HomR(P, P ⊗S Y ), y 7→ [p 7→ p⊗ y].

Denote by Gen(P ) (Pres(P )) the category of P -generated (P -presented) R-

modules. Clearly the image of P ⊗S − is contained in Pres(P ).

Choose an (injective) cogenerator Q in RM and put U = HomR(P,Q). For

the S-module U , denote by Cog(U) (Cop(U)) the category of U -cogenerated (U -

copresented) S-modules. The image of HomR(P,−) is contained in Cog(U). If R

is a cogenerator in RM we can choose U = P ∗.

(i) ε isomorphism: P is a generator in RM and the categories RM and Cog(U)

are equivalent.

(ii) η isomorphism: by 2.7, P ⊗S − is full and faithful and the categories SM and

Pres(P ) are equivalent (Sato equivalence, [23, Theorem 2.1]).

(iii) η and ε are isomorphisms: the categories RM and SM are equivalent; P is

a finitely generated projective generator in RM and S = EndR(P ) (Morita

equivalence, [21]).

(iv) ε monomorph and η epimorph: the categories Gen(P ) and Cog(U) are equiv-

alent (∗-modules, e.g. [4], [24, Theorem 1.3], [28], [29]).

3. Monads and comonads

Monads and comonads on categories are modeled after the algebras and coalge-

bras on vector spaces.
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3.1. Monads and their modules. A monad on any category A is an endofunctor

T : A→ A with natural transformations, multiplication (product) and unit,

m : TT → T, η : 1A → T,

subject to associativity and unitality conditions (as for algebras).

T -modules are objects A ∈ A with a morphism % : T (A) → A subject to asso-

ciativity and unitality conditions (as for modules over rings).

Morphisms between T -modules (A, %) and (A′, %′) (or T -morphisms) are mor-

phisms f : A→ A′ in A with commutative diagram

T (A)

%

��

T (f)
// T (A′)

%′

��
A

f // A′.

The category determined by T -modules and their morphisms is called the Eilenberg-

Moore category - or just the module category - of the monad (T,m, η) and we

denote it by AT .

For any A ∈ A, T (A) has a T -module structure by mA : TT (A)→ T (A) and this

leads to the free functor φT which allows for a right adjoint, the forgetful functor,

φT : A→ AT , A 7→ (T (A),mA),

UT : AT → A, (A, %A) 7→ A.

The adjunction φT a UT is given by the bijection, for A ∈ A, B ∈ AT ,

MorAT
(φT (A), B)

'−→ MorA(A,UT (B)), f 7→ f ηA. (3.1)

Putting B = φT (A′) with A′ ∈ A and applying UTφT = T , we obtain

MorAT
(φT (A), φT (A′))

'−→ MorA(A, T (A′)). (3.2)

Define a new category ÃT with the objects of A but choosing

MorÃT
(A,A′) = MorA(A, T (A′))

and defining the composition of f : A→ T (A′) and g : A′ → T (A′′) by

g � f : A
f−→ T (A′)

T (g)−−−→ TT (A′′)
mA′′−−−→ T (A′′).

This is known as the Kleisli category of the monad T and the bijection (3.1) shows

that ÃT is isomorphic to the full subcategory of the Eilenberg-Moore category AT
determined by the objects T (A), A ∈ A (free T -modules).

Reversing the arrows in the definitions around monads yields
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3.2. Comonads and their comodules. A comonad on a category A is an end-

ofunctor S : A → A with natural transformations, comultipliction (coproduct) and

counit,

δ : S → SS, ε : S → 1A,

subject to coassociativity and counitality conditions (dual to monad case).

S-comodules are objects A ∈ A with a morphism ω : A → S(A) subject to

coassociativity and counitality conditions.

Morphisms between comodules (A,ω) and (A′, ω′) (or S-morphisms), are mor-

phisms g : A→ A′ in A with commutative diagrams

A

ω
��

g // A′

ω′

��
S(A)

S(g)
// S(A′).

The category formed by the S-comodules and their morphisms is called the Eilenberg-

Moore category - or just the comodule category - of the comonad (S, δ, ε) and we

denote it by MS .

