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ON THE HARMONIC ENERGY AND THE HARMONIC

ESTRADA INDEX OF GRAPHS

Akbar Jahanbani1, Hassan Hekmatyan Raz2

Let G be a graph with n vertices and di is the degree of its ith vertex( di
is the degree of vi), then the harmonic matrix of G is the square matrix of
order n whose (i, j)-entry is equal to 2

di+dj
if the ith and jth vertex of G are

adjacent, and zero otherwise. The main purpose of this paper is to introduce
the harmonic Estrada index of a graph. Moreover we establish upper and
lower bounds for these energy and index separately also we investigate the
relations between the harmonic Estrada index and the harmonic energy.

1. INTRODUCTION

Let G = (V,E) be a simple connected graph with the vertex set V (G) =
{v1, v2, ..., vn} and edge set E(G), where |V (G)| = n and |E(G)| = m. Let di be
the degree of the ith vertex vi ∈ V , for i = 1, 2, ..., n. For a graph G, the harmonic
index H(G) is defined in [25] as H(G) =

∑
uivj∈E(G)

2
di+dj

. The chromatic number

χ′(G) of G is the smallest number of colors needed to color all vertices of G in such
a way that no pair of adjacent vertices get the same color. Let the vertices of
G be labeled as v1, v2, . . . , vn. The adjacency matrix of a graph G is the square
matrix A = A(G) = [aij ] , in which aij = 1 if vi is adjacent to vj and aij = 0 ,
otherwise. For a graph G, its characteristic polynomial P (G, x) is the characteristic
polynomial of its adjacency matrix, that is, P (G, x) = det(xI − A(G)). Let λ1 >
λ2 > · · · > λn be the eigenvalues of its adjacency matrix A(G). Then the spectrum
of G is Spec(G) = {λ1, λ2, . . . , λn}. These form the adjacency spectrum of G [3].
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Thus

detA =

n∏
i=1

λi.

The harmonic matrix of a graph G is a square matrix H(G) = [hij ] of order n,
defined in [25] as

hij =


0 if the vertices vi and vj of G are not adjacent

2
(di+dj)

if the vertices vi and vj of G are adjacent

0 if i = j.

The eigenvalues of the harmonic matrix H(G) are denoted by γ1, γ2, . . . , γn and are
said to be the H-eigenvalues of G and their collection is called harmonic spectrum
or H-spectrum of G. We note that since the harmonic matrix is symmetric, its
eigenvalues are real and can be ordered as γ1 > γ2 > · · · > γn. Favaron et al.
[20] considered the relation between harmonic index and the eigenvalues of graphs.
Zhong [36] found the minimum and maximum values of the harmonic index for
simple connected graphs and trees, and characterized the corresponding extremal
graphs. Deng, Balachandran, Ayyaswamy, Venkatakrishnan [8] considered the re-
lation relating the harmonic index H(G) and the chromatic number and proved
that χ(G) 6 2H(G) by using the effect of removal of a minimum degree vertex
on the harmonic index. Deng, Tang, Zhang [6] considered the harmonic index
H(G) and the radius r(G). Deng, Balachandran, Ayyaswamy, Venkatakrishnan
[7] determined the trees with the second-the sixth maximum harmonic indices, and
unicyclic graphs with the second-the fifth maximum harmonic indices, and bicyclic
graphs with the first-the fourth maximum harmonic indices.
The sum-connectivity index χ′(G) and the general sum-connectivity index χα(G)
were recently proposed by Zhou and Trinajstić in [37, 38] and defined as

χ′(G) =
∑

uv∈E(G)

(d(u) + d(v))
−1
2

and

(1) χα(G) =
∑

uv∈E(G)

(d(u) + d(v))α,

where α is a real number. Some mathematical properties of the (general) sum-
connectivity index on trees, molecular trees, unicyclic graphs and bicyclic graphs
were given in [12, 13, 14].
This paper is organized as follows. In Section 2, we give a list of some previously
known results. In Section 3, we obtain lower and upper bounds for the harmonic
energy of graph G. In Section 4, we put forward the concept of harmonic Estrada
index, and obtain lower and upper bounds for it. In Section 5, we investigate the
relations between the harmonic Estrada index and the harmonic energy. All graphs
considered in this paper are simple.
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2. PRELIMINARIES AND KNOWN RESULTS

