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Abstract 
 

In this study, thermal residual stress analysis of functionally graded circular plates (FGCP) carried out. Finite difference equations 
are used in solving Navier’s equations of elasticity and Fourier's heat conduction equation. The grading along the plate was made 
along the surface of plate and it was assumed that the material properties changed according to the Mori-Tanaka approach. Grading 
along the plate was made in both radial and tangential directions. In this study, the effect of the coordinate derivatives of material 
properties was taken into consideration in both Fourier's heat conduction equation and Navier’s equations of elasticity, unlike the 
other studies. As a result, when the materials compositions of FGCP were changed from ceramic-rich to metal-rich compositions, 
the stress levels were not affected considerably. The strain levels increased significantly when the metal compound in the material 
composition of FGCP was increased. FGCP are emphasized that the change of material properties due to two-dimensional 
significantly affect distributions of thermal strain and stress. In this study, it was emphasized that changing the radial and tangential 
direction of the compositional gradient exponents of FGCP subjected to heat flux along the outer edge significantly influences the 
strain and stress distributions. 
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1. INTRODUCTION 

The functionally gradient materials (FGMs) are one kind of the high technology materials that have been researched to decrease 
thermal stresses and to eliminate discontinuous stress concentrations (Noda, 1999). FGMs overcome the disadvantage of the 
conventional composites plates that have been used as thermal barriers in the space planes, ultra-super-hypersonic airplanes for 
the super-sonic transport, nuclear fusion reactors, and similar structures (Choules & Kokini, 1996). In many studies have focused 
thermo-elastic or plastic stress analyses on the one- or two-dimensional functionally graded plates, and these structures are assumed 
as a functionally graded composition variation through the thickness. 

Recent studies have focused thermo-elastic or plastic stress analyses on the one- or two-dimensional functionally graded plates, 
and these structures were assumed functionally graded composition variations through the thickness. 

Apalak & Demirbas (2013) analyzed the thermo-elastic response of functionally graded plates and adhesively bonded functionally 
graded rectangular and circular hollow plates independent subjected to an in-plane different heat flux. They expressed that type of 
in-plane heat flux affected heat transfer period and temperature levels, the residual thermal stresses were strongly dependent on 
the in-plane material composition gradient and could be decreased by altering in-plane material composition. Wang et al., (2004) 
researched the thermal shock resistance of FGMs. Their studies yielded explicit expressions for 1-D transient thermal conduction 
for a plate, shell and sphere. Thermal shock analysis of FGM plate exposed to different circumferential temperatures was 
performed with a finite element/finite different method. 

