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ABSTRACT

The notion of a statistical submersion is due to Abe and Hasegawa. In particular, one of the present
authors defined holomorphic statistical submersions. In a joint paper with Kazan, he studied
anti-invariant holomorphic statistical submersions. In the present paper, we investigate invariant
statistical submersions and give their geometric properties. Two examples of such submersions are
provided.
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1. Introduction

In 1980s, the notion of statistical structure was introduced and began to play an important role to build a very
effective branch called information geometry, which is a combination of differential geometry and statistics. In
fact, information geometry joins fundamental differential geometry tools like connection, metric and curvature
to statistical models, and makes it possible to describe statistical objects as geometric ones. Describing statistical
spaces using geometry helps us better understand statistical behaviors. A detailed introduction to information
geometry can be found in [3].

In 1985, Amari [2] studied statistical manifolds from the point of view of information geometry and he gave a
new description of the statistical distributions by using the obtained geometric structures. In Amari’s definition
a statistical manifold is a triple (M, g,∇) consisting of a smooth manifold M , a non-degenerate metric g on it
and a torsion-free connection ∇ with the property that ∇g is symmetric [2].

Its applications could be found in various fields of science such as in statistical inference, time series,
linear systems, quantum systems, image processing, physics, computer science and machine learning. In
pure differential geometry, there are several papers studying statistical submanifolds of (special) statistical
manifolds, as Kähler-like or Sasaki-like statistical manifolds. For example, in [4] Chen inequalities for statistical
submanifolds of Kähler-like statistical manifolds were proven. In [5] the authors obtained relations between
extrinsic and intrinsic invariants of statistical submanifolds in Sasaki-like statistical manifolds.

The notion of a Riemann submersion was introduced by O’Neill (1966) and Gray (1967), and since then,
there have been many studies such as the case where the total space has geometric structures such as almost
complex structures or almost contact structures. In addition, Abe and Hasegawa (2001) defined the statistical
submersions. One of the present authors studied geometric structures similar to almost complex structures
(2004) and almost contact structures (2006) in statistical manifolds, and considered statistical submersion when
the total space allows geometric structures similar to almost complex structures and almost contact structures.

A statistical submersion whose total space is a holomorphic statistical manifold is said to be a holomorphic
statistical submersion. Anti-invariant holomorphic statistical submersion were studied by Kazan and Takano,
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one of the present authors in [10]. Other types of statistical submersions were studied, see for example results
on cosymplectic-like statistical submersions in [6].

In [18], the first author et al. dealt with the study of para-holomorphic statistical submersions, which
are different in nature from holomorphic statistical submersions. Also, Vîlcu [20] studied para-Kähler-like
statistical submersions. One points-out that a para-Kähler manifold is an almost product manifold, while a
Kähler manifold is a complex manifold.

In this paper, we investigate invariant holomorphic statistical submersions. Two examples of invariant
holomorphic statistical submersions are provided. One remarks that it is not easy to construct examples that
meet the conditions. This time, we reduced the amount of calculation by making the metric a diagonal matrix,
and based on the definitions, we decided the coefficients of affine connection. If the even dimension of statistical
models (for example, the multinomial distribution, the negative multinomial distribution, the multivariate
normal distribution, etc), then we can construct structures that are similar to Kählerian structures. These are
the motivation for research on manifolds with almost complex structures.

2. Holomorphic statistical manifolds

An m-dimensional semi-Riemannian manifold is a smooth manifold M furnished with a metric tensor g,
where g is a symmetric nondegenerate tensor field on M of constant index. The common value ν of the index
of g on M is called the index of M (0 ≤ ν ≤ m) and we denote a semi-Riemannian manifold by Mm

ν . If ν = 0,
then M is a Riemannian manifold. For each p ∈ Mm

ν , a tangent vector E to Mm
ν is spacelike (resp. null, timelike)

if g(E,E) > 0 or E = 0 (resp. g(E,E) = 0 and E ̸= 0, g(E,E) < 0).
Let Rm

ν be an m-dimensional real vector space with an inner product of signature (ν,m− ν) given by

⟨x, x⟩ = −
ν∑

i=1

x2
i +

m∑
i=ν+1

x2
i , (2.1)

where x = (x1, . . . , xm) is the natural coordinate of Rm
ν . Rm

ν is called an m-dimensional semi-Euclidean space.
If ν = 0 (resp. ν = 1), then Rm (resp. Rm

1 ) is a Euclidean space (resp. a Lorentzian space).
Let M be a semi-Riemannian manifold and ∇ a torsion-free affine connection on M . The triple (M, g,∇) is

called a statistical manifold if ∇g is symmetric. For the statistical manifold (M, g,∇), one defines another affine
connection ∇∗ by

Eg(F,G) = g(∇EF,G) + g(F,∇∗
EG), (2.2)

for vector fields E,F and G on M . The affine connection ∇∗ is called conjugate (or dual) to ∇ with respect to g.
The affine connection ∇∗ is torsion-free, ∇∗g is symmetric and satisfies (∇∗)∗ = ∇. Clearly, the triple (M, g,∇∗)
is a statistical manifold. It is easy to see that ∇0 = 1

2 (∇+∇∗) holds, where ∇0 is the Levi-Civita connection.
We denote by R and R∗ the curvature tensors on M with respect to the affine connection ∇ and its conjugate
∇∗, respectively. Then one has

g(R(E,F )G,H) = −g(G,R∗(E,F )H), (2.3)

for any vector fields E,F,G and H on M , where R(E,F )G = [∇E ,∇F ]G−∇[E,F ]G. Therefore R vanishes
identically if and only if R∗ vanishes identically. M is called flat if R vanishes identically. If the curvature
tensor R with respect to the affine connection ∇ satisfies

R(E,F )G = c { g(F,G)E − g(E,G)F },

then the statistical manifold (M, g,∇) is said to be a space of constant curvature c. The triple (M, g,∇) is of
constant curvature c if and only if (M, g,∇∗) is of constant curvature c.