In this section, we shall list some previously known results that will be needed
in the next sections. In this section we first calculate tr(H2) , tr(H3) and tr(H4)
, where tr denotes the trace of a matrix. Now let us present the following lemma
as the first preliminary result. Denote by Nk the k-th spectral moment of the
harmonic matrix H, i. e.,

(2) Nk =

n∑
j=1

(γi)
k

and recall that Nk = tr(Hk).

Lemma 1. Let G be a graph with n vertices and harmonic matrix H. Then

(1) N0 =

n∑
i=1

(γi)
0 = n,

(3)

(2) N1 = tr(H) = 0,
(4)

(3) N2 = tr(H2) = 8χ−2(G),

(5)

(4) N3 = tr(H3) = 32
∑
i∼j

1

(di + dj)2

( ∑
k∼i, k∼j

1

(dk)2

)
,

(6)

(5) N4 = tr(H4) =

n∑
i=1

(∑
i∼j

4

(di + dj)2

)2

+
∑
i 6=j

4

(di + dj)2

( ∑
k∼i, k∼j

4

(dk)2

)2

.

(7)

where
∑
i∼j indicates summation over all pairs of adjacent vertices vi, vj .

Proof. By definition, the diagonal elements of H are equal to zero. Therefore the
trace of H is zero.
Next, we calculate the matrix H2. For i = j

(H2)ii =

n∑
j=1

HijHji =

n∑
j=1

(Hij)
2 =

∑
i∼j

(Hij)
2 =

∑
i∼j

4

(di + dj)2
.

whereas for i 6= j

(H2)ij =

n∑
j=1

HijHji = HiiHij+HijHjj+
∑

k∼i, k∼j

HikHkj =
2

(di + dj)

∑
k∼i, k∼j

4

(dk)2
.
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Therefore

tr(H2) =

n∑
i=1

∑
i∼j

4

(di + dj)2
= 8

∑
i∼j

1

(di + dj)2
.

Hence by Equality (1), we have

tr(H2) = 8χ−2(G).

Since the diagonal elements of H3 are

(H3)ii =

n∑
j=1

Hij(H
2)jk =

∑
i∼j

2

(di + dj)
(H2)ij =

∑
i∼j

4

(di + dj)2

( ∑
k∼i, k∼j

4

(dk)2

)

we obtain

tr(H3) =

n∑
i=1

∑
i∼j

4

(di + dj)2

( ∑
k∼i, k∼j

4

(dk)2

)
= 32

∑
i∼j

1

(di + dj)2

( ∑
k∼i, k∼j

1

(dk)2

)
,

wher
∑
k∼i, k∼j

1
(dk)2 =

∑
k∼i, k∼j

1
(di+dk)(dk+dj)

.

We now calculate tr(H4). Because tr(H4) = ‖H2‖2F , where ‖H2‖2F denotes the
Frobenius norm of H2, we obtain

tr(H4) =

n∑
i,j=1

| (H2)ii |2=
∑
i=j

| (H2)ii |2 +
∑
i 6=j

| (H2)ii |2

=

n∑
i=1

(∑
i∼j

4

(di + dj)2

)2

+
∑
i 6=j

4

(di + dj)2

( ∑
k∼i, k∼j

4

(dk)2

)2

.

Remark 1. For any real x, the power-series expansion of ex, is the following

ex =
∑
k>0

xk

k!
.(8)

Lemma 2. For any non-negative real x, x, ex > 1 + x + x2

2 + x3

3 + x4

4 . Equality
holds if and only if x = 0.