For any A ∈ A, the structure map δA : S(A) → SS(A) makes S(A) an S-

comodule. This yields the free functor φS which is right adjoint to the forgetful

functor US ,

φS : A→ AS , A 7→ (S(A), δA),

US : AS → A, (A,ω) 7→ A.

The adjunction US a φS is given by the bijection, B ∈ AS , A′ ∈ A,

MorS(B,S(A′))
'−→ MorA(US(B), A′), h 7→ εA′ h. (3.3)

For B = S(A) with A ∈ A, using USφS = S, we obtain

MorS(S(A), S(A′))
'−→ MorA(S(A), A′). (3.4)

Define a new category ÃS with the objects of A but choosing

MorÃS (A,A′) := MorA(S(A), A′)

and take as composition, of h : S(A)→ A′ and k : S(A′)→ A′′,

k � h : S(A)
δA−−→ SS(A)

S(h)−−−→ S(A′)
k−→ A′′.

This is known as the Kleisli category of the comonad S. The bijection (3.4) shows

that ÃS is isomorphic to the full subcategory of the Eilenberg-Moore category AS

determined by the objects S(A), A ∈ A ((co)free S-comodules).
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3.3. Rings and modules. For a ring R, any (R,R)-bimodule A defines an end-

ofunctor A ⊗R − : RM → RM. A is called an R-ring if this functor allows for a

monad structure. If R is commutative and ra = ar for a ∈ A, r ∈ R, an R-ring is

called an R-algebra.

An (R,R)-bimodule C is called an R-coring provided the functor C⊗R− allows

for a comonad structure. If R is commutative and rc = cr for c ∈ C, r ∈ R, an

R-coring is called an R-coalgebra.

Notice that not every monad or comonad on RM can be represented by a tensor

functor. For an extensive treatment of corings refer to [3].

4. Adjoints and (co)monads

The notion of adjoints and (co)monads are intimately related. Using naturality

of the transformations involved it is straightforward to show:

4.1. From adjoints to (co)monads. Let F a G : B → A be an adjoint pair of

functors with unit η : 1A → GF and counit ε : FG→ 1B.

(i) T := GF : A→ A is an endofunctor and the natural transformations, multi-

plication and unit,

m : TT = GFGF
GεF−−−→ GF = T, η : 1A → GF = T,

make (T,m, η) a monad on A.

(ii) S := FG : B → B is an endofunctor and the natural transformations comul-

tiplication and counit,

δ : S = FG
FηG−−−→ FGFG = SS, ε : S = FG→ 1B,

make (S, δ, ε) a comonad on B.

Recall that the construction of module and comodule categories in 3.1 and 3.2

show the inverse direction. In fact, these structures were introduced to show that

monads as well as comonads can be written as a composition of adjoint functors

([6], [11]).

4.2. From (co)monads to adjoints. Let A be any category.

(i) For a monad (T,m, η) on A, the category AT allows for an adjoint pair of

functors φT a UT : AT → A with T = UTφT .

(ii) For a comonad (S, δ, ε) on A, the category AS allows for an adjoint pair of

functors US a φS : A→ AS with S = USφS.
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The same assertions hold replacing the Eilenberg-Moore categories by the corre-

sponding Kleisli categories.

The structure of the (co)monads related to an adjunction are strongly influenced

by the properties of the unit and counit.

4.3. Separability. Let F a G : B → A be an adjunction as in 4.2 and T = GF ,

S = FG the associated monad and comonad.

(i) Assume G to be a separable functor (see 2.4). Then the monad (T,m, η)

allows for a comultiplication

δ′ : T = GF
Gε′F−−−→ GFGF = TT,

where ε′ is a splitting for ε (see 2.7(4)), with m · δ′ = 1T and commutative

diagrams (Frobenius conditions)

TT
δ′T //

m ��

TTT

Tm��
T

δ′ // TT,

TT
Tδ′ //

m ��

TTT

mT��
T

δ′ // TT.

(4.1)

With these properties, (T,m, η, δ′) is (called) a separable monad.