Let M be a smooth manifold with a tensor field J of type (1, 1) on M such that

J2 = −I, (2.4)

where I stands for the identity transformation. Then M is called an almost complex manifold with almost
complex structure J . An almost complex manifold is a manifold with a fixed almost complex structure. An
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almost complex manifold is necessarily orientable and must have an even dimension. If J preserves the metric
g, i.e.,

g(JE, JF ) = g(E,F ), (2.5)

then (M, g, J) is an almost Hermitian manifold. Moreover, if J is parallel with respect to the Levi-Civita
connection ∇′, namely, (∇′

EJ)F = 0, then (M, g, J) is called a Kählerian manifold. For each plane π in the
tangent space TpM , the sectional curvature K(π) is defined to be K(π) = g(R(E,F )F,E), where {E,F} is
an orthogonal basis of π. If π is invariant by J , then K(π) is called a holomorphic sectional curvature. The
holomorphic sectional curvature K(π) is given by

K(π) = g(R(E, JE)JE,E),

where E is a unit vector in π. If K(π) is a constant for all J-invariant planes π in TpM and for all points p ∈ M ,
then M is called a space of constant holomorphic sectional curvature or complex space form. It is known that

Theorem A [21] A Kählerian manifold M is of constant holomorphic sectional curvature c if and only if

R(E,F )G =
c

4
{ g(F,G)E − g(E,G)F + g(JF,G)JE − g(JE,G)JF + 2g(E, JF )JG },

for any vector fields E,F,G on M .
On a statistical manifold (M,∇, g), if the curvature tensor R with respect to the affine connection ∇ satisfies

R(E,F )G =
c

4
{ g(F,G)E − g(E,G)F + g(JF,G)JE − g(JE,G)JF + 2g(E, JF )JG }, (2.6)

then (M,∇, g, J) is called a space of constant holomorphic sectional curvature c [8]. Then we have

Lemma 2.1. (M,∇, g, J) is of constant holomorphic sectional curvature c if and only if (M,∇∗, g, J) is of constant
holomorphic sectional curvature c.

Remark 2.1. If (M,∇, g, J) is of constant holomorphic sectional curvature c, then
(1) R(E,F )JG = JR∗(E,F )G holds.
(2) (M,∇, g, J) is Einstein.
Let (M, g, J) be a Kählerian manifold and ∇ an affine connection of M . We put ω(F,G) = g(F, JG) and

(∇Eω)(F,G) = Eω(F,G)− ω(∇EF,G)− ω(F,∇EG). If (∇, g) is a statistical structure and the 2-form ω is parallel
with respect to ∇ on M , then (M,∇, g, J) is called a holomorphic statistical manifold (see [8]).

It is known that

Lemma B [8] On a holomorpic statistical manifold (M,∇, g, J) we have

∇E(JF ) = J(∇∗
EF ),

R(E,F )JG = JR∗(E,F )G.

Lemma 2.2. The following conditions are equivalent:
(1) (M,∇, g, J) is a holomorphic statistical manifold.
(2) ∇∗

E(JF ) = J(∇EF ) holds.
(3) ∇E(JF ) = J(∇∗

EF ) holds.
(4) (M,∇∗, g, J) is a holomorphic statistical manifold.

Proof. We have (∇Eω)(G,F ) = g(G,∇∗
E(JF )− J(∇EF )). Thus ω is parallel with respect to ∇ if and only if

∇∗
E(JF ) = J(∇EF ) holds. It is easy to see from (∇∗)∗ = ∇ that the condition (2) is equivalent to the condition

(3).

If M is of constant curvature c, then we get from Lemma B

c{g(F, JG)E − g(E, JG)F} = c{g(F,G)JE − g(E,G)JF},

which yields that (m− 2)cg(F, JG) = 0. Hence we have

Theorem 2.1. Let (Mm,∇, g, J) be a holomorphic statistical manifold. If Mm (m ≥ 4) is of constant curvature, then M
is flat.

477 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Invariant Holomorphic Statistical Submersions

We give an example of a holomorphic statistical manifold.

Example 2.1. Let M4 be a smooth manifold with local coordinate system (x1, x2, x3, x4), which admits the
following almost complex structure J :

J =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 .

The triple (M, g, J) is an almost Hermitian manifold with

g =


ex1 0 0 0

0 εex2 0 0

0 0 ex1 0

0 0 0 εex2

 ,

where ε = 1 or ε = −1. Moreover, (M, g, J) is a Kählerian manifold. If ε = 1 (resp. ε = −1), then M = R4 (resp.
M = R4

2). We put

∇∂1∂1 = −∇∂3∂3 = εe−x2∂2,

∇∂1∂2 = ∇∂2∂1 = −∇∂3∂4 = −∇∂4∂3 = e−x1∂1,

∇∂1
∂3 = ∇∂3

∂1 = ∂3 − εe−x2∂4,

∇∂1
∂4 = ∇∂4

∂1 = ∇∂2
∂3 = ∇∂3

∂2 = −e−x1∂3,

∇∂2∂2 = −∇∂4∂4 = 0,

∇∂2∂4 = ∇∂4∂2 = ∂4,

and

∇∗
∂1
∂1 = −∇∗

∂3
∂3 = ∂1 − εe−x2∂2,

∇∗
∂1
∂2 = ∇∗

∂2
∂1 = −∇∗

∂3
∂4 = −∇∗

∂4
∂3 = −e−x1∂1,

∇∗
∂1
∂3 = ∇∗

∂3
∂1 = εe−x2∂4,

∇∗
∂1
∂4 = ∇∗

∂4
∂1 = ∇∗

∂2
∂3 = ∇∗

∂3
∂2 = e−x1∂3,

∇∗
∂2
∂2 = −∇∗

∂4
∂4 = ∂2,

∇∗
∂2
∂4 = ∇∗

∂4
∂2 = 0.