Theorem 1. [4] (Chebishev inequality) Let a1 ≤ a2 6 · · · 6 an and b1 ≤ b2 6
· · · 6 bn be real numbers. Then we have( n∑

i=1

ai

)( n∑
i=1

bi

)
6 n

n∑
i=1

aibi,

equality occurs if and only if a1 = a2 = · · · = an or b1 = b2 = · · · = bn.
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Remark 2. For nonnegative x1, x2, . . . , xn and k > 2,

(9)

n∑
i=1

(xi)
k 6 (

n∑
i=1

xi
2)

k
2 .

Lemma 3. [35] Let G be a graph with m edges. Then for k > 4, Mk+2 >Mk with
equality for all even k > 4 if and only if G consists of m copies of complete graph
on two vertices and possibly isolated vertices, and with equality for all odd k > 5 if
and only if G is a bipartite graph.

Lemma 4. (Rayleigh-Ritz) [24] If B is a real symmetric n× n matrix with eigen-
values λ1(B) > λ2(B) 6 · · · 6 λn(B), then for any X ∈ Rn, (X 6= 0),

XtBX 6 λ1(B)XtX.

Equality holds if and only if X is an eigenvector of B, corresponding to the largest
eigenvalue λ1(B).

Theorem 2. [8] Let G be a simple graph with the chromatic number χ(G) and
the harmonic index H(G), then

χ(G) 6 2H(G),

with equality if and only if G is a complete graph possibly with some additional
isolated vertices.

3. BOUNDS FOR THE HARMONIC ENERGY

In this section, we study energy and harmonic energy of graph G. We also
give lower and upper bounds for it.
The energy of the graph G is defined as:

(10) E = E(G) =

n∑
i=1

| λi | .

where λi, i = 1, 2, . . . , n , are the eigenvalues of graph G.
This concept was introduced by I. Gutman and is intensively studied in chemistry,
since it can be used to approximate the total π-electron energy of a molecule
(see, e.g. [22, 23] ). After 1978 the graph-energy concept was presented to the
mathematico-chemical community on several other occasions [23, 29]. Initially, the
response of other colleagues was almost nil. However, around the turn of the cen-
tury the study of E suddenly became a rather popular topic both in mathematical
chemistry and in pure mathematics. Of the numerous papers on graph energy that
recently appeared, since then, the numerous bounds for energy were found (see,
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e.g. [1, 21, 26, 27, 28]).
Therefore, by considering this, the harmonic energy defined in [25] as

(11) HE(G) =

n∑
i=1

| γi |,

where γ1, γ2, . . . , γn are eigenvalues of the harmonic matrix.
Bearing this in mind, we immediately arrive at the following estimates:

Lemma 5. Let G be a connected graph with n > 2 vertices. Then the spectral
radius of the harmonic matrix is bounded from below as

(12) γ1 >
2H(G)

n
.

Proof. Let H = ||hij || be the harmonic matrix corresponding to H. By Lemma 4,
for any vector X = (x1, x2, . . . , xn)t,

XtHX =

( n∑
j,j∼1

xjhj1,

n∑
j,j∼2

xjhj2, . . . ,

n∑
j,j∼n

xjhjn

)t
X

= 2
∑
i∼j

hijxixj(13)

because hij = hji. Also,

(14) XtX =

n∑
i=1

x2
i .

Using Eqs. (13) and (14), by Lemma 4, we obtain

(15) γ1 >

2
∑
i∼j

hijxixj

n∑
i=1

x2
i

.

Since (15) is true for any vector X, by putting X = (1, 1, . . . , 1)t, we have

γ1 >
2H(G)

n
.

Remark 3. Let G be a graph with n vertices, by Theorem 2 and Lemma 5, we

have γ1 > χ(G)
n .

Theorem 3. Let G be a non-empty graph with n vertices. Then

HE(G) ≤ χ(G)

n
+

√
(n− 1)

(
8χ−2(G)− χ(G)

n

)2)
.
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Proof. Let γ1 > γ2 > · · · > γn−1 > γn be the eigenvalues of G. By the Cauchy −
Schwartz inequality,

n∑
i=1

| γi |6

√√√√(n− 1)

n∑
i=2

γ2
i =

√
(n− 1)(8χ−2(G)− γ2

1).

