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Objective: This study investigates the interactions among key serum biomarkers—Hypoxia-inducible factor-1 alpha (HIF-1),
Thrombospondin-1 (TSP1), Neuropilin-1 (NRP1), and Prostate-specific antigen (PSA)—and clinical parameters including age at
diagnosis, diabetes mellitus (DM), hypertension (HT), and smoking status in patients with metastatic prostate cancer (mPCa). The
objective was to identify structural and functional interdependencies among these variables using a network-based analytical ap-
proach.

Materials and Methods: Network analysis was conducted using JASP software (v0.19.3.0). Variables were modeled as nodes, and
partial correlations between them as edges. Edge color represented the direction (positive or negative) of the correlation, while
thickness indicated its strength. Network topology was evaluated using graph-theoretical metrics including degree, closeness,
betweenness, and eigenvector centrality. Additional measures of density and sparsity were also calculated. Spatial visualization of
the network was performed using the Fruchterman—Reingold algorithm.

Results: The network comprised eight variables and 27 connections, yielding a sparsity value of 0.036, indicating a highly dense
structure. PSA and TSP1 exhibited the highest betweenness centrality, serving as critical bridging nodes. HT and DM had high
degree and closeness centrality values, reflecting central positions within the network. NRP1 displayed the highest clustering coef-
ficient, suggesting a localized regulatory role. A strong negative association was observed between TSP1 and HT.

Conclusion: This study highlights the utility of network analysis as a systems-level tool to explore complex biomarker interactions
in mPCa. PSA, TSP1, and NRP1 emerged as key molecular regulators, while systemic conditions such as HT and DM significantly
influenced network architecture. These findings warrant further validation through mechanistic and hypothesis-driven statistical
studies.
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Amag: Bu calisma, metastatik prostat kanseri (mPK) hastalarinda Hipoksiye duyarli faktér-1 alfa (HIF-1), Trombospondin-1 (TSP1),
Néropilin-1 (NRP1) ve Prostat spesifik antijen (PSA) gibi temel serum biyobelirtecleri ile tani yasi, diyabetes mellitus, hipertansiyon
ve sigara kullanimi gibi klinik parametreler arasindaki etkilesimleri ag tabanli analitik bir yaklasimla degerlendirmeyi amaglamaktadir.

Gereg ve Yontemler: Analiz, JASP yazilimi (v0.19.3.0) ile gergeklestirilmistir. Degiskenler diiglim (node), kismi korelasyonlar ise ke-
nar (edge) olarak modellenmistir. Kenar renkleri iliskinin yoniinii (pozitif/negatif), kalinliklari ise iliskinin gliclinii gdstermektedir. Ag
vapisi; derece, yakinlik, aradalik ve 6zvektor merkezilik gibi grafik kurami temelli éiciitlerle degerlendirilmis; yogunluk ve seyreklik
degerleri hesaplanmistir. Digiimlerin konumlandinimasinda Fruchterman-Reingold algoritmasi kullanilmistir.

Bulgular: Toplam sekiz degisken ve 27 baglantidan olusan agin seyreklik degeri 0,036 olarak bulunmustur; bu da yogun bir yapi
oldugunu gostermektedir. PSA ve TSP1 en yiiksek aradalik merkezilik degerleriyle koprii roli tistlenmistir. Hipertansiyon ve diyabet,
yiilksek derece ve yakinlik merkezilik degerleriyle agin merkezinde yer almistir. NRP1 en yiiksek kiimeleme katsayisina sahip olup
lokal bir diizenleyici rol tistlenmektedir. TSP1 ile hipertansiyon arasinda giiglii negatif bir iliski gozlenmistir.

Sonug: Bu galisma, metastatik prostat kanserinde biyobelirtecler arasi iliskilerin sistem diizeyinde anlasiimasinda ag analizinin etkili
bir ydntem oldugunu ortaya koymaktadir. PSA, TSP1 ve NRP1 dnemli molekdler diizenleyiciler olarak éne cikarken; hipertansiyon
ve diyabetes mellitus gibi sistemik hastaliklar ag yapisinin biitiinligl tzerinde belirgin rol oynamaktadir. Bulgularin mekanistik ve
istatistiksel calismalarla dogrulanmasi gerekmektedir.
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Introduction

Prostate cancer (PCa) is one of the most fre-
quently diagnosed malignancies and remains
a leading cause of cancer-related mortality
among men worldwide. The disease exhibits
pronounced biological heterogeneity, with clin-
ical manifestations ranging from indolent, or-
gan-confined tumors to rapidly progressing and
treatment-resistant metastatic lesions. This
heterogeneity poses a significant challenge for
accurate patient stratification and personalized
therapeutic decision-making (1).

