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ABSTRACT
Objective:The aim of this research is to evaluate the tissue-level expression of LATS1, YAP1, PI3KCG, and WWTR1 genes, which are key 
components of the Hippo-YAP/TAZ signaling pathway, in relation to glioma development.

Methods:This research included tissue samples collected from 30 patients aged between 18 and 80 years who underwent neurosurgical 
resection at the institution’s affiliated hospital with a diagnosis of glioma. Tumor tissue samples were processed for total RNA isolation. 
Complementary DNA (cDNA) synthesis was subsequently performed, followed by quantitative polymerase chain reaction (qPCR) analysis to 
assess the relative expression levels of the selected genes. All procedures were conducted in compliance with standardized molecular protocols, 
and data were statistically analyzed using appropriate methods to determine expression differences.

Results:Among the genes analyzed, YAP1 demonstrated a statistically significant 2.6-fold downregulation in glioma tissues compared to 
adjacent non-tumoral tissues (p = 0.03). Expression changes in other genes were observed, but did not reach statistical significance within the 
scope of this study.

Conclusion:Our findings suggest that YAP1 may play a critical role in glioma pathogenesis. The observed downregulation indicates a potential 
dysregulation of the Hippo-YAP/TAZ signaling pathway in tumor development. These results underscore the importance of further investigating 
YAP1 and related signaling components as potential therapeutic targets in glioma and other central nervous system tumors. Future studies with 
larger patient cohorts and functional analyses are warranted to validate these preliminary findings.
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1. INTRODUCTION

Gliomas represent the most common and aggressive group of 
primary brain tumors in adults, accounting for approximately 
80% of all malignant brain neoplasms (1,2). Despite advances 
in treatment strategies, the prognosis for high-grade gliomas 
remains poor, with a median survival of only 14–16 months 
following diagnosis (3,4). This reality necessitates a deeper 
understanding of glioma biology at the molecular level and 
the development of novel biomarkers (5,6).

A variety of intracellular signaling pathways are known to 
play a role in glioma development and progression, including 
PI3K/AKT/mTOR, MAPK/ERK (7), p53 (8), RB (9), the Wnt/β-
catenin signaling pathway (10), Hedgehog (11), and NF-κB 
(12).

In recent years, the Hippo-YAP/TAZ pathway, whose key 
components include Yes-associated protein (YAP) and PDZ-
binding motif (TAZ/WWTR1), has gained attention for its 
role in glioma development (13–16). In this pathway, YAP 
and TAZ/WWTR1 are phosphorylated by LATS1/2 and 
thereby inactivated; when the pathway is suppressed, they 
translocate into the nucleus and activate genes that promote 
cell proliferation and survival (17–23). Although aberrant 
activity of YAP/TAZ has been associated with various cancers, 
their specific roles in gliomas remain unclear (23–28). The 
available data are conflicting and are mostly derived from 
in vitro experiments or animal models (29–35). Therefore, 
investigating the expression of Hippo pathway-related genes 
in human glioma tissues may help elucidate the underlying 
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molecular mechanisms (33–38). The generation of such 
new scientific data is essential not only to clarify the 
biological roles of these genes in glioma pathogenesis, but 
also to assess their potential as biomarkers for diagnosis, 
prognosis, and prediction of therapeutic response.

In this context, the aim of our study is to analyze the tissue-
level expression of the YAP1, WWTR1, LATS1, and PI3KCG 
genes in tumor samples surgically resected from adult 
glioma patients using quantitative PCR, in order to evaluate 
potential alterations in the Hippo-YAP/TAZ signaling pathway 
and to elucidate its possible role in glioma development.

Table 1 presents a total of 45 glioma-associated genes 
retrieved from the Human Phenotype Ontology (HPO), 
listed in the format of Gene Symbol followed by NCBI Gene 
ID.