Then (M,∇, g, J) and (M,∇∗, g, J) are holomorphic statistical manifolds.

3. Statistical submersions

Let M and B be semi-Riemannian manifolds. A surjective mapping π : M → B is called a semi-Riemannian
submersion if π has maximal rank and π∗ preserves lengths of horizontal vectors. Let π : M → B be a semi-
Riemannian submersion. We put dimM = m and dimB = n. For each point x ∈ B, the semi-Riemannian
submanifold π−1(x) with the induced metric g, which is obtained by restricting the metric of the total space to
π−1(x), is called a fiber and denoted by Mx or simply M . We notice that the dimension of each fiber is always
m− n (= s). A vector field on M is vertical if it is always tangent to fibers and horizontal if always orthogonal to
fibers. We denote the vertical and horizontal subspace in the tangent space TpM of the total space M by Vp(M)
and Hp(M) for each point p ∈ M , and the vertical and horizontal distributions in the tangent bundle TM of M
by V(M) and H(M), respectively. Then TM is the direct sum of V(M) and H(M). The projection mappings are
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denoted V : TM → V(M) and H : TM → H(M) respectively. We call a vector field X on M projectable if there
exists a vector field X∗ on B such that π∗(Xp) = X∗π(p) for each p ∈ M , and say that X and X∗ are π-related.
Also, a vector field X on M is called basic if it is projectable and horizontal. Then we have ([7], [9], [14]):

Lemma C. If X and Y are basic vector fields on M which are π-related to X∗ and Y∗ on B, then
(1) g(X,Y ) = gB(X∗, Y∗) ◦ π, where g is the metric on M and gB the metric on B,
(2) H[X,Y ] is basic and is π-related to [X∗, Y∗],
(3) H∇0

XY is basic and π-related to ∇̂0
X∗

Y∗, where ∇0 and ∇̂0 are the Levi-Civita connections of M and B, respectively.

Let (M, g,∇) be a statistical manifold and π : M → B be a semi-Riemannian submersion. We denote the
affine connections of M be ∇ and ∇∗

. Notice that ∇UV and ∇∗
UV are well-defined vertical vector fields on M

for vertical vector fields U and V on M , more precisely ∇UV = V∇UV and ∇∗
UV = V∇∗

UV . Moreover, ∇ and
∇∗

are torsion-free and conjugate to each other with respect to g. The triple (M, g,∇) is a statistical manifold
and so is (M, g,∇∗

).
We call π : (M, g,∇) → (B, gB , ∇̂) a statistical submersion if π : M → B satisfies

π∗(∇XY )p = (∇̂X∗Y∗)π(p),

for basic vector fields X, Y and p ∈ M . The tensor fields T and A of type (1,2) defined by

TEF = H∇VEVF + V∇VEHF, AEF = H∇HEVF + V∇HEHF,

for any vector fields E and F on M . Changing ∇ to ∇∗ in the above equations, we set T ∗ and A∗, respectively.
Then we find T ∗∗ = T and A∗∗ = A. For vertical vector fields, T and T ∗ have the symmetry property. Similarly,
the tensor fields for the Levi-Civita connection ∇0 are denoted by T 0 and A0. For X,Y ∈ H(M) and U, V ∈
V(M), we obtain

g(TUV,X) = −g(V, T ∗
UX), g(AXY,U) = −g(Y,A∗

XU). (3.1)

Thus TUV (resp. TUX) vanishes identically if and only if T ∗
UX (resp. T ∗

UV ) vanishes identically. If TUV
(resp. T ∗

UV ) vanishes identically, then π is called with isometric fiber with respect to ∇ (resp. ∇∗). We put
SEF = ∇EF −∇∗

EF for E,F ∈ TM . Then SEF = SFE and g(SEF,G) = g(F, SEG) hold. It is known that

Theorem D [1] Let π : M → B be a semi-Riemannian submersion. Then (M, g,∇) is a statistical manifold if and only
if the following conditions hold:

(1) HSV X = AXV −A∗
XV ,

(2) VSXV = TV X − T ∗
V X ,

(3) (M, g,∇) is a statistical manifold for each x ∈ B,
(4) (B, gB , ∇̂) is a statistical manifold.

For a statistical submersion π : (M, g,∇) → (B, gB , ∇̂), we have the following Lemmas (see [16]):

Lemma E. If X and Y are horizontal vector fields, then AXY = −A∗
Y X .

From (3.1) and Lemma E, A vanishes identically if and only if A∗ vanishes identically. Since A is related to
the integrability of H(M), it is identically zero if and only if H(M) is integrable.

Lemma F. For X,Y ∈ H(M) and U, V ∈ V(M) we have

∇UV = TUV +∇UV, ∇∗
UV = T ∗

UV +∇∗
UV,

∇UX = H∇UX + TUX, ∇∗
UX = H∇∗

UX + T ∗
UX,

∇XU = AXU + V∇XU, ∇∗
XU = A∗

XU + V∇∗
XU,

∇XY = H∇XY +AXY, ∇∗
XY = H∇∗

XY +A∗
XY.

Furthermore, if X is basic, then H∇UX = AXU and H∇∗
UX = A∗

XU .

We define the covariant derivatives ∇T and ∇A by

(∇ET )FG = ∇E(TFG)− T∇EFG− TF (∇EG),

(∇EA)FG = ∇E(AFG)−A∇EFG−AF (∇EG),
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for any E,F,G ∈ TM . We change ∇ to ∇∗ and then the covariant derivatives ∇∗T ∗ and ∇∗A∗ are defined
similarly. We consider the curvature tensor on the statistical submersion. Let R (resp. R

∗
) be the curvature

tensor with respect to the induced affine connection ∇ (resp. ∇∗
) of each fiber. Also, let R̂(X,Y )Z (resp.