(ii) Assume F to be a separable functor (see 2.4). Then the comonad (S, δ, ε)

allows for a multiplication

m′ : SS = FGFG
Fη′G−−−→ FG = S,

where η′ is a splitting for η (see 2.7(5)), with m′ · δ = 1S and commutative

diagrams as in (4.1).

(S, δ, ε,m′) is (called) a coseparable comonad.

4.4. Rings and modules. As in 2.8, we consider an (R,S)-bimodule P . The

related adjunction yields

monad HomR(P, P ⊗S −) : SM→ SM,

comonad P ⊗S HomR(P,−) : RM→ RM.

Now P ∗ := HomR(P,R) is an (S,R)-bimodule and hence induces

monad HomS(P ∗, P ∗ ⊗R −) : RM→ RM,

comonad P ∗ ⊗R HomS(P ∗,−) : SM→ SM.

If RP is finitely generated and projective, HomR(P,−) ' P ∗ ⊗R − and the

comonad P ⊗S HomR(P,−) ' P ⊗S P ∗⊗R−, that is, P ⊗S P ∗ is an R-coring (and

P ∗ ⊗R P ' S).
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If η is an isomorphism, P ⊗S − is (left) exact on the image of HomR(P,−) and

hence the comonad

P ⊗S HomR(P,−) : RM→ RM

is a left exact functor commuting with products in RM. Therefore, by the dual of

Watts’ theorem (e.g. [9]), it is determined by the image of a cogenerator Q ∈ RM,

that is,

P ⊗S HomR(P,−) ' HomR(P ⊗S HomR(P,Q),−)

' HomS(HomR(P,Q),HomR(P,−)).

In case R is a cogenerator in RM, we put Q = R to obtain

P ⊗S HomR(P,−) ' HomR(P ⊗S P ∗,−)

' HomS(P ∗,HomR(P,−)).

This is a comonad, thus P ⊗S P ∗ ⊗R − is a monad (by 5.1) which means that

P ⊗S P ∗ is an R-ring (see 3.3).

If unit η and counit ε are isomorphisms, the comonad P ∗ ⊗R HomS(P ∗,−) '
P ∗ ⊗R P ⊗S −, that is, P ∗ ⊗R P is an S-coring.

As a special case, we look at a situation studied in representation theory.

4.5. Nakayama functors. Let A be a finite dimensional algebra over a field K and

A-mod the category of finitely generated left A-modules. It is customary to write

D(−) = HomK(−,K), so A∗ = D(A), and one gets HomK(A,−) ' D(A) ⊗K −.

The functor (e.g. [9])

ν = DHomA(−,AA) : A-mod→ A-mod

is called the Nakayama functor, and

ν− = HomA(D(−), AA) : A-mod→ A-mod

is said to be the inverse Nakayama functor. By the Eilenberg-Watts theorems one

gets the natural isomorphisms

ν(−) ' D(A)⊗A −, ν−(−) ' HomA(D(A),−),

thus there is an adjoint pair of endofunctors to be investigated.

From 2.8 and 4.4 one can see which monad or comonad structures may show up

in this setting. The (A-module) structure of D(A) is of course influenced by the

structure of A.
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5. Adjoint monads and comonads

In 3.2, comonads (S, δ, ε) were defined by reversing arrows in the definition of

monads (T,m, η). This does not mean that the two notions are strictly dual in

a categorical way: in our definition we do not have anything like the “dual” of a

functor T (or S). In this section we will outline that adjointness provides a bijective

correspondence between monads and comonads.

5.1. Monads versus comonads Let F a G : A → A be an adjoint pair of

endofunctors with unit η, counit ε and bijection, for X,Y ∈ A,

αX,Y : MorA(F (X), Y )→ MorA(X,G(Y )).

(i) A monad structure on F induces a comonad structure on G, and vice versa,

such that the associated (Eilenberg-Moore) categories AF and AG are isomor-

phic.

(ii) A comonad structure on F induces a monad structure on G, and vice versa,

such that the associated Kleisli categories ÃF and ÃG are equivalent.