Table 1. A total of 45 glioma-associated genes listed in the Human 
Phenotype Ontology (HPO) Gene Symbol (NCBI Gene ID)
NF2 (4771) IFNG (3458) PMS2 (5395)
APC (324) TSC2 (7249) TGFBR2 (7048)
ZFTA (65998) ERBB2 (2064) KRAS (3845)
TSC1(7248) IDH1 (3417) EPCAM (4072)
MDM2 (4193) NF1 (4763) PIK3CA (5290)
CHEK2 (11200) RPS20 (6224) PMS1 (5378)
CDKN2A (1029) MUTYH (4595) PTEN (5728)
TP53 (7157) POLD1 (5424) IDH2 (3418)
MLH1 (4292) SEMA4A (64218) MSH3 (4437)
CDKN1B (1027) BMPR1A (657) FGFR1 (2260)
MEN1(4221) ATM (472) NSD1 (64324)
CDKN2B (1030) BRCA2 (675) APC2 (10297)
CDKN2C (1031) POLE (5426) NBN (4683)
CDKN1A (1026) MSH6 (2956) SMO (6608)
SETBP1 (26040) MSH2 (4436) SPRED1 (161742)

2. METHODS

2.1.Ethical Approval and Informed Consent

This case-control study was approved by the Ethics 
Committee for Non-Drug and Medical Device Research of 
the Marmara University Faculty of Medicine on September 
20, 2024 (Protocol No: 09.2024.1069), in accordance with 
international ethical standards and guidelines. Written 
informed consent was obtained from all participants prior to 
enrollment, documented with wet signatures. Participants 
provided explicit consent for both participation and the 
use of their data. The anonymity and confidentiality of all 
study participants were rigorously protected throughout the 
research process.

2.2. Inclusion and Exclusion Criteria

The study included a total of 30 glioma patients and 20 control 
individuals. Glioma group samples were obtained from 
patients aged 18–80 years who underwent neurosurgical 
resection at the institution’s affiliated hospital, had no prior 

history of recurrence, and had not received chemotherapy 
or radiotherapy before surgery. Control samples consisted of 
dura mater tissues collected as surgical waste from patients 
undergoing neurosurgical procedures for non-neoplastic 
conditions (e.g., acute subdural hematoma, aneurysm, 
hemangioblastoma), with no pathological evidence of tumor. 
Samples with insufficient RNA and/or cDNA quantity or 
quality, or samples in which the target genes could not be 
amplified via qPCR, were excluded from the study.

2.3. Tissue Collection

Tumor tissues obtained from patients with a preoperative 
diagnosis of glioma, later confirmed by histopathological 
evaluation, were weighed using a precision balance. 
Specimens were stored at +4°C in RNAlater solution until the 
RNA isolation step.

2.4. RNA Isolation from Tissue Samples

Total RNA was isolated using RNAzol® RT reagent. Tissue 
samples were mechanically fragmented, transferred to 
tubes with ceramic beads, and treated with 1 mL of RNAzol® 
RT. Homogenization was performed using the MagNA 
Lyser® system at 7000 rpm for two 15-second cycles. The 
supernatant was transferred to 2 mL tubes, mixed with 0.4 
mL RNase-free water, vortexed, and incubated for another 15 
minutes. Following centrifugation at 12,000 × g for 15 minutes 
to remove DNA and proteins, the supernatant was mixed 
with 0.4 mL of 75% ethanol and incubated for 10 minutes. 
mRNA was precipitated by centrifugation at 12,000 × g for 8 
minutes. RNA pellets were washed twice with 75% ethanol 
and centrifuged at 4000 × g for 1 minute. After ethanol 
evaporation, pellets were dissolved in 30 μL of nuclease-free 
water. RNA concentration and purity were assessed using a 
NanoDrop™ 2000/2000c spectrophotometer. Samples were 
stored at –80°C until cDNA synthesis.

