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On the oscillation of higher order fractional
difference equations with mixed nonlinearities
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Abstract
Based on certain mathematical inequalities and Volterra sum equa-
tions, we establish oscillation criteria for higher order fractional differ-
ence equations with mixed nonlinearities. The problem is addressed
for equations involving Riemann-Liouville and Caputo operators. Two
examples are constructed to demonstrate the validity of the proposed
assumptions. Our results improve those obtained in the previous works.
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1. Introduction
The problem of oscillation of solutions has been the target of many researchers dur-
ing the last decades. Indeed, we have witnessed the appearance of many oscillation
and non–oscillation results for several types of differential and difference equations; see
the monographs [1, 2, 3, 4] and the papers cited therein. The differential and differ-
ence equations with mixed nonlinearities, in particular, have been also under extensive
investigations in the literature. Such equations often arise in the growth of bacterial pop-
ulations with competitive species [5]. Several techniques such as Riccati transformation,
mathematical inequalities, principle solution and integral averaging method have been
employed to establish sufficient conditions for the oscillation of these types of equations
[6, 7, 8, 9, 10, 11].
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Due to its widespread applications in science and engineering, on the other hand,
the theory of fractional differential equations has become one of the most attractive
topics amongst investigators [12, 13, 14]. Recently, the oscillation problem has been
systematically addressed for fractional differential equations [15, 16, 17, 18, 19, 20, 21, 22].
For the corresponding fractional difference equations, however, the oscillation problem is
rarely considered and still at its first stage of progress. A few results have been reported
in this direction [23, 24, 25, 26, 27].

In alignment to the recent developments, we shall investigate the oscillation of solu-
tions for fractional difference equations with mixed nonlinearities of forms

(1.1)

 ∇
α
a(α)−1x(t)− p(t)x(t) +

∑n
i=1 qi(t)

∣∣x(t)
∣∣λi−1

x(t) = v(t), t ∈ Na(α)+1,

∇−(m−α)

a(α)−1 x(t)
∣∣∣
t=a(α)

= x(a(α)) = c, c ∈ R,

and

(1.2)

{
c∇αa(α)x(t)− p(t)x(t) +

∑n
i=1 qi(t)

∣∣x(t)
∣∣λi−1

x(t) = v(t), t ∈ Na(α),

∇kx(a(α)) = bk, k ∈ R, k = 0, 1, 2, . . . ,m− 1,

where m = [α] + 1, α > 0, p(t), v(t) and qi(t) (1 ≤ i ≤ n) are functions defined from
Na(α) to R and λi (1 ≤ i ≤ n) are ratios of odd positive integers with λ1 > . . . > λl >
1 > λl+1 > . . . > λn. The set Na(α) and the fractional operators ∇αa(α) and c∇αa(α) are
to be defined in the next section.

By a solution of equation (1.1) ( or (1.2)), we mean a nontrivial sequence x(t) satisfying
equation (1.1) (or (1.2)) for t ∈ Na(α)+1 (or t ∈ Na(α)) and the initial condition at
t = a(α). Such a solution is said to be oscillatory if it is neither eventually positive nor
eventually negative. Otherwise, it is called non–oscillatory. Equation (1.1) (or (1.2)) is
said to be oscillatory if all its solutions are oscillatory.

The paper is organized as follows. Section 2 contains basic notations on nabla opera-
tors and three essential lemmas that will be used in the sequel. Section 3 and Section 4
are devoted to the study of oscillation problem for equations (1.1) and (1.2), respectively.
To support the main results, we provide examples for each case in Section 5.

2. Preliminary assertions
Before proceeding to the main results, we introduce some notations, terminologies and

fundamental assertions that will be used throughout the remaining part of the paper. Let
N and R be the sets of positive integer and real numbers, respectively. Define the set
Na(α) = {a(α), a(α)+1, . . .} where a(α) = a+m−1. Let ρ(t) = t−1 and tα = Γ(t+α)

Γ(α)
, t ∈

R− {. . . ,−2,−1, 0} where 0α = 0 and m = [α] + 1.

2.1. Definition. For t ∈ Na(α)+1, α > 0, and x is defined on Na, the Riemann–Liouville
sum operator ∇−αa(α) is defined by

(2.1) ∇−αa(α)x(t) =
1

Γ(α)

t∑
s=a(α)+1

(t− ρ(s))α−1x(s).