Moosaie (2016) performed a nonlinear thermo-elastic analysis of a functionally graded thick-walled cylinder. He presented 
analytic solution of the non-linear heat conduction equation for a functionally graded thick-walled cylinder and obtained a 
temperature field using a perturbation technique. The exact solutions of elasticity equations were developed for incompressible 
elastic material, and stress results were obtained. Mahdavi et al., (2016) studied the thermo-mechanical behavior of functionally 
graded rotating discs. Their study was based on the variable material property theory and their theoretical results were compared 
with solutions obtained by the finite element method (FEM). The thermo mechanical properties were assumed to be constant and 
elastic-plastic problems were solved using the form of the elastic response. They emphasized that the method can be used to solve 
both elastic and elasto-plastic problems and that temperature-dependent material properties should be taken into account in the 
solution of the problem. Najibi and Talebitooti (2017) performed the transient thermo-elastic analysis of a thick hollow finite 
length cylinder made of two-dimensional functionally graded materials. Transient heat conduction and thermos-elastic equations 
were solved for the cylinder subjected to thermal loading using the FEM. They emphasized that the variation of the material 
distribution in the axial direction changes the temperature and stress distributions significantly. Burlayenko et al., (2017) developed 
a model for solving functionally graduated two-dimensional plates by plane-shape transformation using the FEM. When comparing 
the results with the literature, they emphasized that the developed finite element model gave very good results regarding 
temperature fields and thermally induced stress distributions. Swaminathan and Sangeetha (2017) conducted a comprehensive 
review of the various developments, applications, various mathematical material distributions, temperature profiling, modeling 
techniques and solution methods accepted for thermal analysis of functionally graded plates. Ghannad and Parhizkar Yaghoobi 
(2017) presented a thermal elastic analysis of the axially symmetric FGM cylinder subjected to pressure on the inner surface and 
heat flux on the outer surface. As a result, she stressed that the shear stress was effective on the cylinder edges and that the 
temperature and displacement fields changed depending on the length of the cylinder. Nowadays, fuel cell technology applies 
successfully FGMs to solid oxide fuel cells in order to reduce thermal expansion coefficient mismatch between electrolyte and 
anode examined inclusively five categories of fuel cells, and related studies (Iwasawa et al.,1997- Wang, et al., 2011) Fuel cells 
are popular examples that conductive and convective heat transfers, and mass transfer, multiple fluids flows moreover 
electrochemical reactions are experienced (Kakac, 2007, Ruys, 2001, Noda, 1997). Consequently, a tubular or planar design of a 
solid oxide fuel cell can experience in-plane or through-thickness heat transfer due to heat fluxes. Thus, an in-plane one- or two-
dimensional functionally graded material distribution requires a theoretical investigation for the practical applications. 

Many studies in the literature focus on functionally graded circular or rectangular plates and structures in one- or two- dimensions 
(through-thickness or radial direction) under thermal load. For numerical solutions, FEM was generally used as a solution method 
and functional grading was performed along the thickness. In this study, the thermal stress behavior of two-dimensional circular 
plates was investigated. The grading on the plate was made along the plane, not along the thickness. Two-dimensional thermo-
elastic problem for plane strain and plane strain in numerical solution is solved by using FDM. In the equations used for the thermo-
elastic solution, the effect of the directional dependence of the material properties is considered. 

2. MATERIALS AND METHODS 

In this problem, the FGCP have a material composition of two constituents, ceramic and metal, and the material composition is 
two-directional in the plate plane. In addition, the effect of the directional dependence of the material properties is taken into 
consideration in both Heat Transfer and Navier’s Equations, unlike the other studies. 
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Figure 1: Functionally graded circular plate 

 

2.1. Material Properties 

In this study, it is assumed that homogeneous, isotropic grading is designed in the radial and tangential directions between the 
ceramic and metal phases of the FGCP. The volume fraction of the ceramic (c) phase in each position in the radial and tangential 
direction, respectively 

𝑉𝑉𝑐𝑐𝑟𝑟(�̅�𝑟) = � �̅�𝑟
𝑙𝑙𝑅𝑅
�
𝑛𝑛

              (1)  

𝑉𝑉𝑐𝑐𝜃𝜃(𝜃𝜃) = (|sin(𝑝𝑝𝜃𝜃)|)𝑚𝑚                                          (2) 

 

n and m compositional gradient exponents along the radial and tangential directions, respectively, 𝑟𝑟 ̅=𝑟𝑟−𝑅𝑅𝑖𝑖 is the radial distance 
from the inner edge of the circular plate, and lR=Ro-Ri is the circular plate length. Ri and Ro are the inner and outer radius of the 
circular plate, respectively. p=0.5 is a period of periodic functions. The ceramic volume fraction of the plate abides by the power 
law as (Nemat-Alla, 2003) 

 𝑉𝑉𝑐𝑐(�̅�𝑟, 𝜃𝜃) = 𝑉𝑉𝑐𝑐𝑟𝑟(�̅�𝑟)𝑉𝑉𝑐𝑐𝜃𝜃(𝜃𝜃)                                             (3) 

for the metal volume fraction of the plate, 

𝑉𝑉𝑚𝑚(�̅�𝑟, 𝜃𝜃) = 1 − 𝑉𝑉𝑐𝑐(�̅�𝑟, 𝜃𝜃)                                      (4) 

where r and θ are considered as distance along in-plane radial and tangential directions, respectively.     