2.5. cDNA Synthesis

Complementary DNA (cDNA) synthesis was performed 
using a commercial kit (OneScript® Plus cDNA Synthesis 
Kit, Applied Biological Materials [abm], Canada) with an 
input concentration of 200 ng/μL of total RNA. Reaction 
components and their respective volumes are provided in 
Table 2, and the total reaction volume was adjusted to 20 μL 
with nuclease-free water. The reverse transcription reaction 
was carried out in a T100 Thermal Cycler under the following 
optimized conditions: 15 minutes at 53°C, followed by 5 
minutes at 85°C. The concentration and purity of synthesized 
cDNA were verified using the NanoDropTM 2000/2000c. 
Samples were stored at -20°C until use in RT-qPCR.
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Table 2. Component volumes for cDNA synthesis using the 
OneScript® Plus cDNA Synthesis Kit

Component Amount
5× RT Buffer 4 µL
dNTPs 1 µL
Oligo Primer 1 µL
mRNA Adjusted to 200 ng/µL
OneScript Plus RTase 1 µL
Nuclease-Free Water To a final volume of 20 µL

2.6 Quantification of Gene Expression by Real-Time PCR (RT-
qPCR)

Following cDNA synthesis, the expression levels of LATS1, 
YAP1, PI3KCG, and WWTR1 genes were quantified using a 
commercial real-time PCR kit (Blastaq™ 2X qPCR MasterMix, 
Applied Biological Materials [abm], Canada), in accordance 
with the manufacturer’s protocol. The reaction components 
and volumes are listed in Table 3. GAPDH was used as the 
internal reference gene. Template cDNA was diluted to 
contain 100 ng/μL per reaction. All RT-qPCR analyses were 
performed on a BIO-RAD® CFX96 Real-Time PCR Detection 
System. Thermal cycling conditions are detailed in Table 4.

Table 3. Components and volumes used for gene expression analysis 
with the Blastaq™ 2X qPCR MasterMix kit

Component Amount (per reaction)
BlasTaq™ 2X qPCR MasterMix 10 µL
Forward Primer (10 µM) 0.5 µL
Reverse Primer (10 µM) 0.5 µL
cDNA Template 1 µL
Nuclease-Free Water Up to 20 µL total volume

Table 4. RT-qPCR reaction conditions

Step Temperature Time Cycles
Initial Denaturation 95 °C 3 minutes 1 cycle
Denaturation 95 °C 15 seconds
Annealing/Extension 60 °C 1 minute 40 cycles

Melt Curve Analysis 65 °C → 95 °C
0.5 °C increment every 5 
seconds

1 cycle

2.7 Statistical Analysis

Comparative expression analyses were performed between the 
glioma and control groups based on cycle threshold (Ct) values for 
target and reference genes. A Ct cut-off value of 37 was defined; 
samples exceeding this threshold were repeated to ensure 
data reliability. For each sample, ΔCt values were calculated by 
subtracting the Ct of GAPDH from that of the target gene. Then, 
mean ΔCt values of the control group were used as calibrators to 
calculate ΔΔCt values for the glioma samples. The ΔΔCt values 
were further analyzed using the 2^-ΔΔCt method to determine 
fold changes in gene expression. All calculations were performed 
using GeneGlobe software, and raw data were recorded in 
Microsoft Excel for statistical analysis. The statistical significance 
of the study was evaluated based on p values, while additional 

measures supporting clinical relevance such as fold regulation and 
fold change effect sizes, are also presented in Table 5.

Table 5. Expression analysis results demonstrating significant 
downregulation of the YAP1 gene in glioma patients
Gene Symbol Fold Regulation Fold Change p-Value
LATS1 -1.42 0.71 0.970677
YAP1 -2.60 0.39 0.033092
PI3KCG -2.39 0.42 0.253500
WWTR1 -1.32 0.76 0.669688
GAPDH (Housekeeping) 1.00 1.00 *N/A

(*) The designation of “N/A” (Not applicable) for the p-value in the GAPDH 
(Housekeeping) row is due to its role as the reference/normalizing gene. Since 
GAPDH expression is fixed at 1.00 for both fold regulation and fold change, no 
statistical test is applicable; therefore, a p-value is not computed.

3. RESULTS

Quantitative gene expression analysis performed using GeneGlobe 
software revealed a fold change value of 0.39 for the YAP1 gene, 
indicating an approximate 61% reduction in expression compared 
to the control group. This substantial decrease supports the 
downregulation of YAP1 in glioma tissue samples. Furthermore, 
the corresponding fold regulation value of –2.60 reinforces the 
interpretation that YAP1 expression is significantly suppressed in 
glioma patients.