2.2. Definition. For t ∈ Na(α)+1, α > 0, and x is defined on Na, the Riemann–Liouville
difference operator ∇αa(α) is defined by

(2.2) ∇αa(α)x(t) = ∇m∇−(m−α)

a(α) x(t) =
∇m

Γ(m− α)

t∑
s=a(α)+1

(t− ρ(s))m−α−1x(s).
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2.3. Definition. For t ∈ Na(α)+1, α > 0, and x is defined on Na, the Caputo difference
operator is defined by

(2.3) c∇αa(α)x(t) = ∇−(m−α)

a(α) ∇mx(t) =
1

Γ(m− α)

t∑
s=a(α)+1

(t− ρ(s))α−1∇mx(s).

2.4. Definition. For t ∈ Na(α)+1, α > 0, and x is defined on Na, the power rule is
defined by

(2.4) ∇−αa(α)

(
t− a(α)

)µ
=

Γ(µ+ 1)

Γ(µ+ α+ 1)
(t− a(α))µ+α.

In the proofs of the main results, we will make use of the following essential lemmas.
Lemma 1, which is a generalization of Lemma 1 in [5], is a straightforward application
of linear algebra whereas Lemma 2 is a transformation of Young inequality. Lemma 3
provides brilliant tool that helps dominating certain expressions.

2.5. Lemma. [5] Let (α1, α2, . . . , αn) be an n−tuple satisfying α1 > . . . > αl > 1 >
αl+1 > . . . > αn > 0. Then there exists an n−tuple (η1, η2, . . . , ηn) satisfying

l∑
i=1

αiηi =

n∑
i=l+1

αiηi

with
∑n
i=1 ηi = 1 and 0 < ηi < 1 for i = 1, 2, . . . , n.

2.6. Lemma. [28] Suppose that X,Y and U, V are nonnegatives. Then each of the
following inequalities are valid

(2.5) λXY λ−1 −Xλ ≤ (λ− 1)Y λ, λ > 1,

and

(2.6) µUV µ−1 − Uµ ≥ (µ− 1)V µ, 0 < µ < 1,

where equalities hold if and only if X = Y or U = V .

2.7. Lemma. [29] (Stirling’s formula) For ε > 0, we have

lim
n→∞

Γ(n)nε

Γ(n+ ε)
= 1,

where Γ is the well known gamma function.

For t ∈ Na(α), define f(t) =
(

1
t−a(α)

)1−α
. It is clear that f is a decreasing function

for t ∈ Na(α)+1. By the help of this fact and the use of Stirling’s formula, we observe the
following inequalities

(2.7)
∣∣∣t1−α(t− a(α) + 1)α−1c

∣∣∣ ≤ ∣∣∣( t

t− a(α)

)1−α
c
∣∣∣ ≤ ( T

T − a(α)

)1−α
|c|, t ∈ NT

and ∣∣∣t1−α T∑
s=a(α)+1

(t− s+ 1)α−1F (s)
∣∣∣ ≤ t1−α T∑

s=a(α)+1

(t− s+ 1)α−1|F (s)|

or

lim
t→∞

∣∣∣t1−α T∑
s=a(α)+1

(t− s+ 1)α−1F (s)
∣∣∣ ≤ lim

t→∞

T∑
s=a(α)+1

( t

t− s

)1−α
|F (s)|

≤
T∑

s=a(α)+1

( T

T − s

)1−α
|F (s)|, t ∈ NT .(2.8)
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In view of (2.7) and (2.8), we define

(2.9) C(T ) :=
( T

T − a(α)

)1−α
|c|+

T∑
s=a(α)+1

( T

T − s

)1−α
|F (s)|.

3. Oscillation criteria for equation (1.1)
Our first result provides a solution representation for the solutions of equation (1.1).

This result was first introduced in [23] so we state it without proof.

3.1. Lemma. [23] Let x(t) be a solution of equation (1.1). Then, x(t) satisfies the
following fractional Volterra sum equation for t ∈ Na(α)+1

(3.1) x(t) =
(t− a(α) + 1)α−1

Γ(α)
x(a(α))+∇−αa(α)

[
v(t)+p(t)x(t)−

n∑
i=1

qi(t)|x(t)|λi−1x(t)
]
.