The thermal, physical and mechanical properties of the constituents of Ni and Al2O3 composite material are explained in Table 
1.  

Table 1: The thermal, physical and mechanical properties of metal (Ni) and ceramic (Al2O3) used (Materials Information 
Resource MatWeb, 2016) 
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The simple estimation method is the linear rule of the mixtures in which a material properties P at any point r in the graded 
region are determined. 

𝑃𝑃(𝑟𝑟) = 𝑉𝑉𝑐𝑐(𝑟𝑟)𝑃𝑃𝑐𝑐(𝑟𝑟) + 𝑉𝑉𝑚𝑚(𝑟𝑟)𝑃𝑃𝑚𝑚(𝑟𝑟)                                  (5) 

Tomota et al., (1976) offered a mixtures rule for the elasticity modulus as Wakashima & Tsukamoto (1991) makes statement 
necessitate that the overall thermal expansion coefficient (α) for a diphase material is connected the averaged bulk modulus (K) 
using the Levin (1967) relation. Other material properties have been accepted to change according to the Mori &Tanaka approach 
(1973). 

2.2. Heat Transfer 

In the transient two-dimensional Fourier’s heat conduction equation heat conductivity coefficient (λ), density (ρ), specific heat 
capacity (cp) varies in both radial and tangential directions, 

∇��⃑ �λ∇��⃑ 𝑇𝑇� = ρc𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                               (6) 
𝜕𝜕λ
𝜕𝜕𝑟𝑟

𝜕𝜕T
𝜕𝜕𝑟𝑟

+ 1
𝑟𝑟2

𝜕𝜕λ
𝜕𝜕θ

𝜕𝜕T
𝜕𝜕θ

+ λ
𝑟𝑟
𝜕𝜕T
𝜕𝜕𝑟𝑟

+ λ 𝜕𝜕
2T
𝜕𝜕𝑟𝑟2

+ λ
𝑟𝑟2

𝜕𝜕2T
𝜕𝜕θ2

= ρc𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

             (7) 

 

T (r, θ, t) at the nodal point (i, j) with the coordinate (r,θ) or with respect to time t and the space variables (r,θ). Herewith, the heat 
transfer equation can be written in terms of difference equations as (for the internal grid points along i= [2: nr-1] and                        
j= [2: nw-1]), 

𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘+1 = 𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘 + ∆𝜕𝜕
�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗∆𝑟𝑟

�λ𝑖𝑖+1,𝑗𝑗 − λ𝑖𝑖,𝑗𝑗�
1
∆𝑟𝑟
�T𝑖𝑖+1,𝑗𝑗

𝑘𝑘 − T𝑖𝑖,𝑗𝑗𝑘𝑘 � + ∆𝜕𝜕

�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗�𝑟𝑟𝑖𝑖,𝑗𝑗�
2(∆θ)2

�λ𝑖𝑖,𝑗𝑗+1 − λ𝑖𝑖,𝑗𝑗��T𝑖𝑖 ,𝑗𝑗+1𝑘𝑘 − T𝑖𝑖,𝑗𝑗𝑘𝑘 � +
λ𝑖𝑖,𝑗𝑗∆𝜕𝜕

�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗𝑟𝑟𝑖𝑖,𝑗𝑗∆𝑟𝑟
�T𝑖𝑖+1,𝑗𝑗

𝑘𝑘 −

T𝑖𝑖,𝑗𝑗𝑘𝑘 � +
λ𝑖𝑖,𝑗𝑗∆𝜕𝜕

�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗(∆r)2
�T𝑖𝑖+1,𝑗𝑗

𝑘𝑘 − 2T𝑖𝑖,𝑗𝑗𝑘𝑘 + T𝑖𝑖−1,𝑗𝑗
𝑘𝑘 � +

λ𝑖𝑖,𝑗𝑗∆𝜕𝜕

�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗�𝑟𝑟𝑖𝑖,𝑗𝑗�
2(∆θ)2

�T𝑖𝑖,𝑗𝑗+1𝑘𝑘 − 2T𝑖𝑖,𝑗𝑗𝑘𝑘 + T𝑖𝑖,𝑗𝑗−1𝑘𝑘 �                       (8) 