Proof. (Sketch) (i) Let (F,m, η) be a monad. The adjunction F a G induces the

diagram

MorA(F (X), Y )
αX,Y //

Mor(mX ,Y )

��

MorA(X,G(Y ))

Mor(X,?)

��
MorA(FF (X), Y )

αX,G(Y )·αF (X),Y// MorA(X,GG(Y ))

where the dotted arrow exists by applying the Yoneda Lemma to the composition

of the other maps (α is invertible) and determines a natural transformation δ : G→
GG. A similar argument shows the existence of a counit ε : G→ 1A. Explicitly we

get

δ : G
ηG−−→ GFG

GηFG−−−−→ GGFFG
GGmG−−−−→ GGFG

GGε−−−→ GG,

ε : G
ηG−−→ FG

ε−→ 1A .

The symmetric construction shows that a comonad structure on G leads to a

monad structure on F . The equivalence of categories is given by

AF → AG, F (A)
h−−→ A 7→ A

ηA−−→ GF (A)
G(h)−−−→ G(A),

AG → AF , A
%−→ G(A) 7→ F (A)

F (%)−−−→ FG(A)
εA−−→ A.

(ii) By arguments symmetric to those in (i), a comonad structure on F induces

a monad structure on G, and vice versa. The equivalence of Kleisli categories ÃF
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and ÃG follows from the isomorphisms

MorAF (φF (A), φF (A′))
(1)
' MorA(F (A), A′)

(2)
' MorA(A,G(A′))

(3)
' MorAG

(φG(A), φG(A′)),

where (1) is the isomorphism from (3.4), (2) is the adjunction, and (3) is the

isomorphism from (3.2). �

5.2. Frobenius monads. Let F : A → A be a self-adjoint endofunctor, that is,

F a F . By subsection 5.1, there are equivalent:

(a) F has a monad structure (F,m, η);

(b) F has a comonad structure (F, δ, ε).

With this (mutually) induced structures, (F,m, δ) satisfies the Frobenius con-

ditions (4.1) and the categories AF and AF are isomorphic. These data define a

Frobenius monad. ([18], [25]).

5.3. Rings and modules. Let A be an (R,R)-bimodule and consider the adjoint

functor pair of endofunctors (as in 2.8),

A⊗R −, HomR(A,−) : RM→ RM.

(i) An R-ring (A,m, η), that is, a monad A ⊗R − on RM, induces a comonad

structure on HomR(A,−) with comultiplication

HomR(A,−)
Hom(m,−)−−−−−−−→ HomR(A⊗R A,−)

' HomR(A,HomR(A,−)),

and the module category MA is isomorphic to the comodule category MHom(A,−).

(ii) A coring (A, δ, ε), that is, a comonad A ⊗R − on RM, induces a monad

structure on HomR(A,−) with multiplication

HomR(A,HomR(A,−)) '

HomR(A⊗R A,−)
Hom(δ,−)−−−−−−→ HomR(A,−),

and the Kleisli categories are isomorphic by assigning, for X ∈ RM,

M̃A → M̃Hom(A,−), A⊗R X 7→ HomR(A,X).

Note that the objects of MHom(A,−) are also called contramodules (e.g. [2,

Section 4], [31]).
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The R-ring (A,m, η) is called a Frobenius R-ring provided A⊗R− is a Frobe-

nius monad on RM. This implies that RA is finitely generated and projective and

hence HomR(A,−) ' A∗ ⊗R −, thus A ' A∗ as left A-modules and MA ' MA.

For commutative rings R one obtains Frobenius algebras (as considered by F.

Frobenius in [7] over fields).