R̂∗(X,Y )Z) be horizontal vector field such that π∗(R̂(X,Y )Z) = R̂(π∗X,π∗Y )π∗Z (resp. π∗(R̂
∗(X,Y )Z) =

R̂∗(π∗X,π∗Y )π∗Z) at each p ∈ M , where R̂ (resp. R̂∗) is the curvature tensor on B of the affine connection
∇̂ (resp. ∇̂∗). Then we have

Theorem G [16] If π : (M, g,∇) → (B, gB , ∇̂) is a statistical submersion, then we get for X,Y, Z, Z ′ ∈ H(M) and
U, V,W,W ′ ∈ V(M):

g(R(U, V )W,W ′) = g(R(U, V )W,W ′) + g(TUW,T ∗
V W

′)− g(TV W,T ∗
UW

′),

g(R(U, V )W,X) = g((∇UT )V W,X)− g((∇V T )UW,X),

g(R(U, V )X,W ) = g((∇UT )V X,W )− g((∇V T )UX,W ),

g(R(U, V )X,Y ) = g((∇UA)XV, Y )− g((∇V A)XU, Y ) + g(TUX,T ∗
V Y )− g(TV X,T ∗

UY )

−g(AXU,A∗
Y V ) + g(AXV,A∗

Y U),

g(R(X,U)V,W ) = g([V∇X ,∇U ]V,W )− g(∇[X,U ]V,W )− g(TUV,A
∗
XW ) + g(T ∗

UW,AXV ),

g(R(X,U)V, Y ) = g((∇XT )UV, Y )− g((∇UA)XV, Y ) + g(AXU,A∗
Y V )− g(TUX,T ∗

V Y ),

g(R(X,U)Y, V ) = g((∇XT )UY, V )− g((∇UA)XY, V ) + g(TUX,TV Y )− g(AXU,AY V ),

g(R(X,U)Y, Z) = g((∇XA)Y U,Z)− g(TUX,A∗
Y Z)− g(TUY,A

∗
XZ) + g(AXY, T ∗

UZ),

g(R(X,Y )U, V ) = g([V∇X ,V∇Y ]U, V )− g(∇[X,Y ]U, V ) + g(AXU,A∗
Y V )− g(AY U,A

∗
XV ),

g(R(X,Y )U,Z) = g((∇XA)Y U,Z)− g((∇Y A)XU,Z) + g(T ∗
UZ, θXY ),

g(R(X,Y )Z,U) = g((∇XA)Y Z,U)− g((∇Y A)XZ,U)− g(TUZ, θXY ),

g(R(X,Y )Z,Z ′) = g(R̂(X,Y )Z,Z ′)− g(AY Z,A
∗
XZ ′) + g(AXZ,A∗

Y Z
′) + g(θXY,A∗

ZZ
′),

where we put θXY = AXY +A∗
XY = V[X,Y ].

For each p ∈ M , we denote by {E1, . . . , Em}, {X1, . . . , Xn} and {U1, . . . , Us} local orthonormal bases of TpM ,
Hp(M) and Vp(M) such that Ei = Xi (i = 1, . . . , n) and En+α = Uα (α = 1, . . . , s). The mean curvature vector of
∇ (resp. ∇∗) is given by the horizontal vector field N =

∑
α εαTUα

Uα (resp. N∗ =
∑

α εαT
∗
Uα

Uα). The statistical
submersion π is called minimal with respect to ∇ (resp. ∇∗) if N = 0 (resp. N∗ = 0). If TUV = 1

s g(U, V )N (resp.
T ∗
UV = 1

s g(U, V )N∗) holds, then π is said to be with conformal fiber with respect to ∇ (resp. ∇∗). We put
σ =

∑
i εiAXi

Xi.

4. Holomorphic statistical submersions

Let (M,∇, g, J) be a holomorphic statistical manifold and (B, ∇̂, gB) be a statistical manifold. The statistical
submersion π : (M,∇, g, J) → (B, ∇̂, gB) is called a holomorphic statistical submersion. For X ∈ H(M) and
U ∈ V(M) we put

JX = PX + FX, JU = tU + fU,

where PX, tU ∈ H(M) and FX, fU ∈ V(M). From J2 = −I , we get

P 2 = −I − tF, FP + fF = 0, P t+ tf = 0, f2 = −I − Ft.

Because of g(JE,G) + g(E, JG) = 0 for E, G ∈ TM , we find

g(PY,Z) + g(Y, PZ) = 0,

g(FY, V ) + g(Y, tV ) = 0,

g(fV,W ) + g(V, fW ) = 0.
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Thus t vanishes identically if and only if F vanishes identically. If J(Vp(M)) ⊂ Vp(M) (resp. J(Vp(M)) ⊂
Hp(M)), for each p ∈ M , that is, t = 0 (resp. f = 0), then M is said to be an invariant (resp. anti-invariant)
submanifold of M . We put

(H∇XP )Y = H∇X(PY )− P (H∇XY ), (H∇UP )Y = H∇U (PY )− P (H∇UY ),

(V∇XF )Y = V∇X(FY )− F (H∇XY ), (V∇UF )Y = V∇U (FY )− F (H∇UY ),

(H∇Xt)V = H∇X(tV )− t(V∇XV ), (H∇U t)V = H∇U (tV )− t(∇UV ),

(V∇Xf)V = V∇X(fV )− f(V∇XV ), (∇Uf)V = ∇U (fV )− f(∇UV ).