Currently, prostate-specific antigen (PSA)
remains the cornerstone biomarker for PCa
screening and disease monitoring. However,
its limited specificity and prognostic utility are
well-documented. PSA levels can fluctuate due
to benign conditions such as benign prostatic
hyperplasia (BPH), prostatitis, or even physical
manipulation of the prostate. Moreover, PSA is
often inadequate in distinguishing between in-
dolent and aggressive tumor forms, potentially
resulting in both overdiagnosis and overtreat-
ment (2, 3). Consequently, the identification
and integration of novel serum biomarkers with
improved diagnostic and prognostic capabilities
has become a key focus in PCa research (&).

In this context, accumulating evidence un-
derscores the central roles of hypoxia, angio-
genesis, and tumor microenvironmental remod-
eling in driving prostate cancer progression and
therapeutic resistance. Among the biomarkers
gaining increasing attention are Thrombos-
pondin-1 (TSP1), Neuropilin-1 (NRP1), and
Hypoxia-inducible factor-1 alpha (HIF-1a)—
molecules involved in angiogenesis, hypoxia
adaptation, and immune regulation.

TSP1 is a multifunctional matricellular gly-
coprotein known for its potent anti-angiogenic
and tumor-suppressive properties, particularly
through its interactions with CD36 and CD47,
and modulation of TGF-B and VEGF signal-
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ing pathways (5, 6). In prostate cancer, TSP1
expression is frequently downregulated, cor-
relating with increased angiogenesis, higher
microvessel density, and enhanced tumor ag-
gressiveness (7-9). NRP1 is a transmembrane
glycoprotein that functions as a co-receptor for
VEGF-A165 and semaphorins, facilitating an-
giogenesis, immune evasion, and tumor cell in-
vasion (10, 11). Upregulation of NRP1 has been
associated with metastatic potential, elevated
Gleason scores, treatment resistance, and poor
clinical prognosis, particularly in castration-re-
sistant prostate cancer (12, 13). HIF-1a is a key
transcription factor that orchestrates the cellu-
lar response to hypoxia. Its stabilization—either
under low oxygen tension or due to oncogenic
signaling—triggers metabolic reprogramming,
angiogenesis, and resistance to apoptosis (14).
Elevated HIF-1a expression has been linked to
disease progression and resistance to androgen
deprivation therapy and radiotherapy in PCa
(15, 16).

Although traditional biostatistical methods
and supervised machine learning models (e.g.,
random forest, decision trees) have offered
valuable insights into biomarker performance,
they often fall short in capturing the complex,
non-linear, and multivariate interactions that
define biological systems. In oncology, disease
progression is seldom dictated by single bio-
markers in isolation; rather, it reflects the dy-
namic interplay among numerous molecular
and clinical factors within a highly interconnect-
ed network (17, 18). Therefore, an analytical
framework capable of modeling these interde-
pendencies is essential for developing a sys-
tems-level understanding of tumor behavior
and biomarker function (19-21).

Network analysis has emerged as a powerful
systems biology approach for visualizing, quan-
tifying, and interpreting complex relationships
among biological variables (17). In network the-
ory, biomarkers or genes are represented as



nodes, while their pairwise associations—such
as correlations, mutual information, or regula-
tory interactions—are represented as edges.
Analysis of network topology, including metrics
such as node degree, centrality, betweenness,
and clustering coefficients, can reveal key regu-
latory hubs, identify modular subnetworks, and
uncover latent biological signatures that may
be overlooked by conventional methods (19,
22, 23).