for all grid points at i=1 and j= [1: nw], 

𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘+1 = 𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘 + ∆𝜕𝜕
�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗∆𝑟𝑟

�λ𝑖𝑖+1,𝑗𝑗 − λ𝑖𝑖,𝑗𝑗�
1
∆𝑟𝑟
�T𝑖𝑖+1,𝑗𝑗

𝑘𝑘 − T𝑖𝑖,𝑗𝑗𝑘𝑘 � + ∆𝜕𝜕

�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗�𝑟𝑟𝑖𝑖,𝑗𝑗�
2(∆θ)2

�λ𝑖𝑖,𝑗𝑗+1 − λ𝑖𝑖,𝑗𝑗��T𝑖𝑖 ,𝑗𝑗+1𝑘𝑘 − T𝑖𝑖,𝑗𝑗𝑘𝑘 � +
λ𝑖𝑖,𝑗𝑗∆𝜕𝜕

�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗𝑟𝑟𝑖𝑖,𝑗𝑗∆𝑟𝑟
�T𝑖𝑖+1,𝑗𝑗

𝑘𝑘 −

T𝑖𝑖,𝑗𝑗𝑘𝑘 � +
λ𝑖𝑖,𝑗𝑗∆𝜕𝜕

�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗(∆r)2
�−T𝑖𝑖+3,𝑗𝑗

𝑘𝑘 + 4T𝑖𝑖+2,𝑗𝑗
𝑘𝑘 − 5T𝑖𝑖+1,𝑗𝑗

𝑘𝑘 + 2T𝑖𝑖,𝑗𝑗𝑘𝑘 � +
λ𝑖𝑖,𝑗𝑗∆𝜕𝜕

�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗�𝑟𝑟𝑖𝑖,𝑗𝑗�
2(∆θ)2

�T𝑖𝑖,𝑗𝑗+1𝑘𝑘 − 2T𝑖𝑖,𝑗𝑗𝑘𝑘 + T𝑖𝑖,𝑗𝑗−1𝑘𝑘 �        (9)     

 

 

Figure 2:Finite difference grit of plate 

for all grid points at i=nr and j= [1: nw], 

𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘+1 = 𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘 + ∆𝜕𝜕
�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗∆𝑟𝑟