Similarly, we set (H∇∗
XP )Y and (H∇0

XP )Y , etc. with respect to the conjugate connection ∇∗ and the Levi-
Civita connection ∇0. We find

(∇0
XJ)Y = (H∇0

XP )Y +A0
X(FY )− t(A0

XY ) + (V∇0
XF )Y +A0

X(PY )− f(A0
XY ),

(∇0
XJ)V = (H∇0

Xt)V +A0
X(fV )− P (A0

XV ) + (V∇0
Xf)V +A0

X(tV )− F (A0
XV ),

(∇0
UJ)Y = (H∇0

UP )Y + T 0
U (FY )− t(T 0

UY ) + (V∇0
UF )Y + T 0

U (PY )− f(T 0
UY ),

(∇0
UJ)V = (H∇0

U t)V + T 0
U (fV )− P (T 0

UV ) + (∇0

Uf)V + T 0
U (tV )− F (T 0

UV ).

Since (M, g, J) is a Kählerian manifold, we have

Lemma 4.1. Let M be a Kählerian manifold and π : M → B be a semi-Riemanian submersion. One has

(H∇0
XP )Y +A0

X(FY )− t(A0
XY ) = 0, (V∇0

XF )Y +A0
X(PY )− f(A0

XY ) = 0,

(H∇0
Xt)V +A0

X(fV )− P (A0
XV ) = 0, (V∇0

Xf)V +A0
X(tV )− F (A0

XV ) = 0,

(H∇0
UP )Y + T 0

U (FY )− t(T 0
UY ) = 0, (V∇0

UF )Y + T 0
U (PY )− f(T 0

UY ) = 0,

(H∇0
U t)V + T 0

U (fV )− P (T 0
UV ) = 0, (∇0

Uf)V + T 0
U (tV )− F (T 0

UV ) = 0.

For a holomorphic statistical submersion π : (M,∇, g, J) → (B, ∇̂, gB), we have

Lemma 4.2. Let π : (M,∇, g, J) → (B, ∇̂, gB) be a holomorphic statistical submersion. We get

g((H∇XP )Y,Z) + g(Y, (H∇∗
XP )Z) = 0, g((H∇UP )Y,Z) + g(Y, (H∇∗

UP )Z) = 0,

g((V∇XF )Y, V ) + g(Y, (H∇∗
Xt)V ) = 0, g((V∇UF )Y, V ) + g(Y, (H∇∗

U t)V ) = 0,

g((H∇Xt)V, Y ) + g(V, (V∇∗
XF )Y ) = 0, g((H∇U t)V, Y ) + g(V, (V∇∗

UF )Y ) = 0,

g((V∇Xf)V,W ) + g(V, (V∇∗
Xf)W ) = 0, g((∇Uf)V,W ) + g(V, (∇∗

Uf)W ) = 0.

Corollary 4.1. If π : is a holomorphic statistical submersion, then we find
(1) H∇P = 0 is equivalent to H∇∗P = 0.
(2) V∇F = 0 is equivalent to H∇∗t = 0.
(3) V∇f = 0 is equivalent to V∇∗f = 0.

Using ∇∗
E(JF ) = J(∇EF ), we get

Lemma 4.3. Let π : (M,∇, g, J) → (B, ∇̂, gB) be a holomorphic statistical submersion. We get

(H∇∗
U t)V = t(V(SUV )) + P (TUV )− T ∗

U (fV ),

(∇∗
Uf)V = f(V(SUV )) + F (TUV )− T ∗

U (tV ),

(H∇∗
UP )X = P (H(SUX)) + t(TUX)− T ∗

U (FX),

(V∇∗
UF )X = F (H(SUX)) + f(TUX)− T ∗

U (PX),

(H∇∗
Xt)U = t(V(SXU)) + P (AXU)−A∗

X(fU),

(V∇∗
Xf)U = f(V(SXU)) + F (AXU)−A∗

X(tU),

(H∇∗
XP )Y = P (H(SXY )) + t(AXY )−A∗

X(FY ),

(V∇∗
XF )Y = F (H(SXY )) + f(AXY )−A∗

X(PY ).
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Next, we give an example of an anti-invariant holomorphic statistical submersion.

Example 4.1. Let (B, gB) be a (semi-)Riemannian manifold with local coordinate system (x1, x2, x3), where
gB = diag(ex1 , εex2 , ex1), where ε = 1 or ε = −1. If ε = 1 (resp. ε = −1), then B = R3 (resp. B = R3

1). If we put

∇̂∂1∗
∂1∗ = −∇̂∂3∗

∂3∗ = εe−x2∂2∗ , ∇̂∂1∗
∂2∗ = ∇̂∂2∗

∂1∗ = e−x1∂1∗ ,

∇̂∂1∗
∂3∗ = ∇̂∂3∗

∂1∗ = ∂3∗ , ∇̂∂2∗
∂2∗ = 0,

∇̂∂2∗
∂3∗ = ∇̂∂3∗

∂2∗ = −e−x1∂3∗ ,

and

∇̂∗
∂1∗

∂1∗ = −∇̂∗
∂3∗

∂3∗ = ∂1∗ − εe−x2∂2∗ , ∇̂∗
∂1∗

∂2∗ = ∇̂∗
∂2∗

∂1∗ = −e−x1∂1∗ ,

∇̂∗
∂1∗

∂3∗ = ∇̂∗
∂3∗

∂1∗ = 0, ∇̂∗
∂2∗

∂2∗ = ∂2∗ ,

∇̂∗
∂2∗

∂3∗ = ∇̂∗
∂3∗

∂2∗ = e−x1∂3∗ ,

then (B, ∇̂, gB) and (B, ∇̂∗, gB) are statistical manifolds, where ∂i∗ = ∂/∂xi (i = 1, 2, 3). Considering the
holomorphic statistical manifold (M,∇, g, J) given in Example 1, we define a holomorphic statistical
submersion π : (M,∇, g, J) → (B, ∇̂, gB) by

π(x1, x2, x3, x4) = (x1, x2, x3).