The first main result in this paper is given by the following theorem.

3.2. Theorem. Let

(3.2) p(t) > 0 and qi(t)

{
≥ 0 for 1 ≤ i ≤ l;
≤ 0 for l + 1 ≤ i ≤ n.

If for some constant K > 0, we have

(3.3) lim inf
t→∞

t1−α
t∑

s=a(α)+1

(t− s+ 1)α−1
(
v(s) +K

n∑
i=1

p
λi
λi−1 (s)|qi(s)|

1
1−λi

)
= −∞

and

(3.4) lim sup
t→∞

t1−α
t∑

s=a(α)+1

(t− s+ 1)α−1
(
v(s) +K

n∑
i=1

p
λi
λi−1 (s)|qi(s)|

1
1−λi

)
=∞

then equation (1.1) is oscillatory.

Proof. Suppose to the contrary that there exists a non–oscillatory solution x(t) of equa-
tion (1.1)). Without loss of generality, we may suppose that x(t) is an eventually positive
solution of equation (1.1) for t ≥ T . It follows from equation (3.1) that

x(t) ≤ (t− a(α) + 1)α−1

Γ(α)
|c|+ 1

Γ(α)

T∑
s=a(α)+1

(t− s+ 1)α−1|F (s)|

+
1

Γ(α)

t∑
s=T+1

(t− s+ 1)α−1v(s)

+
1

Γ(α)

t∑
s=T+1

(t− s+ 1)α−1
(
p(s)x(s)−

n∑
i=1

qi(s)x
λi(s)

)
,

where F (s) = v(s) + p(s)x(s)−
∑n
i=1 qi(s)x

λi(s).
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For t ≥ T , we multiply the above inequality by Γ(α)t1−α to get

Γ(α)t1−αx(t) ≤ C(T ) + t1−α
t∑

s=T+1

(t− s+ 1)α−1v(s)

+ t1−α
t∑

s=T+1

(t− s+ 1)α−1
[ l∑
i=1

(
λip(s)x(s)− qi(s)xλi(s)

)]

+ t1−α
t∑

s=T+1

(t− s+ 1)α−1
[ n∑
i=l+1

(
− Lp(s)x(s)− qi(s)xλi(s)

)]
,(3.5)

where L :=
∑l
i=1 λi−1

(n−l) > 0 and C is defined in (2.9). Let Xi = q
1
λi
i (s)x(s) and Yi =(

p(s)q
−1
λi
i (s)

) 1
λi−1 , 1 ≤ i ≤ l. Then, by using inequality (2.5) of Lemma 2, we obtain

λiq
1
λi
i (s)x(s)

[(
p(s)q

−1
λi
i (s)

) 1
λi−1

]λi−1

−
(
q

1
λi
i (s)x(s)

)λi
= λip(s)x(s)− qi(s)xλi(s)

≤ (λi − 1)
[(
p(s)q

−1
λi
i (s)

) 1
λi−1

]λi
= (λi − 1)p

λi
λi−1 (s)q

1
1−λi
i (s).(3.6)

Furthermore, if we set Ui = |qi(s)|
1
λi (s)x(s) and Vi =

(
L
λi
p(s)|qi(s)|

−1
λi

) 1
λi−1 , l + 1 ≤

i ≤ n. Then, by using inequality (2.6) of Lemma 2, we get

−λi|qi(s)|
1
λi x(s)

[ ( L
λi
p(s)|qi(s)|

−1
λi

) 1
λi−1

]λi−1

+
(
|qi(s)|

1
λi x(s)

)λi
= −Lp(s)x(s) + |qi(s)|xλi(s)

≤ (1− λi)
[( L
λi
p(s)|qi(s)|

−1
λi

) 1
λi−1

]λi
= (1− λi)

(λi
L

) λi
λi−1

p
λi
λi−1 (s)|qi(s)|

1
1−λi .(3.7)

By virtue of relations (3.6) and (3.7), inequality (3.5) becomes

Γ(α)t1−αx(t) ≤ C(T ) + t1−α
t∑

s=T+1

(t− s+ 1)α−1v(s)