6. Composition of monads and comonads

Over a commutative ring R, the tensor product of two R-algebras (A,m, e),

(B,m′, e′) can be made an algebra defining multiplication (writing ⊗ := ⊗R)

mAB : A⊗B ⊗A⊗B A⊗tw⊗B−−−−−−→ A⊗A⊗B ⊗B m⊗m′

−−−−→ A⊗B,

with the twist map tw : B ⊗A→ A⊗B, b⊗ a 7→ a⊗ b.
This map is no longer available if R is not commutative. On the other hand, the

multiplication is formally defined replacing tw by any morphism τ : B⊗A→ A⊗B,

however, it is not clear which properties it has. So one may ask which conditions

are to be satisfied by τ to make (A⊗B,mAB , e⊗ e′) a unital algebra. These lead

to commutative diagrams

B ⊗B ⊗A

B⊗τ
��

m′⊗A // B ⊗A

τ

��
B ⊗A⊗B

τ⊗B// A⊗B ⊗B
A⊗m′
// A⊗B,

A
e′⊗A //

A⊗e′ ##

B ⊗A

τ

��
A⊗B,

B ⊗A⊗A

τ⊗B
��

A⊗m // B ⊗A

τ

��
A⊗B ⊗A

B⊗τ// A⊗A⊗B
m⊗A// A⊗B,

B
B⊗e //

e⊗B ##

B ⊗A

τ

��
A⊗B,

and should induce commutative diagrams of functors, with the forgetful functor

UB : BM→ RM,

BM
A⊗B⊗B− //

UB

��

BM

UB

��
RM

A⊗R− //
RM.

Then A⊗− ' A⊗B ⊗B − is called a lifting of A⊗− from RM to BM.

The questions considered above for the functors A⊗− and B ⊗− can be asked

for endofunctors in any category.
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6.1. Liftings of endofunctors. Let A be any category with endofunctors F,G :

A→ A. If (F,m, e) is a monad or (G, δ, ε) is a comonad, we get the two diagrams,

respectively,

AF
G //

UF

��

AF

UF

��
A G // A,

AG F //

UG

��

AG

UG

��
A F // A.

If G (F ) exists it is called a lifting of G (F ) from A to AF (AG). The following

questions come up:

(i) when does a lifting G or F exist?

(ii) if F and G are monads, when is G a monad?

(iii) if F and G are comonads, when is F a monad?

(iv) if F is a monad and G is a comonad, when is G a comonad, when is F a

monad?

All these problems can successfully be handled applying distributive laws as

introduced and investigated in the 1970’s by J. Beck [1] and others (see [30] for an

overview and [2], [14], [15], et al. for more details).

Question (ii) above will lead to conditions which make the composition FG a

monad on A (as considered for algebras above) and (iii) describes the corresponding

properties of comonads. Of particular interest are the questions in (iv) since they

reveal an interesting interplay between monads and comonads.

6.2. Mixed distributive laws. Let (F,m, η) be a monad and (G, δ, ε) a comonad

on a category A. A natural transformations λ : FG → GF is called a mixed

distributive law or (mixed) entwining if it induces commutativity of the diagrams

FFG
mG //

Fλ
��

FG

λ
��

FGF
λF // GFF

Gm // GF,

FG
Fδ //

λ
��

FGG
λG // GFG

Gλ
��

GF
δF // GGF,

G
ηG //

Gη !!

FG

λ
��

GF,

FG
Fε //

λ
��

F

GF.

εF

==

The following are equivalent (with notation from 6.1):

(a) G can be lifted from A to G : AF → AF ;
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(b) F can be lifted from A to F : AG → AG;

(c) there exists a mixed distributive law λ : FG→ GF .

Given a monad and a comonad on A, objects can have a module and a comodule

structure. An entwining allows to require a compatibility of these structures.

6.3. Mixed modules. Let (F,G, λ) be a mixed entwining and assume A ∈ A to

be an F -module % : F (A)→ A and a G-comodule ω : A→ G(A). Then (A, %, ω) is

called a mixed (F,G)-module if we get commutativity of the diagram

F (A)
% //

F (ω)

��

A
ω // G(A)

FG(A)
λA // GF (A).

G(%)

OO

These objects with morphisms that are module as well as comodule morphisms,

form a category which we denote by AGF .

In 6.1, the lifting to Eilenberg-Moore categories was considered. A corresponding

construction for Kleisli categories is the following.

6.4. Extending of endofunctors. Let A be any category with endofunctors

F,G : A → A. If (F,m, e) is a monad or (G, δ, ε) is a comonad, we get the two

diagrams (with φ the free functors), respectively,

A

φF
��

G // A

φF
��

ÃF
G̃ // ÃF ,

A F //

φG

��

A

φG

��

ÃG F̃ // ÃG.