For ∂1, ∂2, ∂3 ∈ H(M) and ∂4 ∈ V(M), we get

T∂4
∂4 = 0, ∇∂4

∂4 = 0,

H∇∂4
∂1 = −e−x1∂3, T∂4

∂1 = 0,

H∇∂4
∂2 = 0, T∂4

∂2 = ∂4,

H∇∂4
∂3 = −e−x1∂1, T∂4

∂3 = 0,

A∂1
∂4 = −e−x1∂3, V∇∂1

∂4 = 0,

A∂2
∂4 = 0, V∇∂2

∂4 = ∂4,

A∂3
∂4 = −e−x1∂3, V∇∂3

∂4 = 0,

H∇∂1
∂1 = −H∇∂3

∂3 = εe−x2∂2, A∂1
∂1 = −A∂3

∂3 = 0,

H∇∂1
∂2 = H∇∂2

∂1 = e−x1∂1, A∂1
∂2 = A∂2

∂1 = 0,

H∇∂1
∂3 = H∇∂3

∂1 = ∂3, A∂1
∂3 = A∂3

∂1 = −εe−x2∂4,

H∇∂2
∂2 = 0, A∂2

∂2 = 0,

H∇∂2
∂3 = H∇∂3

∂2 = −e−x1∂3, A∂2
∂3 = A∂3

∂2 = 0.

Thus π is with isometric fiber with respect to ∇. Moreover, we find

P =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , F =


0 0 0 0

0 0 0 0

0 0 0 0

−1 0 0 0

 , t =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , f = 0.

Therefore π is anti-invariant.

5. Holomorphic statistical submersions with invariant fibers

A holomorphic statistical submersion π : (M,∇, g, J) → (B, ∇̂, gB) is called invariant if each fiber is an
invariant submanifold of M , that is, φ(Vp(M)) ⊂ Vp(M). From t = 0 (F = 0), we get P 2 = −I and f2 = −I .
By Lemma 4.3, we get
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Lemma 5.1. If π : (M,∇, g, J) → (B, ∇̂, gB) is an invariant holomorphic statistical submersion, then

P (TUV ) = T ∗
U (fV ), (∇∗

Uf)V = f(V(SUV )),

(H∇∗
UP )X = P (H(SUX)), f(TUX) = T ∗

U (PX),

P (AXU) = A∗
X(fU), (V∇∗

Xf)U = f(V(SXU)),

(H∇∗
XP )Y = P (H(SXY )), f(AXY ) = A∗

X(PY ).

It is easy to see from Lemma 4.1 that (H∇0
XP )Y = 0 and (∇0

Uf)V = 0 hold, which implies that the base space
and each fiber are Kählerian manifolds. Using Lemma 5.1, we find H∇∗

X(PY ) = P (H∇XY ) and ∇∗
U (fV ) =

f(∇UV ). Hence we have from Lemma 4.1

Theorem 5.1. If π : (M,∇, g, J) → (B, ∇̂, gB) is an invariant holomorphic statistical submersion, then
(1) (B, ∇̂, gB , P̂ ) is a holomorphic statistical manifold, where P̂ is a tensor field of type (1, 1) such that π∗P = P̂ π∗.
(2) (M,∇, g, f) is a holomorphic statistical manifold for each x ∈ B.

Also, we get from (3.1), Lemmas E and 5.1

g(TfU (fV ), X) = g(P (T ∗
fUV ), X) = −g(T ∗

V (fU), PX) = −g(P (TV U), PX) = −g(TUV,X),

g(APXU, Y ) = −g(U,A∗
PXY ) = g(U,AY (PX)) = g(U, f(A∗

Y X)) = g(fU,AXY )

= −g(A∗
X(fU), Y ) = −g(P (AXU), Y ).

Thus we have

Lemma 5.2. Let π be an invariant holomorphic statistical submersion. We find
(1) TfU (fV ) = −TUV and APX(PY ) = −AXY .
(2) TfUX = −f(TUX) and APXU = −P (AXU).

Lemma 5.3. Let π be an invariant holomorphic statistical submersion. Then H∇UP = 0 (resp. V∇Xf = 0) if and only
if A = A∗ (resp. T = T ∗).

When π is an invariant holomorphic statistical submersion, {EA, JEA} (A = 1, . . . ,m), {Xi, PXi} (i =
1, . . . , n) and {Uα, fUα} (α = 1, . . . , s) are local orthonormal bases of TpM, Hp(M) and Vp(M), respectively such
that Ei = Xi, En+α = Uα, Xn+i = PXi and Us+α = fUα. From Lemma 5.2 (1), we get

N =

2s∑
α=1

εαTUα
Uα =

s∑
α=1

εα{TUα
Uα + TfUα

(fUα)} = 0,

σ =

2n∑
i=1

εiAXiXi =

n∑
i=1

εi{AXiXi +APXi(PXi)} = 0.

Hence we have

Theorem 5.2. If π : (M,∇, g, J) → (B, ∇̂, gB) is an invariant holomorphic statistical submersion, then each fiber is
minimal with respect to ∇ and σ = 0.

Corollary 5.1. If π : (M,∇, g, J) → (B, ∇̂, gB) is an invariant holomorphic statistical submersion, then each fiber is
minimal with respect to ∇∗, that is, N∗ = 0.

By virtue of Theorems G and 5.2, we have

Theorem 5.3. Let π : (M,∇, g, J) → (B, ∇̂, gB) is an invariant holomorphic statistical submersion with conformal fiber
with respect to ∇ or ∇∗. If (M,∇, g, J) is of constant holomorphic sectional curvature c, then (M,∇, g, f) is of constant
holomorphic sectional curvature c.