In this study, we applied network analysis
to systematically evaluate interactions among
serum biomarkers (HIF-1a, TSP1, NRP1, and
PSA) and clinical parameters (age at diagno-
sis, diabetes mellitus [DM], hypertension [HT],
and smoking status) in patients with metastatic
prostate cancer (mPCa). Our aim was to eluci-
date their central positions and potential reg-
ulatory influence within the disease network.
By employing network-based algorithms, we
sought to identify topological features that dif-
ferentiate localized from metastatic PCa phe-
notypes.

We hypothesize that metastatic progres-
sion is associated with distinct network pat-
terns—such as enhanced connectivity among
pro-angiogenic factors and disruption of an-
ti-angiogenic regulation—reflecting underlying
biological mechanisms of disease advancement.
This network-based framework complements
traditional statistical and machine learning
methods by enabling the identification of emer-
gent properties within complex biomarker sys-
tems. Ultimately, by adopting a systems-level
perspective, our goal is to improve the biological
interpretability and clinical utility of biomarker
data in prostate cancer stratification.

Materials and Methods

This study employed network analysis to
uncover the structural relationships among
clinical and demographic variables in patients
with metastatic prostate cancer (mPCa). The
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aim was to characterize key network properties,
identify strong and weak associations, quantify
interaction intensity, and define the positional
roles of each variable within the network. Net-
work construction and visualization were con-
ducted using JASP software (Version 0.19.3.0)
[Computer software].

This retrospective observational study in-
cluded 90 male patients diagnosed with mPCa
and treated at izmir Katip Celebi University
between January 2019 and December 2023.
Inclusion criteria were: age =50 years, histo-
pathologically and radiologically confirmed
mPCa according to international guidelines,
availability of complete serum biomarker data
(HIF-1a, TSP1, NRP1, PSA), and recorded clin-
ical parameters including age at diagnosis, di-
abetes mellitus (DM), hypertension (HT), and
smoking status. Exclusion criteria comprised:
history of a second primary malignancy, pros-
tate infection, rheumatologic, autoimmune, or
metabolic disorders, uncontrolled comorbidi-
ties, ongoing immunosuppressive therapy, se-
vere hepatic or renal dysfunction, and incom-
plete clinical or laboratory data. All patient data
were anonymized prior to analysis to ensure
confidentiality. The study was approved by the
Institutional Ethics Committee of izmir Katip
Celebi University Ataturk Training and Research
Hospital (Approval No: 0165) and conducted in
accordance with the principles of the Declara-
tion of Helsinki.

In the constructed network, each variable
was represented as a node, and partial correla-
tions—controlling for all other variables—were
represented as edges. Edge colors denoted the
direction of the correlation: blue for positive
and red for negative. The thickness and satura-
tion of each edge reflected the strength of the
partial correlation; thicker and more saturated
edges indicated stronger associations. Edges
with weights approaching zero were consid-
ered weak connections, potentially represent-
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ing spurious or indirect associations rather than
true interactions.

Node importance was assessed through
centrality measures commonly used in network
theory, including strength, closeness, influence
(eigenvector centrality), and betweenness.

eNode strength reflects the total weight of
connections associated with a node.

eCloseness quantifies how near a node is to
all other nodes, indicating its accessibility with-
in the network.

eBetweenness measures how often a node
lies on the shortest path between other nodes,
identifying potential regulatory “bridges.”

eEigenvector centrality captures both the
quantity and quality of a node's connections,
highlighting variables that are linked to other
influential nodes.

This comprehensive analytical approach al-
lowed for the identification of key variables and
structural patterns within the biomarker-clini-
cal parameter network of metastatic prostate
cancer.

Results

In this study, the network positions of the
variables HIF-1a, TSP1, NRP1, PSA, age at di-
agnosis, DM, HT, and smoking status were
evaluated in patients with metastatic prostate
cancer (mPCa). To assess their relative impor-
tance and connectivity within the network,
core centrality measures—including degree,
betweenness, closeness, and eigenvector cen-
trality—were applied alongside network den-
sity metrics. Each of these centrality indices
is based on different theoretical assumptions
regarding node influence, providing comple-
mentary insights into which variables act as key
players within the system. These metrics were
used to identify the most active, central, and in-
fluential variables in the biomarker-clinical pa-
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rameter interaction network.