Hence

HE(G) 6 γ1 +
√

(n− 1)(8χ−2(G)− γ2
1).

Note that the function K(x) = x+
√

(n− 1)(8χ−2(G)− x2) decreases for χ(G)
n2 6

x 6 χ(G)
n . By Remark 3, we have γ1 > χ(G)

n , therefore

γ1 >
χ(G)

n
>
χ(G)

n2
.

So K(γ1(G)) 6 K

(
χ(G)
n

)
, which implies that

HE(G) ≤ χ(G)

n
+

√
(n− 1)

(
8χ−2(G)−

(
χ(G)

n

)2)
.

Remark 4. [31] For the roots x1 > x2 > · · · > xn of an arbitrary polynomial
Pn(x) from this class, the following values were introduced

x̄ =
1

n

n∑
i=1

xi,(16)

∆ = n

n∑
i=1

x2
i −

( n∑
i=1

xi

)2

.(17)

Then upper and lower bounds for the polynomial roots, xi, i = 1, 2, . . . , n, were
determined in terms of the introduced values

x̄+
1

n

√
∆

n− 1
6 x1 6 x̄+

1

n

√
(n− 1)∆.

Lemma 6. Let G be a simple graph with n > 2, vertices. Then

1

n

√
8nχ−2(G)

n− 1
6 γ1 6

1

n

√
8n(n− 1)χ−2(G).

Proof. Let the characteristic polynomial of a graph G is the following:

ϕn(x) =

n∏
i=1

(x− γi) = xn + a1x
n−1 + a2x

n−2 + b3x
n−3 + · · ·+ bn.
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Since

a1 = −
n∑
i=1

γi = 0

and

a2 =
1

2

[( n∑
i=1

γi

)2

−
n∑
i=1

γ2
i

]
= −4χ−2(G),

the polynomial ϕn(x) belongs to a class of real polynomials Pn(0,−4χ−2(G)), From
the equalities

x̄ =
1

n

n∑
i=1

γi = 0

and

∆ = n
n∑
i=1

γ2
i −

( n∑
i=1

γi

)2

= 8nχ−2(G)

and Remark (4), we obtain that for the eigenvalues γ1.

Theorem 4. Let G be a non-empty graph with n vertices. Then

HE(G) ≤ 1

n

√
8nχ−2(G)

n− 1
+

√
(n− 1)

(
8χ−2(G)−

(
1

n

√
8nχ−2(G)

n− 1

)2)
.

Proof. Let γ1 > γ2 > · · · > γn−1 > γn be the eigenvalues of G. By the Cauchy −
Schwartz inequality,

n∑
i=1

| γi |6

√√√√(n− 1)

n∑
i=2

γ2
i =

√
(n− 1)(8χ−2(G)− γ2

1).

Hence

HE(G) 6 γ1 +
√

(n− 1)(8χ−2(G)− γ2
1).

Note that the function F (x) = x+
√

(n− 1)(8χ−2(G)− x2) decreases for 1
n2

√
8nχ−2(G)
n−1 6

x 6 1
n

√
8nχ−2(G)
n−1 . By Lemma 6, we have γ1 > 1

n

√
8nχ−2(G)
n−1 , therefore

γ1 >
1

n

√
8nχ−2(G)

n− 1
>

1

n2

√
8nχ−2(G)

n− 1
.

So F (γ1(G)) 6 F

(
1
n

√
8nχ−2(G)
n−1

)
, which implies that

HE(G) ≤ 1

n

√
8nχ−2(G)

n− 1
+

√
(n− 1)

(
8χ−2(G)−

(
1

n

√
8nχ−2(G)

n− 1

)2)
.
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Theorem 5. Let G be a non-empty graph with n vertices. Then

(18) e−
√

8χ−2(G) 6 HE(G) 6 e
√

8χ−2(G).

Proof. Lower bound, by definition of harmonic energy and by the arithmetic-
geometric mean inequality, we have

HE(G) =

n∑
i=1

| γi |= n(
1

n

n∑
i=1

| γi |) > n( n
√
| γ1 || γ2 | · · · | γn |).