We consider that the total space (M,∇, g, J) is of constant holomorphic sectional curvature c. From the last
equation of Theorem G, we find

g(R̂(X,Y )Z,Z ′)− g(AY Z,A
∗
XZ ′) + g(AXZ,A∗

Y Z
′) + g(AXY,A∗

ZZ
′) + g(A∗

XY,A∗
ZZ

′) (5.1)

=
c

4
{g(Y,Z)g(X,Z ′)− g(X,Z)g(Y,Z ′) + g(PY,Z)g(PX,Z ′)

−g(PX,Z)g(PY,Z ′) + 2g(X,PY )g(PZ,Z ′)}.
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Substituting Z by PZ in (5.1), we obtain

g(R̂∗(X,Y )Z,PZ ′)− g(A∗
Y Z,AX(PZ ′)) + g(A∗

XZ,AY (PZ ′)) (5.2)
−g(AXY,A∗

Z(PZ ′))− g(A∗
XY,A∗

Z(PZ ′))

=
c

4
{g(Y,Z)g(X,PZ ′)− g(X,Z)g(Y, PZ ′)− g(Y, PZ)g(X,Z ′)

+g(X,PZ)g(Y, Z ′) + 2g(X,PY )g(Z,Z ′)}.

On the other hand, it is clear from Lemma 2.1 that (5.1) is rewitten as follows:

g(R̂∗(X,Y )Z,Z ′)− g(A∗
Y Z,AXZ ′) + g(A∗

XZ,AY Z
′) + g(A∗

XY,AZZ
′) + g(AXY,AZZ

′)

=
c

4
{g(Y, Z)g(X,Z ′)− g(X,Z)g(Y, Z ′) + g(PY,Z)g(PX,Z ′)

−g(PX,Z)g(PY,Z ′) + 2g(X,PY )g(PZ,Z ′)},

which yields that

g(R̂∗(X,Y )Z,PZ ′)− g(A∗
Y Z,AX(PZ ′)) + g(A∗

XZ,AY (PZ ′)) (5.3)
+g(A∗

XY,AZ(PZ ′)) + g(AXY,AZ(PZ ′))

=
c

4
{g(Y,Z)g(X,PZ ′)− g(X,Z)g(Y, PZ ′) + g(PY,Z)g(X,Z ′)

−g(PX,Z)g(Y, Z ′) + 2g(X,PY )g(Z,Z ′)}.

By virtue of (5.2) and (5.3), we get g(θXY, θZZ
′) = 0, where θXY = AXY +A∗

XY . Hence we have

Proposition 5.1. Let π : (M,∇, g, J) → (B, ∇̂, gB) is an invariant holomorphic statistical submersion, and (M,∇, g, J)
be of constant holomorphic sectional curvature c. If g is positive definite, then V[X,Y ] = 0 holds, and A is symmetric.

Finally, we give two examples of invariant holomorphic statistical submersions.

Example 5.1. Let (B, gB) be a Riemannian manifold with local coordinate system (x1, x3), where gB =
diag(ex1 , ex1). If we put

∇̂∂1∗
∂1∗ = −∇̂∂3∗

∂3∗ = 0, ∇̂∂1∗
∂3∗ = ∇̂∂3∗

∂1∗ = ∂3∗

and

∇̂∗
∂1∗

∂1∗ = −∇̂∗
∂3∗

∂3∗ = ∂1∗ , ∇̂∗
∂1∗

∂3∗ = ∇̂∗
∂3∗

∂1∗ = 0,

then (B, ∇̂, gB) is a statistical manifold and so is (B, ∇̂∗, gB), where ∂i∗ = ∂/∂xi (i = 1, 3). Considering
the holomorphic statistical manifold (M,∇, g, J) given in Example 1, we define a holomorphic statistical
submersion π : (M,∇, g, J) → (B, ∇̂, gB) by

π(x1, x2, x3, x4) = (x1, x3).

For ∂1, ∂3 ∈ H(M) and ∂2, ∂4 ∈ V(M), we get

T∂2∂2 = −T∂4∂4 = 0, ∇∂2∂2 = −∇∂4∂4 = 0,

T∂2
∂4 = T∂4

∂2 = 0, ∇∂2
∂4 = ∇∂4

∂2 = ∂4,

H∇∂2
∂1 = −H∇∂4

∂3 = e−x1∂1, T∂2
∂1 = −T∂4

∂3 = 0,

H∇∂2
∂3 = H∇∂4

∂1 = −e−x1∂3, T∂2
∂3 = T∂4

∂1 = 0,

A∂1
∂2 = −A∂3

∂4 = e−x1∂1, V∇∂1
∂2 = −V∇∂3

∂4 = 0,

A∂1
∂4 = A∂3

∂2 = −e−x1∂3, V∇∂1
∂4 = V∇∂3

∂2 = 0,

H∇∂1
∂1 = −H∇∂3

∂3 = 0, A∂1
∂1 = −A∂3

∂3 = εe−x2∂2,

H∇∂1
∂3 = H∇∂3

∂1 = ∂3, A∂1
∂3 = A∂3

∂1 = −εe−x2∂4,
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and

T ∗
∂2
∂2 = −T ∗

∂4
∂4 = 0, ∇∗

∂2
∂2 = −∇∗

∂4
∂4 = ∂2,

T ∗
∂2
∂4 = T ∗

∂4
∂2 = 0, ∇∗

∂2
∂4 = ∇∗

∂4
∂2 = 0,

H∇∗
∂2
∂1 = −H∇∗

∂4
∂3 = −e−x1∂1, T ∗

∂2
∂1 = −T ∗

∂4
∂3 = 0,

H∇∗
∂2
∂3 = H∇∗

∂4
∂1 = e−x1∂3, T ∗

∂2
∂3 = T ∗

∂4
∂1 = 0,

A∗
∂1
∂2 = −A∂3

∂4 = −e−x1∂1, V∇∗
∂1
∂2 = −V∇∗

∂3
∂4 = 0,

A∗
∂1
∂4 = A∗

∂3
∂2 = e−x1∂3, V∇∗

∂1
∂4 = V∇∗

∂3
∂2 = 0,

H∇∗
∂1
∂1 = −H∇∗

∂3
∂3 = ∂1, A∗

∂1
∂1 = −A∗

∂3
∂3 = −εe−x2∂2,

H∇∗
∂1
∂3 = H∇∗

∂3
∂1 = 0, A∗

∂1
∂3 = A∗

∂3
∂1 = εe−x2∂4.