+ t1−α
t∑

s=T+1

(t− s+ 1)α−1
l∑
i=1

(λi − 1)p
λi
λi−1 (s)q

1
1−λi
i (s)

+ t1−α
t∑

s=T+1

(t− s+ 1)α−1
n∑

i=l+1

(1− λi)
(λi
L

) λi
1−λi p

λi
λi−1 (s)|qi(s)|

1
1−λi

≤ C(T ) + t1−α
t∑

s=T+1

(t− s+ 1)α−1v(s)

+ t1−α
t∑

s=T+1

(t− s+ 1)α−1K
n∑
i=1

p
λi
λi−1 (s)|qi(s)|

1
1−λi , t ≥ T,(3.8)
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where K = max
{
λ1−1,maxl+1≤i≤n(1−λi)

(
λi
L

) λi
1−λi

}
. Taking the limit inferior of both

sides of inequality (3.8) as t→∞ and in view of condition (3.3), we get a contradiction
to the assumption that x(t) > 0. In the case x(t) is eventually negative, one can follow
similar arguments to prove the validity of condition (3.4). The proof is finished. �

In light of Theorem 5 and its proof, one can conclude the following results:

3.3. Corollary. Let l = n in equation (1.1), then λ1 > λ2 > . . . > λn > 1. Suppose
p(t) > 0, qi(t) ≥ 0, 1 ≤ i ≤ n. If (3.3) and (3.4) hold for some constant K1 > 0, then
equation (1.1) is oscillatory.

Proof. Suppose to the contrary that there exists a non–oscillatory solution x(t) of equa-
tion (1.1)). Without loss of generality, we may suppose that x(t) is an eventually positive
solution of equation (1.1) for t ≥ T . It follows from equation (3.1) that

Γ(α)t1−αx(t) ≤ C(T ) + t1−α
t∑

s=T+1

(t− s+ 1)α−1v(s)

+ t1−α
t∑

s=T+1

(t− s+ 1)α−1
[ n∑
i=1

( 1

n
p(s)x(s)− qi(s)xλi(s)

)]
.

For t ≥ T , if we set Xi = q
1
λi
i (s)x(s) and Yi =

(
1
nλi

p(s)q
−1
λi
i (s)

) 1
λi−1 , 1 ≤ i ≤ n. Then

by using inequality (2.5), we obtain

Γ(α)t1−αx(t) ≤ C(T ) + t1−α
t∑

s=T+1

(t− s+ 1)α−1v(s)

+ t1−α
t∑

s=T+1

(t− s+ 1)α−1K1

n∑
i=1

p
λi
λi−1 (s)|qi(s)|

1
1−λi (s), t ≥ T,

where K1 ≥ λ1−1
n

. The remaining part of the proof is similar to that of Theorem 5, so
we omit the details. �

3.4. Corollary. Let l = 0 in equation (1.1), then 1 > λ1 > λ2 > . . . > λn. Suppose
p(t) < 0, qi(t) ≤ 0, 1 ≤ i ≤ n. If (3.3) and (3.4) hold for some constant K2 > 0, then
equation (1.1) is oscillatory.

3.5. Corollary. Let p(t) ≡ 0 and 0 < l < n in equation (1.1). Assume

(3.9) qi(t)

{
≥ 0 for 1 ≤ i ≤ l;
≤ 0 for l + 1 ≤ i ≤ n.

If there exists a positive function r(t) on Na(α) such that for some constant K3 > 0, we
have

(3.10) lim inf
t→∞

t1−α
t∑

s=a(α)+1

(t− s+ 1)α−1
(
v(s) +K3

n∑
i=1

r
λi
λi−1 (s)|qi(s)|

1
1−λi

)
= −∞

and

(3.11) lim sup
t→∞

t1−α
t∑

s=a(α)+1

(t− s+ 1)α−1
(
v(s) +K3

n∑
i=1

r
λi
λi−1 (s)|qi(s)|

1
1−λi

)
=∞

then equation (1.1)) is oscillatory.
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Proof. For λ1 > λ2 > . . . > λl > 1 > λl+1 > . . . > λn, by Lemma 1, there exists an
n−tuple (η1, η2, . . . , ηn) satisfying

∑l
i=1 λiηi =

∑n
i=l+1 λiηi. Suppose to the contrary

that there exists a non–oscillatory positive solution x(t) for t ≥ T . It follows from
equation (1.1) that

Γ(α)t1−αx(t) ≤ C(T ) + t1−α
t∑

s=T+1

(t− s+ 1)α−1v(s)

+ t1−α
t∑

s=T+1

(t− s+ 1)α−1
[ l∑
i=1

(
λiηir(s)x(s)− qi(s)xλi(s)

)]

+ t1−α
t∑

s=T+1

(t− s+ 1)α−1
[ n∑
i=l+1

(
− λiηir(s)x(s) + |qi(s)|xλi(s)

)]
.