By the geometric and harmonic mean inequality, we have

n( n
√
| γ1 || γ2 | · · · | γn |) > n(

n∑n
i=1

1
|γi|

)

> n(
n∑n

i=1
1
|γi|
∑n
i=1 | γi |

)

> n(
n

n
∑n
i=1

1
|γi| | γi |

), ( by Theorem 1)

> n(
n

n2
∑n
i=1 | γi |

)

> n(
n

n2
∑n
i=1 e

|γi|
)

=
1∑n

i=1

∑
k>0

(|γi|)k
k!

=
1∑

k>0
1
k! (
∑n
i=1(| γi |)k)

>
1∑

k>0
1
k! (
∑n
i=1(| γi |)2)

k
2

, (by Inequality 9)

=
1∑

k>0
1
k! (
∑n
i=1(γi)2)

k
2

=
1∑

k>0
1
k!

(√
8χ−2(G)

)k , (by Equality 5)

=
1

e
√

8χ−2(G)
.

Therefore, we have

HE(G) > e−
√

8χ−2(G).
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Upper bound, by definition of harmonic energy, we have

HE(G) =

n∑
i=1

| γi |<
n∑
i=1

e|γi| =

n∑
i=1

∑
k>0

(| γi |)k

k!

=
∑
k>0

1

k!

n∑
i=1

(| γi |)k

≤
∑
k>0

1

k!
(

n∑
i=1

(| γi |)2)
k
2 , ( by Inequality 9)

=
∑
k>0

1

k!
(

n∑
i=1

(γi)
2)

k
2

=
∑
k>0

1

k!

(
8χ−2(G)

) k
2

, (by Equality 5)

=
∑
k>0

1

k!

(√
8χ−2(G)

)k
= e
√

8χ−2(G).

Therefore, we have

HE(G) 6 e
√

8χ−2(G).

Theorem 6. Let G be a graph with n vertices. Then√
8χ−2(G) 6 HE(G) 6

√
8nχ−2(G).

Proof. By Cauchy-Schwarz inequality, for real numbers ai and bi, we have( n∑
i=1

aibi

)2

6

( n∑
i=1

a2
i

)( n∑
i=1

b2i

)
,

assuming, ai = 1, bi =| γi |, we have( n∑
i=1

| γi |
)2

6 n

( n∑
i=1

| γi |2
)

= n

n∑
i=1

(γi)
2 = 8nχ−2(G).

Therefore
HE(G) 6

√
8nχ−2(G).

Therefore this gives the upper bound for HE(G). Now for the lower bound of
HE(G), we can easily obtain the inequality

HE(G)2 =

( n∑
i=1

| γi |
)2

>
n∑
i=1

| γi |2= 8χ−2(G).
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Theorem 7. Let G be a connected graph with n vertices. Then

HE(G) >
√

8χ−2(G) + n(n− 1) | detH | 2n .

Proof. By the definition of harmonic energy, we have

HE(G)2 =

( n∑
i=1

| γi |
)2

=

n∑
i=1

| γi |2 +2
∑

16i6j6n

| γi || γj |

= 8χ−2(G) + 2
∑

16i6j6n

| γi || γj |

= 8χ−2(G) + 2
∑
i 6=j

| γi || γj | .

Since, for nonnegative numbers, the arithmetic mean is not smaller than the geo-
metric mean, we then have

1

n(n− 1)

∑
i 6=j

| γi || γj |>
(∏
i 6=j

| γi || γj |
) 1
n(n−1)

=

( n∏
i=1

| γi |2(n−1)

) 1
n(n−1)

=

n∏
i=1

| γi |
2
n=| detH | 2n .

Theorem 8. Let G be a graph with n vertices. Then

HE(G) 6
8χ−2(G) + n

2
.

Proof. Let a1, a2, . . . , an and b1, b2, . . . , bn be sequences of real numbers. and
c1, c2, . . . , cn and d1, d2, . . . , dn are nonnegative, then Then the following inequality
is valid (see [11])

(19)
n∑
i=1

di

n∑
i=1

cia
2
i +

n∑
i=1

ci

n∑
i=1

dib
2
i > 2

n∑
i=1

aici

n∑
i=1

bidi.