�λ𝑖𝑖,𝑗𝑗 − λ𝑖𝑖−1,𝑗𝑗�
1
∆𝑟𝑟
�T𝑖𝑖,𝑗𝑗𝑘𝑘 − T𝑖𝑖−1,𝑗𝑗

𝑘𝑘 � + ∆𝜕𝜕

�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗�𝑟𝑟𝑖𝑖,𝑗𝑗�
2(∆θ)2

�λ𝑖𝑖,𝑗𝑗+1 − λ𝑖𝑖,𝑗𝑗��T𝑖𝑖 ,𝑗𝑗+1𝑘𝑘 − T𝑖𝑖,𝑗𝑗𝑘𝑘 � +
λ𝑖𝑖,𝑗𝑗∆𝜕𝜕

�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗𝑟𝑟𝑖𝑖,𝑗𝑗∆𝑟𝑟
�T𝑖𝑖,𝑗𝑗𝑘𝑘 −

T𝑖𝑖−1,𝑗𝑗
𝑘𝑘 � +

λ𝑖𝑖,𝑗𝑗∆𝜕𝜕

�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗(∆r)2
�−T𝑖𝑖−3,𝑗𝑗

𝑘𝑘 + 4T𝑖𝑖−2,𝑗𝑗
𝑘𝑘 − 5T𝑖𝑖−1,𝑗𝑗

𝑘𝑘 + 2T𝑖𝑖 ,𝑗𝑗𝑘𝑘 � +
λ𝑖𝑖,𝑗𝑗∆𝜕𝜕

�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗�𝑟𝑟𝑖𝑖,𝑗𝑗�
2(∆θ)2

�T𝑖𝑖,𝑗𝑗+1𝑘𝑘 − 2T𝑖𝑖,𝑗𝑗𝑘𝑘 + T𝑖𝑖 ,𝑗𝑗−1𝑘𝑘 �                         (10) 
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this equations can be arranged on thermal equilibrium of that cell as follows: for all grid points at 

i= [2: nr-1], j=1 to   𝑗𝑗 − 1→𝑛𝑛𝑛𝑛                                                               (11) 

i= [2: nr-1], j=nw to  𝑗𝑗 + 1→1                                                             (12) 

are written.  

2.2.1. Initial and Boundary Conditions 

The initial temperature is given as 𝑇𝑇(𝑟𝑟,𝜃𝜃)=298 K at 𝑡𝑡=0, and thermal boundary conditions are given as: 

𝑞𝑞𝑖𝑖 = 𝑞𝑞(𝑅𝑅𝑖𝑖,𝜃𝜃, 𝑡𝑡)                                                       (13) 

𝑞𝑞𝑜𝑜 = 𝑞𝑞(𝑅𝑅𝑜𝑜,𝜃𝜃, 𝑡𝑡) = 200𝐾𝐾𝐾𝐾/𝑚𝑚2                            (14) 

 

Where qi and qo are inner and outer heat fluxes along the radial direction r, respectively. The boundary condition, the inner edge 
is subjected to adiabatic conditions while the outer boundary is subjected to heat flux. The initial temperature is taken as 298 K for 
the whole circular plate and the analysis is completed when the temperature reached 900 K at any point along the outer edge of the 
plate. The inner and outer radius of plate is 100 mm and 200 mm, respectively. FGCPs have a radial length l=100 mm and thickness 
t=1mm. As the 1 mm plate thickness is much smaller than other dimensions, the stress and strain in the thickness direction were 
neglected and a 2-D analyses is conducted. 

If the first boundary condition is adapted to the two-dimensional heat transfer equation, (along the outer edge of the circular plate 
(rnr,j= Ro) with (i=1, j= [1: nw])) 

 

�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗
λ𝑖𝑖,𝑗𝑗∆𝜕𝜕

�𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘+1 − 𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘 � = 2𝑞𝑞𝑒𝑒
λ𝑖𝑖,𝑗𝑗∆𝑟𝑟

+ 2
(∆r)2

�𝑇𝑇𝑖𝑖−1,𝑗𝑗
𝑘𝑘 − 𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘 � + 1

(∆θ)2
�𝑇𝑇𝑖𝑖,𝑗𝑗+1𝑘𝑘 − 𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘 � + + 1

(∆θ)2
�𝑇𝑇𝑖𝑖,𝑗𝑗−1𝑘𝑘 − 𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘 �                              (15)                                                   

 

Figure 3: Outer edge of plate 

If the second boundary condition is adapted to the two-dimensional heat transfer equation, (along the inner edge of the circular 
plate (rnr,j= Ri) with (i=1, j= [1: nw])) 

�ρc𝑝𝑝�𝑖𝑖,𝑗𝑗
λ𝑖𝑖,𝑗𝑗∆𝜕𝜕

�𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘+1 − 𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘 � = 2𝑞𝑞𝑓𝑓
λ𝑖𝑖,𝑗𝑗∆𝑟𝑟