The relationships among variables were vi-
sualized using a network diagram, presented in
Figure 1. Each node represents one of the eight
studied variables: Hypoxia-inducible factor-1
alpha (HIF-1a), Thrombospondin-1 (TSP1),
Neuropilin-1 (NRP1), Prostate-specific antigen
(PSA), age at diagnosis, diabetes mellitus (DM),
hypertension (HT), and smoking status. Edges
represent the partial correlations between vari-
able pairs, controlled for all other variables in
the network.

The layout of the network was generated
using the Fruchterman-Reingold algorithm,
a force-directed layout method that positions
nodes based on the strength of their intercon-
nections. Nodes that are more strongly con-
nected are positioned closer together, while
those with weaker or fewer connections are
spaced farther apart. Edge thickness reflects
the strength of partial correlations, with thicker
lines indicating stronger associations. The di-
rection of the correlation is indicated by color:
blue edges represent positive correlations, and
red edges represent negative correlations.

This network visualization provides a spatial
representation of the interdependence among
clinical and molecular variables, enabling the
identification of both central hubs and periph-
eral actors within the mPCa interaction frame-
work.



Figure 1. Interaction network of serum biomarkers and
clinical variables in metastatic prostate cancer.

Interaction network of serum biomarkers and clinical
variables in metastatic prostate cancer. Nodes represent
individual variables: Hypoxia-inducible factor-1 alpha
(HIF-1a), Thrombospondin-1 (TSP1), Neuropilin-1 (NRP1),
Prostate-specific antigen (PSA), age at diagnosis, DM, HT,
and smoking status. Edges represent partial correlations
between variables, controlled for all other nodes. Edge col-
or: Blue indicates positive correlation; red indicates nega-
tive correlation. Edge thickness: Represents the strength
of the correlation (thicker = stronger).

In this study, the relationships among HIF-
1a, TSP1, NRP1, PSA, age at diagnosis, diabetes
mellitus (DM), hypertension (HT), and smoking
status were evaluated within a network frame-
work in patients with metastatic prostate can-
cer (mPCa). Graph-theoretic measures—in-
cluding degree, closeness, and betweenness
centrality—were applied to assess the influ-
ence and network position of each variable,
alongside global metrics such as network den-
sity and sparsity.

Centrality measures are essential for inter-
preting a node’s functional role in the network.

eDegree centrality reflects the number of
direct connections a node has.

oCloseness centrality captures how ef-
ficiently a node can be reached from all other
nodes.

Erbak Yilmaz et al. *

eBetweenness centrality measures how of-
ten a node lies on the shortest paths between
other node pairs, identifying potential “gate-
keeper” variables (24).

In this analysis, HT and DM emerged as
centrally positioned variables. Notably, HT dis-
played strong connections in both positive and
negative directions, suggesting a high degree
of interaction with other clinical and molecular
markers. DMalso exhibited meaningful associ-
ations, visually represented in Figure 1 through
the thickness of connecting lines—where thick
blue edges denote strong positive partial cor-
relations, and thick red edges indicate strong
negative associations.

The Fruchterman-Reingold algorithm was
used for network visualization (25), optimizing
node placement based on connection strength
and achieving a balanced, interpretable layout.
Spatial proximity between nodes in the diagram
reflects the degree of interconnectivity.

In this context:
eBlue edges = positive partial correlations
*Red edges = negative partial correlations

eEdge thickness = strength of the associa-
tion

For example, strong positive correlations
were observed between PSA-DM and PSA-HT
(thick blue edges), while a strong negative cor-
relation was identified between HT and TSP1
(thick red edge), suggesting a possible inverse
clinical or biological relationship. These findings
warrant further mechanistic and statistical val-
idation.

A key global network property—sparsity—
was also calculated. Sparsity is defined as one
minus the ratio of observed edges to the maxi-
mum possible number of edges in the network
(Newman, 2010). For a network of 8 variables,
the total possible number of edges is 28. In
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this study, 27 edges were observed, yielding a
sparsity value of 0.036, which indicates a high-
ly dense and interconnected structure. A low
sparsity value reflects a tightly structured sys-
tem, potentially indicative of strong underlying
clinical or biological associations.