For ai := |γi|, bi := ci = di = 1, i = 1, 2, . . . n, inequality () becomes

n∑
i=1

1

n∑
i=1

|γi|2 +

n∑
i=1

1

n∑
i=1

1 > 2

n∑
i=1

|γi|
n∑
i=1

1.

Therefore, by equalities (5) and (11), we have

HE(G) 6
8χ−2(G) + n

2
.



12 Akbar Jahanbani1, Hassan Hekmatyan Raz2

4. BOUNDS FOR THE HARMONIC ESTRADA INDEX

In this section, we consider the harmonic estrada index of graph G. We also
give lower and upper bounds for it. As a new direction for the studying on indexes
and their bounds, we will introduce and investigate harmonic estrada index and its
bounds. A graph-spectrum-based graph invariant, recently put forward by Estrada
[10], is defined as

EE = EE(G) =

n∑
i=1

eλi .

EE is usually referred as the Estrada index. Although invented in 2000, the Estrada
index has found numerous applications. The Estrada index has been successfully
employed to quantify the degree of folding of long-chain molecules, especially pro-
teins, and to measure the centrality of complex (reaction, metabolic, communica-
tion, social, etc.) networks. There is also a connection between the Estrada index
and the extended atomic branching of molecules.

Mk = Mk(G) =

n∑
i=1

(λi)
k.

Where Mk = Mk(G) is the k-th spectral moment of the graph G. Some mathe-
matical properties of the Estrada index were established. One of most important
properties is the following:

EE =

∞∑
i=1

Mk(G)

k!
.

It is well known that [18] Mk(G) is equal to the number of closed walks of length k
of the graph G. There have been found a lot of chemical and physical applications,
including quantifying the degree of folding of long-chain proteins,[15, 16, 17] and
complex networks [18]. Mathematical properties of this invariant can be found in
e.g. [35, 33, 34]. Recently, the analogous concepts of Estrada indices of this kind
are the:

• Zagreb Estrada Index, ZEE = ZEE(G) =

n∑
i=1

eζi [32],

• Harary Estrada index, H ′EE = H ′EE(G) =

n∑
i=1

eµi [19],

• Resolvent Estrada index, EEr = EEr(G) =

n∑
i=1

(
1− λi

n− 1

)−1

[9],

• Randić Estrada index REE = REE(G) =

n∑
i=1

eρi [2].
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Let thus G be a graph of order n whose harmonic eigenvalues are γ1 > γ2 >
· · · > γn. Then the harmonic Estrada index of G, denoted by HEE, is defined to
be

HEE = HEE(G) =

n∑
i=1

eγi .

Recalling Eq. (2), it follows that

HEE(G) =

∞∑
i=1

Nk
k!
.

We begin this section with theorem as follows:

Theorem 9. Let G be a graph with n vertices. Then

HEE(G) > n+ 8χ−2(G) + 32
∑
i∼j

1

(di + dj)2

( ∑
k∼i, k∼j

1

(dk)2

)(
sinh(1)− 1

)

+

(
cosh(1)− 1

) n∑
i=1

(∑
i∼j

4

(di + dj)2

)2

+
∑
i 6=j

4

(di + dj)2

( ∑
k∼i, k∼j

4

(dk)2

)2
 .

Proof. Note that N2 = 8χ−2(G). By Lemma 3,

HEE(G) = n+ 8χ−2(G) +
∑
k>1

N2k+1

(2k + 1)!
+
∑
k>1

N2k+2

(2k + 2)!

> n+ 8χ−2(G) +
∑
k>1

N3

(2k + 1)!
+
∑
k>1

N4

(2k + 2)!

= n+ 8χ−2(G) + 32
∑
i∼j

1

(di + dj)2

( ∑
k∼i, k∼j

1

(dk)2

)(
sinh(1)− 1

)

+

(
cosh(1)− 1

) n∑
i=1

(∑
i∼j

4

(di + dj)2

)2

+
∑
i 6=j

4

(di + dj)2

( ∑
k∼i, k∼j

4

(dk)2

)2
 .