+ 2
(∆r)2

�𝑇𝑇𝑖𝑖+1,𝑗𝑗
𝑘𝑘 − 𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘 � + 1

(∆θ)2
�𝑇𝑇𝑖𝑖,𝑗𝑗+1𝑘𝑘 − 𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘 � + + 1

(∆θ)2
�𝑇𝑇𝑖𝑖,𝑗𝑗−1𝑘𝑘 − 𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘 �             (16) 
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Figure 4: Inner edge of plate 

 

2.3. Navier’s Equations of Elasticity 

Two-dimensional Navier’s equations of elasticity in the radial and tangential directions are written as (T=T(r,θ,t)-To is the 
temperature difference) 

2 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

+ 1
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕θ

+ 𝜕𝜕
𝑟𝑟
� 𝜕𝜕λ
𝜕𝜕𝑟𝑟

+ λ
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
− λ
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In equations (17) and (18), the thermal stress equations are written for the entire plate by choosing the appropriate ones from the 
equations (19)-(30) for the finite difference equations with the first and second order derivatives (in the inner region and edges of 
the plate). 
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If the figures contain dark or colored areas, the figures should be checked on high quality, colorless laser printers to ensure that 
they can be printed properly. The figures used in the text of the paper are gray, only the images can be colored. 

2.3.1. Initial and Boundary Conditions 

The circular plate is fixed along all its edges (u (𝑟𝑟, 𝜃𝜃) =0 and     v (𝑟𝑟, 𝜃𝜃) =0).  

The material is completely ceramic (Al2O3) at the edge outer of the plate where r =𝑅𝑅𝑜𝑜, and the material is completely metal (Ni) 
the inner edge of the plate (r = 𝑅𝑅𝑖𝑖). A one-dimensional grading is performed along radial direction with three different 
compositional gradient exponents of n = 0.1 (ceramic rich compound), 0.5, and 1.0 (linear change is from ceramic rich compound 
to metal rich compound).  

FDM requires that the plate be divided into a grid of nr = 80 x nq = 240 divisions along the coordinates r and 𝜃𝜃, respectively. The 
temperature matrix obtained from the heat transfer solution is considered as the temperature difference in the Navier equations. 
The appropriate finite difference equations are selected for the internal points, edges and corners of the plate. The implicit difference 
equations of the stress analysis are coded, solved and post-processed graphically in MATLAB (Mathematical software, 2009). 

3.RESULTS 

As can be seen in Figure 6, as the compositional gradient exponent ('n') in the radial direction increases, the equivalent strain 
levels increase and the maximum strain areas expands. The reason for this increase is the increase in the metal volume ratio, 
which is less resistant to heat in the material composition. As the compositional gradient exponent ('m') in the angular direction 
increases, the equivalent strain levels do not change but the maximum strain areas around θ=0o are narrowed. 

 

 

Figure 6: Distribution of the in-plane equivalent strain along the plate for different compositional gradients 
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Figure 7: Distribution of the in-plane equivalent stress along the plate for different compositional gradients 

As can be seen in Figure 8, the equilibrium stress levels do not change significantly as the compositional gradient exponent ('n') in 
the radial direction increases. However, the equivalent stress bands at maximum and medium levels are narrowing outward from 
the inside of the plate, around θ=180o. As the compositional gradient exponent value ('m') in the angular direction increases, the 
equivalent stress levels do not change but at θ=0o, the areas affected by the maximum and middle stress bands are symmetrically 
narrowed at the top and bottom of the plate. 

 

Figure 8: Distribution of the in-plane ceramic volume fractions along the plate for different compositional gradients 
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As shown in Figure 7, the equivalent stress distribution along the plate is dependent on the compositional gradient exponent. 
Therefore, the effectiveness of the compositional gradient exponent is important when the appropriate working conditions of the 
plate are determined. 

4. CONCLUSIONS 

In the theoretical thermal stress analysis, it is important to take into account the effect of coordinate derivatives of material 
properties and to grade the FGCP in two directional for optimum design. 
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