G̃ and F̃ are called the extensions of F and G, respectively. Here again distribu-

tive laws apply for further investigation but with the role of monad and comonad

interchanged, that is, one needs natural transformations σ : GF → FG induc-

ing commutativity of the corresponding diagrams. Notice that the role of mixed

modules (as in 6.3) does not transfer to this situation.

7. Bimonad and Hopf monads

Of special interest are endofunctors B on A which carry a monad structure

(B,m, η) and a comonad structure (B, δ, ε) at the same time. To make these data

a bimonad we first require the existence of a mixed distributive law λ : BB → BB.

The relevant commutative diagrams are either for the monad structure or else

for the comonad structure - they do not relate multiplication with comultiplication,
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for example. To connect these we need further compatibility conditions, namely

commutativity of the diagrams

BB
m //

Bδ
��

B
δ // BB

BBB
λB // BBB,

Bm

OO (7.1)

BB

m

��

Bε // B

ε

��
B

ε // 1A,

1A

η

��

η // B

Bη

��
B

δ // BB,

1A

=   

η // B

ε

��
1A,

(7.2)

where the bottom diagrams mean that η is comonad morphism and ε a monad

morphism. Diagram (7.1) guarantees that for each A ∈ A, B(A) is a mixed (B,B)-

module in the sense of 6.3, that is, B(A) ∈ ABB . This determines a functor

φBB : A→ ABB , A 7→ BB(A)
mA−−−→ B(A)

δA−−→ BB(A)

which is full and faithful by the isomorphisms (see 3.4, 3.1)

MorBB(B(A), B(A′)) ' MorB(B(A), A′) ' MorA(A,A′).

A natural transformation S : B → B is called an antipode if it induces com-

mutativity of the diagram

B
ε //

δ
��

1A
η // B

BB
SB //
BS

// BB

m

OO . (7.3)

A bimonad which allows for an antipode is called a Hopf monad. Such an antipode

exists if and only if either of the composites

BB
Bδ−−→ BBB

mB−−→ BB, BB
δB−−→ BBB

Bm−−→ BB

is an isomorphism ([16, 5.5]).

Under certain conditions on the category A and the functor B, the existence of

an antipode S is equivalent to φBB : A→ ABB defining an equivalence ([16, 5.6, 6.11]).

7.1. Adjoints of bimonads. Let (B,m, δ, λ) be a bimonad on A (as above).

Assume B allows for a right adjoint functor C : A → A. Then by 5.1, C can be

endowed with a comonad as well as a monad structure. Furthermore, there is a

mixed distributive law λ′ : CC → CC (derived from λ, see [16, 7.4]) which makes

C a bimonad.
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The bimonad B has an antipode if and only if the associated bimonad C has an

antipode. Thus, given an adjoint pair B a C of functors on A, B allows for a Hopf

monad structure if and only if so does C.

7.2. Bimonad on Set. ([30, 5.19], [16, 7.9]) For any set G, the cartesian product

defines an endofunctor

G×− : Set→ Set, A 7→ G×A,

which is a comonad with comultiplication δ : G → G × G, g 7→ (g, g), and is a

monad provided G is a monoid. Then it is a bimonad with entwining

λ : G×G→ G×G, (g, h) 7→ (gh, g).

Now G×− has an antipode, i.e., is a Hopf monad, if and only if the monoid G is

in fact a group. By 7.1, this is also equivalent to Map(G,−) : Set→ Set, a right

adjoint of G×−, being a Hopf monad.