The remainder of the proof is similar to the proof of Theorem 5, hence, we omit the
details.

�

3.6. Remark. The results of this section remain valid for fractional difference equations
of the form

(3.12)

{
∇αa−1x(t)− p(t)x(t) +

∑n
i=1 qi(t)

∣∣x(t)
∣∣λi−1

x(t) = v(t), t ∈ Na+1,

∇−(1−α)
a−1 x(t)

∣∣∣
t=a

= x(a) = c, c ∈ R,

where m = 1. Indeed, the solution of (3.12) is equivalent to the fractional Volterra sum
equation

x(t) =
(t− a+ 1)α−1

Γ(α)
x(a) +∇−αa

[
v(t) + p(t)x(t)−

n∑
i=1

qi(t)|x(t)|λi−1x(t)
]
.

4. Oscillation criteria for equation (1.2)
In this section, we establish oscillation criteria for equation (1.2). The results are

similar to those provided in Section 3 thus stated without proofs.

4.1. Lemma. [23] Let x(t) be a solution of equation (1.2). Then x(t) satisfies the
following fractional Volterra sum equation for t ∈ Na(α)

x(t) =

m−1∑
k=0

(t− a(α))k

k!
bk +∇−αa(α)

[
v(t) + p(t)x(t)−

n∑
i=1

qi(t)|x(t)|λi−1x(t)
]
.

The second main result in this paper is given in the following theorem.

4.2. Theorem. Assume that condition (3.2) holds. If

(4.1) lim inf
t→∞

t1−m
t∑

s=a(α)+1

(t− s+ 1)α−1
(
v(s) +K

n∑
i=1

p
λi
λi−1 (s)|qi(s)|

1
1−λi

)
= −∞

and

(4.2) lim sup
t→∞

t1−m
t∑

s=a(α)+1

(t− s+ 1)α−1
(
v(s) +K

n∑
i=1

p
λi
λi−1 (s)|qi(s)|

1
1−λi

)
=∞

for some constant K > 0, then equation (1.2) is oscillatory.

4.3. Corollary. Suppose p(t) > 0, qi(t) ≥ 0, 1 ≤ i ≤ n. If (4.1) and (4.2) hold for some
constant K1 > 0, then equation (1.2) is oscillatory.
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4.4. Corollary. Suppose p(t) > 0, qi(t) ≤ 0, 1 ≤ i ≤ n. If (4.1) and (4.2) hold for some
constant K2 > 0, then equation (1.2) is oscillatory.

4.5. Corollary. Let (3.9) hold. If there exists a positive function r(t) on Na(α) such that
for some constant K3 > 0, we have

lim inf
t→∞

t1−m
t∑

s=a(α)+1

(t− s+ 1)α−1
(
v(s) +K3

n∑
i=1

r
λi
λi−1 (s)|qi(s)|

1
1−λi

)
= −∞

and

lim sup
t→∞

t1−m
t∑

s=a(α)+1

(t− s+ 1)α−1
(
v(s) +K3

n∑
i=1

r
λi
λi−1 (s)|qi(s)|

1
1−λi

)
=∞

then equation (1.2) is oscillatory.

4.6. Remark. The results of this section are valid for fractional difference equations of
the form

(4.3)
{

c∇αax(t)− p(t)x(t) +
∑n
i=1 qi(t)

∣∣x(t)
∣∣λi−1

x(t) = v(t), t ∈ Na,
x(a) = b0, b0 ∈ R,

where m = 1. Indeed, the solution of (4.3) is equivalent to the fractional Volterra sum
equation

(4.4) x(t) = b0 +∇−αa
[
v(t) + p(t)x(t)−

n∑
i=1

qi(t)|x(t)|λi−1x(t)
]
.