Theorem 10. Let G be a graph with n vertices. Then

(20) HEE(G) 6 n− 1 + e
√

8χ−2(G)−1.

Proof. Let n+ be the number of positive harmonic eigenvalues ofG. Since f(x) = ex
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monotonically increases in the interval (∞,+∞) and m 6= 0, we get

HEE =

n∑
i=1

eγi < n− n+

n+∑
i=1

eγi = n− n+

n+∑
i=1

∑
k>0

(γi)
k

k!

= n+
∑
k>1

1

k!

n+∑
i=1

(γi)
k(21)

6 n+
∑
k>1

1

k!

[ n+∑
i=1

γ2
i

] k
2

= n+
∑
k>1

1

k!

[ n+∑
i=1

γ2
i

] k
2

.

Since every (n,m)-graph with m 6= 0 has K2 as its induced subgraph and the
spectrum of K2 is 1,−1 it follows from the interlacing inequalities that γn 6 1,

which implies that,

n∑
i=n++1

(γi)
2 > 1. Consequently,

HEE < n+
∑
k>1

1

k!

[
8χ−2(G)− 1

] k
2

= n− 1 + e
√

8χ−2(G)−1.

Theorem 11. Let G be a graph with n vertices. Then

HEE(G) >

√√√√√
n2 + 8nχ−2(G) +

32
∑
i∼j

1
(di+dj)2

(∑
k∼i, k∼j

1
(dk)2

)
3

+
1

12
nN4 + 16n2(χ−2)2(G).

Proof. Suppose that γ1, γ2, . . . , γn is the spectrum of G. Using Lemma 2 we have

HEE(G)2 =

n∑
i=1

n∑
j=1

eγi+γj

>
n∑
i=1

n∑
j=1

(
1 + γi + γj +

(γi + γj)
2

2
+

(γi + γj)
3

6
+

(γi + γj)
4

24

)

=

n∑
i=1

n∑
j=1

(
1 + γi + γj +

γ2
i

2
+
γ2
j

2
+ γiγj +

γ3
i

6
+
γ3
j

6
+
γ2
i γj
2

+
γiγ

2
j

2

+
γ4
i

24
+
γ4
j

24
+
γ2
i γ

2
j

4
+
γ3
i γj
6

+
γiγ

3
j

6

)
.
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By equality (4)-(7), we have the following equations:

n∑
i=1

n∑
j=1

(γi + γj) = n

n∑
i=1

γi + n

n∑
j=1

γj = 0.

n∑
i=1

n∑
j=1

γiγj = (

n∑
i=1

γi)
2 = 0.

n∑
i=1

n∑
j=1

(
γ2
i

2
+
γ2
j

2
) =

n

2

n∑
i=1

γ2
i +

n

2

n∑
j=1

γ2
j = 8nχ−2(G).

n∑
i=1

n∑
j=1

(
γ3
i

6
+
γ3
j

6
) =

n

6

n∑
i=1

γ3
i +

n

6

n∑
j=1

γ3
j =

32
∑
i∼j

1
(di+dj)2

(∑
k∼i, k∼j

1
(dk)2

)
3

.

n∑
i=1

n∑
j=1

(
γ4
i

24
+
γ4
j

24
) =

n

24

n∑
i=1

γ4
i +

n

24

n∑
j=1

γ4
j =

1

12
nN4.

n∑
i=1

n∑
j=1

γ2
i γ

2
j

4
= 16n2

(∑
i∼j

1

(di + dj)2

)2

= 16n2(χ−2)2(G).

n∑
i=1

n∑
j=1

γiγ
3
j

6
=

1

6

n∑
i=1

γi

n∑
j=1

γ3
j = 0.

n∑
i=1

n∑
j=1

γ3
i γj
6

=
1

6

n∑
i=1

γ3
i

n∑
j=1

γj = 0.

n∑
i=1

n∑
j=1

γiγ
2
j

2
=

1

2

n∑
i=1

γi

n∑
j=1

γ3
j = 0.

n∑
i=1

n∑
j=1

γ2
i γj
2

=
1

2

n∑
i=1

γ2
i

n∑
j=1

γj = 0.