7.3. Bialgebras. Let R be a commutative ring. An R-module B with an algebra

structure (B,m, η) and a coalgebra structure (B, δ, ε) is called a bialgebra if δ and ε

are algebra morphisms, or, equivalently, m and η are coalgebra morphisms. These

conditions require commutativity of the outer path in the diagram

B ⊗B m //

B⊗δ
��

B
δ // B ⊗B

B ⊗B ⊗B

δ⊗B⊗B
��

ω⊗B // B ⊗B ⊗B

B⊗m

OO

B ⊗B ⊗B ⊗B
B⊗tw⊗B // B ⊗B ⊗B ⊗B.

m⊗B⊗B

OO

Defining an R-linear map

ω : B ⊗B δ⊗B−−−→ B ⊗B ⊗B B⊗tw−−−−→ B ⊗B m⊗B−−−→ B ⊗B,

the condition reduces to commutativity of the upper rectangle. As readily checked,

ω : B ⊗B → B ⊗B is a mixed distributive law between the monad B ⊗− and the

comonad B ⊗ −. Commutativity of the upper rectangle is just the compatibility

condition which makes B a bialgebra. Thus a bialgebra B corresponds to a monad

B ⊗− with the associated monad and comonad structures and the specific mixed

distributive law ω. The mixed (B,B)-modules MB
B are called Hopf modules.

The composite

ω : B ⊗B B⊗δ−−−→ B ⊗B ⊗B tw⊗B−−−−→ B ⊗B B⊗m−−−→ B ⊗B
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yields a similar rectangle (sides interchanged). It gives a mixed distributive law

between the related monad −⊗B and the comonad −⊗B. It may also be considered

as a mixed distributive law between the comonad B⊗− and the monad B⊗− (see

6.4).

An antipode for the bialgebra B is an R-linear map S : B → B leading to

commutativity of the diagram (7.3) for the monad B ⊗−.

Bialgebras B with an antipode are called Hopf algebras and they are char-

acterized by the fact that φBB : MR → MB
B is an equivalence, that is, every Hopf

module is of the form B ⊗X, for some X ∈MR (Fundamental Theorem).

In case B is a finite dimensional algebra over a field K, B ⊗K − is left adjoint

to the endofunctor HomK(B,−) ' B∗ ⊗K −, where B∗ = HomK(B,K). Hence B

is a Hopf algebra if and only if B∗ is a Hopf algebra (see 7.1). This is known as the

duality principle of Hopf algebras.

Hopf algebras were brought to light by Heinz Hopf in his seminal paper [8] in

topology (1941). The algebraic essentials of this notion were extracted by Milnor-

Moore in [20] (1965). As a result, interest was also directed to the more elementary

notions of coalgebras and corings as building blocks for the theory. It took several

years until their value for representation theory was unveiled (1980) by A.V. Roiter

in [22], there a coring is called bocs, and the interest is focused on Kleisli categories.

In the meantime more attention is paid to coalgebraic aspects of finite dimensional

algebras. For this we refer to the recent paper [13] by R. Marczinzik and the

references given there.

7.4. Remark. As pointed out in subsection 7.3, the mixed distributive law for a

bialgebra was derived from the canonical twist of the tensor product of modules

over a commutative ring. This setting was extended to monoidal braided categories,

where a general version of such a twist map is required. Concentrating on the

properties needed, for endofunctors B on any category it is sufficient to define a

local braiding τ : BB → BB to derive the corresponding theory. For details we

refer to [16, Section 6] and [17].

7.5. Rings and modules. The preceding sections show that comultiplication plays

an important role in the structure theory of algebras. Summarising we consider an

algebra (A,m, η) over a commutative ring R and assume A to allow for a comulti-

plication δ : A→ A⊗A. Then A becomes

(1) a separable algebra if (A,m, δ) satisfies the Frobenius condition and m·δ = 1A;
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(2) an Azumaya algebra if it is separable and R ' C(A) (center of A); the category

of C(A)-modules is equivalent to the category AMA of (A,A)-bimodules;

(3) a Frobenius algebra if (A,m, δ) satisfies the Frobenius condition and (A, δ) has

a counit ε : A→ R; every A-module has an A-comodule structure (Frobenius

(bi)module, see [33]);

(4) a Hopf algebra if (A,m, δ) induce commutativity of (7.1 and (7.2)) and allows

for an antipode; the category of R-modules is equivalent to the category MA
A

of mixed (A,A)-bimodules (e.g. [3]).

Acknowledgement. The author is grateful to Bachuki Mesablishvili for proof-

reading and helpful comments.
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