Thus π is with isometric fiber with respect to ∇ and ∇∗. We find

P =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , F = 0, t = 0, f =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 .

Therefore, π is invariant and minimal. It is easy to see from ∇̂∗
∂i
(P̂ ∂j) = P̂ (∇̂∂i

∂j) (i = 1, 3) and ∇∗
∂α
(f∂β) =

f(∇∂α
∂β) (α, β = 2, 4) that (B, ∇̂, gB , P̂ ) and (M,∇, g, f) are holomorphic statistical manifolds. Moreover,

V∇Xf = 0 holds. We put X1 = e−x1∂1, X2 = e−x1∂3 and U1 = εe−x2∂2, U2 = εe−x2∂4. Then {X1, X2} and
{U1, U2} are local orthonormal bases of Hp(M) and Vp(M) for each p ∈ M , respectively. We find AX1X1 =
−AX2X2 = e−2x1U1 and AX1X2 = AX2X1 = −e−2x1U2, which implies that σ = 0.

Example 5.2. Let (B, gB) be a (semi-)Riemannian manifold with local coordinate system (x2, x4), where
gB = diag(εex2 , εex2), where ε = 1 or −1. If ε = 1 (resp. ε = −1), then B = R2 (resp. B = R2

2). If we put

∇̂∂2∗
∂2∗ = −∇̂∂4∗

∂4∗ = 0, ∇̂∂2∗
∂4∗ = ∇̂∂4∗

∂2∗ = ∂4∗

and

∇̂∗
∂2∗

∂2∗ = −∇̂∗
∂4∗

∂4∗ = ∂2∗ , ∇̂∂∗
2∗
∂4∗ = ∇̂∗

∂4∗
∂2∗ = 0,

then (B, ∇̂, gB) is a statistical manifold and so is (B, ∇̂∗, gB), where ∂i∗ = ∂/∂xi (i = 2, 4). Considering
the holomorphic statistical manifold (M,∇, g, J) given in Example 1, we define a holomorphic statistical
submersion π : (M,∇, g, J) → (B, ∇̂, gB) by

π(x1, x2, x3, x4) = (x2, x4).

For ∂2, ∂4 ∈ H(M) and ∂1, ∂3 ∈ V(M), we get

T∂1∂1 = −T∂3∂3 = εe−x2∂2, ∇∂1∂1 = −∇∂3∂3 = 0,

T∂1
∂3 = T∂3

∂1 = −εe−x2∂4, ∇∂1
∂3 = ∇∂3

∂1 = ∂3,

H∇∂1
∂2 = −H∇∂3

∂4 = 0, T∂1
∂2 = −T∂3

∂4 = e−x1∂1,

H∇∂1
∂4 = H∇∂3

∂2 = 0, T∂1
∂4 = T∂3

∂2 = −e−x1∂3,

A∂2
∂1 = −A∂4

∂3 = 0, V∇∂2
∂1 = −V∇∂4

∂3 = e−x1∂1,

A∂2
∂3 = A∂4

∂1 = 0, V∇∂2
∂3 = V∇∂4

∂1 = −e−x1∂3,

H∇∂2
∂2 = −H∇∂4

∂4 = 0, A∂2
∂2 = −A∂4

∂4 = 0,

H∇∂2
∂4 = H∇∂4

∂2 = ∂4, A∂2
∂4 = A∂4

∂2 = 0,
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and

T ∗
∂1
∂1 = −T ∗

∂3
∂3 = −εe−x2∂2, ∇∗

∂1
∂1 = −∇∗

∂3
∂3 = ∂1,

T ∗
∂1
∂3 = T ∗

∂3
∂1 = εe−x2∂4, ∇∗

∂1
∂3 = ∇∗

∂3
∂1 = 0,

H∇∗
∂1
∂2 = −H∇∗

∂3
∂4 = 0, T ∗

∂1
∂2 = −T ∗

∂3
∂4 = −e−x1∂1,

H∇∗
∂1
∂4 = H∇∗

∂3
∂2 = 0, T ∗

∂1
∂4 = T ∗

∂3
∂2 = e−x1∂3,

A∗
∂2
∂1 = −A∗

∂4
∂3 = 0, V∇∗

∂2
∂1 = −V∇∗

∂4
∂3 = −e−x1∂1,

A∗
∂2
∂3 = A∗

∂4
∂1 = 0, V∇∗

∂2
∂3 = V∇∗

∂4
∂1 = e−x1∂3,

H∇∗
∂2
∂2 = −H∇∗

∂4
∂4 = ∂2, A∗

∂2
∂2 = −A∗

∂4
∂4 = 0,

H∇∗
∂2
∂4 = H∇∗

∂4
∂2 = 0, A∗

∂2
∂4 = A∗

∂4
∂2 = 0.

Thus H(M) is integrable. We have

P =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , F = 0, t = 0, f =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 .

Therefore, π is invariant, and (B, ∇̂, gB , P̂ ) and (M,∇, g, f) are holomorphic statistical manifolds. Moreover,
H∇UP = 0 holds. We put U1 = e−x1∂1, U2 = e−x1∂3 and X1 = εe−x2∂2, X2 = εe−x2∂4. Then {U1, U2} and
{X1, X2} are local orthonormal bases of Vp(M) and Hp(M) for each p ∈ M , respectively. We find TU1

U1 =
−TU2

U2 = e−2x1X1 and TU1
U2 = TU2

U1 = −e−2x1X2, which implies that N = 0, namely, π is minimal with
respect to ∇. Similarly, it is clear that π is minimal with respect to ∇∗.
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