5. Examples
In this section, we construct two examples to illustrate the effectiveness of the as-

sumptions of Theorem 3.2 and Theorem 4.2.

5.1. Example. Consider the Riemann–Liouville fractional difference equation

(5.1)

 ∇
1
2
0 x(t)− t2x(t) + 2t3

∣∣x(t)
∣∣ 12 x(t)− t

∣∣x(t)
∣∣− 1

2 x(t) = cosπt, t ∈ N2,

∇−
1
2

0 x(t)
∣∣∣
t=1

= x(1) = 1,

where m = 1, α = 1
2
, p(t) = t2, q1(t) = 2t3, q2(t) = −t, λ1 = 3

2
, λ2 = 1

2
and v(t) = cosπt.

By simple computation, we get L = 1
2
and K = 1

2
. Moreover, one can figure out that

t∑
s=2

(t−s+1)−
1
2

[
cosπs+

1

2

[
(s2)3|2s3|−2 +(s2)−1|−s|2

]]
=

t∑
s=2

(t−s+1)−
1
2

(
cosπs+

5

8

)
.

However, we observe that

5

8

t∑
s=2

(t− s+ 1)−
1
2 =

5

4
(t− 1)

1
2 .

Therefore, we have

lim inf
t→∞

t
1
2

( t∑
s=2

(t− s+ 1)−
1
2
(

cosπs+
5

4
(t− s)

1
2
))

= −∞

and

lim sup
t→∞

t
1
2

( t∑
s=2

(t− s+ 1)−
1
2
(

cosπs+
5

4
(t− s)

1
2
))

=∞.

Thus, by the consequence of Theorem 3.2, equation (5.1) is oscillatory.
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5.2. Example. Consider the following Caputo fractional difference equation

(5.2)

 c∇
3
2
0 x(t)− t2x(t) + 2t3

∣∣x(t)
∣∣ 12 x(t) = t

− 1
2

Γ( 1
2

)
+ 2t

9
2 − t3,

∇x(1) = 1, x(1) = 1,

where m = 2, α = 2
3
, p(t) = t2, q1(t) = 2t3, λ1 = 3

2
and v(t) = t

− 1
2

Γ( 1
2

)
+ 2t

9
2 − t3. Noting

that t
− 1

2

Γ( 1
2

)
+ 2t

9
2 − t3 ≥ 0 and employing (2.1) and (2.4), we obtain

t1−m
t∑

s=2

(t− s+ 1)α−1
(

v(s) +Kp
λ1
λ1−1 (s)|q1(s)|

1
1−λ1

)
≥ t−1

t∑
s=2

(t− s+ 1)
1
2
(
Ks62−2s−6)

=
(K

4

)
t−1

t∑
s=2

(t− s+ 1)
1
2

=
(K

4

)
t−1Γ

(3

2

)
∇−

3
2

1 (t− s)0

=
(K

6

) Γ(t+ 1
2
)

tΓ(t− 1)
.

Taking the limit inferior or limit superior of the left hand side of the above inequality, one
can easily see that neither condition (4.1) nor condition (4.2) of Theorem 4.2 is satisfied.
However, one can also easily verify that x(t) = t is a non–oscillatory solution of (5.2).

Conclusion
The study of qualitative properties of fractional differential and difference equations

has gained considerable attention in the last few years. Readers can obviously observe the
tremendous number of papers appearing in the literature which investigate these types
of equations. The widespread applications of these equations could be behind the strong
motivation that attract researchers’ interest. One of the most important properties of
these equations is the oscillation of their solutions. In this paper and due to their appli-
cations in bacterial population dynamics, in particular, we provide oscillation criteria for
solutions of fractional difference equations with mixed nonlinearities. Taking into account
the difference between Riemann–Liouville and Caputo operators, the results are carried
out for equations involving these two operators. The equations under consideration are
given in general form and thus contain some previously considered particular cases. In
the proof of the main results, newly established fundamental concepts of discrete frac-
tional calculus have been skillfully employed. At the end of the paper and for numerical
treatments, two examples are constructed and investigated. One can easily figure out
that the oscillation of equations (5.1) and (5.2) can not be determined by using existing
oscillation criteria in the literature. Therefore, the results of this paper are essentially
new have their own merits.
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