Combining the above relations, we get

HEE(G) >

√√√√√
n2 + 8nχ−2(G) +

32
∑
i∼j

1
(di+dj)2

(∑
k∼i, k∼j

1
(dk)2

)
3

+
1

12
nN4 + 16n2(χ−2)2(G).

Theorem 12. Let G be a graph with n vertices. Then

HEE(G) > e
2H(G)
n +

n− 1

e
2H(G)
n
n−1

.
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Proof. By difinition of harmonic Esterada index and using arithmetic-geometric
mean inequality, we obtain

HEE(G) = eγ1 + eγ2 + · · ·+ eγn

> eγ1 + (n− 1)

( n∏
i=2

eγi
) 1
n−1

(22)

= eγ1 + (n− 1)

(
e−γ1

) 1
n−1

by Equality (4).(23)

Now we consider the following function

f(x) = ex +
n− 1

e
x
n−1

for x > 0. We have

f(x) > ex +
n− 1

e
x
n−1

for x > 0. It is easy to see that f is an increasing function for x > 0. From the
Equation (23) and Lemma 5, we obtain

HEE(G) > e
2H(G)
n +

n− 1

e
2H(G)
n
n−1

.

5. BOUND FOR THE HARMONIC ESTRADA INDEX INVOLVING
THE HARMONIC ENERGY

In this section, we investigate the relations between the harmonic Estrada
index and the harmonic energy.

Theorem 13. The harmonic Estrada index HEE(G) and the graph harmonic
energy HE(G) satisfy the following inequality:

(24)
1

2
HE(G)(e− 1) + n− n+ 6 HEE(G) 6 n− 1 + e

HE(G)
2 .

Proof. Lower bound, since ex > 1 + x, equality holds if and only if x = 0 and
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ex > ex, equality holds if and only if x = 1. We have

HEE(G) =

n∑
i=1

eγi =
∑
γi>0

eγi +
∑
γi60

eγi

>
∑
γi>0

eγi +
∑
γi60

(1 + γi)

= e(γ1 + γ2 + · · ·+ γn+) + (n− n+) + (γn++1 + · · ·+ γn)

= (e− 1)(γ1 + γ2 + · · ·+ γn+) + (n− n+) +

n∑
i=1

γi

=
1

2
HE(G)(e− 1) + n− n+.

Upper bound. From (21),

HEE(G) 6 n+
∑
k>1

1

k!

n+∑
i=1

(γi)
k 6 n+

∑
k>1

1

k!

( n+∑
i=1

γi

)k
= n− 1 + e

HE(G)
2 .

Theorem 14. Let G be a graph with largest eigenvalue γ1 and let p, τ and q be,
respectively, the number of positive, zero and negative eigenvalues of G. Then

(25) HEE(G) > eγ1 + τ + (p− 1)e
HE(G)−2γ1

2(p−1) + qe−
HE(G)

2q .

Proof. Let γ1 > · · · > γp be the positive, and γn−q+1, . . . , γn be the negative
eigenvalues of G. As the sum of eigenvalues of a graph is zero, one has

HE(G) = 2

n∑
i=1

γi = −2

n∑
i=n−q+1

γi.

By the arithmetic-geometric mean inequality, we have

(26)

p∑
i=2

eγi > (p− 1)e
(γ2+···+γp)

(p−1) = (p− 1)e
HE(G)−2γ1

2(p−1) .

Similarly,

(27)

n∑
i=n−q+1

eγi > qe−
HE(G)

2q .

For the zero eigenvalues, we also have

n−q∑
i=p+1

eγi = τ.
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So we obtain

HEE(G) > eγ1 + τ + (p− 1)e
HE(G)−2γ1

2(p−1) + qe−
HE(G)

2q .
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