Importantly, the p-value of 0.033092 confirms that this 
difference is statistically significant, suggesting that the observed 
downregulation is unlikely to be due to random variation.

The p values for the other genes were calculated as follows: LATS1: 
0.970677, PI3KCG: 0.253500, and WWTR1: 0.669688. Collectively, 
the data summarized in Table 5 demonstrate a significant 
downregulation of YAP1 gene expression in glioma patients, 
supporting its potential involvement in glioma pathogenesis.

4. DISCUSSION

In this study, we investigated the role of the Hippo-YAP/TAZ 
signaling pathway in glioma pathogenesis through targeted 
gene expression analysis. Our findings demonstrated a 
statistically significant downregulation of the YAP1 gene in 
glioma patients. Analysis via GeneGlobe software revealed a 
fold change of 0.39, a fold regulation of –2.60, and a p-value 
of 0.033092, collectively indicating a marked and statistically 
meaningful reduction in YAP1 expression in tumor tissues 
compared to healthy controls. While YAP1 has been widely 
recognized for its oncogenic potential in various solid 
tumors, its function in central nervous system malignancies, 
particularly gliomas, appears to be more context-dependent. 
The significant downregulation observed in our cohort 
supports the hypothesis that YAP1 may exhibit a tumor-
suppressive role in glioma biology, in contrast to its well-
established oncogenic role in other cancers.

Given the complex interplay between Hippo pathway 
components and their potential crosstalk with other 
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oncogenic signaling cascades (e.g., PI3K/AKT, MAPK/ERK), 
a more comprehensive analysis of the entire pathway and 
its regulatory networks is warranted. The variability in the 
expression and function of YAP/TAZ across tumor types and 
within glioma subtypes highlights the necessity for context-
specific investigations rather than generalized assumptions 
based on other malignancies.

In contrast to our findings, the 2012 study by Ji et al. reported 
a significant association between reduced LATS1 gene 
expression and glioma progression; specifically, lower LATS1 
levels were observed in high-grade gliomas, highlighting its 
potential tumor suppressor role (39). Additionally, in the 
2016 study by Li et al., TAZ (WWTR1) expression was found to 
be upregulated in glioma samples and positively correlated 
with tumor grade (40). In other cancer types, LATS1 has 
been associated with breast cancer and head and neck 
squamous cell carcinomas; PI3KCG has been shown to exhibit 
hyperactivation in solid tumors such as colorectal and gastric 
cancers; and increased expression of WWTR1 (TAZ) has been 
linked to metastasis in a wide range of cancers including 
melanoma, head and neck, breast, and lung cancers.

Our study provides novel, tissue-level evidence regarding 
YAP1 gene expression in glioma patients, contributing to 
the growing body of literature on Hippo signaling in neuro-
oncology. However, to validate and expand upon these 
preliminary findings, future research should include larger 
patient cohorts, comparative analysis across glioma subtypes, 
and integrative assessment of additional Hippo pathway 
components. Such investigations will be critical to fully 
elucidate the functional implications of YAP1 dysregulation 
and its potential utility as a biomarker or therapeutic target 
in glioma.

5. CONCLUSION

This study examined the expression of YAP1, a central Hippo-
YAP/TAZ pathway component, in glioma tissues and found it 
significantly downregulated compared to healthy controls. 
These results suggest a potential tumor-suppressive role for 
YAP1 in glioma, contrasting its established oncogenic role in 
other solid tumors and indicating its function may vary by 
tumor subtype and biological context.

The reduced YAP1 expression highlights glioma’s molecular 
heterogeneity and implies that the Hippo pathway may 
act in a context-dependent manner, modulated by tumor 
type and microenvironment. Thus, the YAP-TAZ axis should 
be reconsidered not only as an oncogenic driver but as a 
modulator of tumor behavior in the CNS.

Though preliminary, these findings offer important insight 
into glioma pathogenesis. Validation through larger cohorts, 
subtype-specific analyses, and comprehensive evaluation of 
Hippo components is essential to clarify the clinical relevance 
and therapeutic potential of YAP1 dysregulation in neuro-
oncology.
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