Table 1 summarizes the key topological fea-
tures of the network constructed for mPCa pa-
tients, including:

eTotal number of nodes: 8
e(Observed edges: 27
eMaximum possible edges: 28
e(Calculated sparsity: 0.036

This high-density configuration supports the
hypothesis that systemic conditions such as HT
and DM, along with molecular biomarkers, in-
teract within a cohesive and highly integrated
clinical network in metastatic prostate cancer.

Table 1. Descriptive Metrics of the Serum Biomark-
er—Clinical Variable Interaction Network in Metastatic
Prostate Cancer

Number Number of Sparsit
of nodes | non-zero edges P Y
Metastasis 8 27 /28 0.036

Note: Number of nodes indicates the total number of
variables included in the network (serum biomarkers and
clinical parameters). Observed edges represent the num-
ber of non-zero partial correlations between variables,
controlling for all other variables. Maximum possible edg-
es are calculated using the formula n(n-1)/2 for an undi-
rected network, where n is the number of nodes. Sparsity
is defined as 1 — (observed edges / maximum possible
edges); lower sparsity values indicate denser network
structures. In this study, a sparsity value of 0.036 for a
network of 8 variables suggests a highly connected and
meaningful interaction structure.

Four types of centrality measures were
used to determine the centrality levels of the
variables. Structural features of the serum bio-
marker network in metastatic prostate can-
cer. Includes total number of nodes (variables),
number of partial correlation edges, and cal-
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culated sparsity value. Sparsity is defined as
1 — (number of observed edges / number of
possible edges); lower values indicate a dens-
er network. These measures include degree
centrality, closeness centrality, influence, and
betweenness centrality. The centrality values
for each variable are presented in Table 2. Cen-
trality measures of serum biomarkers and clin-
ical variables in the metastatic prostate cancer
network. Metrics include: Betweenness cen-
trality: Node's role as a bridge between other
nodes. Closeness centrality: Average distance
to all other nodes (higher = more central). De-
gree: Number of direct connections. Expected
influence (eigenvector centrality): Influence of
a node based on its connections to other in-
fluential nodes. Note: Some centrality values
are normalized; negative values may reflect
mean-centered or z-score transformed metrics
and should be interpreted accordingly.

Table 2. Graph-theoretical centrality metrics of the
network nodes (standardized values using z-scores)

Metastasis
rh
(3]
c w0n
, & d o | B8
Variable % é i 48* §
g ° ¥ | 2=
oM (] o uw £
DM 0.114 |0.769 [0.833 |-0.343
HIF-1a -0.800 | -1.414 | -1.069 | 0.059
HT 0.114 |1.018 |0.967 [1.980
NRP1 -0.800 | -0.442 | -0.403 | 0.844
PSA 1.486 [1.210 [1.200 |-0.033
Smoking -0.800 |-1.163 | -1.462 | -0.825
TSP1 1.486 |0.436 [0.461 |-1.117
/;Ee at diagno-| 6,800 |-0.414 |-0.527 | -0.565

Note: Betweenness, closeness, degree, and expected
influence (eigenvector centrality) metrics were used to
evaluate the structural importance of each variable with-
in the metastatic prostate cancer network. Betweenness
centrality reflects how often a node acts as a bridge be-
tween other nodes; closeness centrality indicates the in-
verse of the average shortest distance from a node to all
others; degree centrality represents the number of direct



connections a node has; and expected influence measures
the relative influence of a node based on its connections
to other influential nodes. Negative values result from
z-score normalization and indicate variables with be-
low-average centrality relative to the network mean.

In the current analysis, betweenness cen-
trality values were derived using a standardized
metric, specifically z-score normalization, in
order to enhance interpretability and compa-
rability across variables with differing scales.
This approach may yield negative values, which
reflect below-average centrality relative to
the network’s overall distribution. While raw
betweenness values are inherently non-neg-
ative, normalization allows for more nuanced
interpretation of relative node influence. There-
fore, the presence of negative values in Table 2
should not be misinterpreted as computational
error. This normalization procedure has been
noted in the text and reflected in the updated
table caption for clarity.

As shown in Table 2, four centrality mea-
sures—degree, closeness, betweenness, and
influence (eigenvector centrality)—were used
to evaluate the role of each variable within the
metastatic network. Each measure reflects a
different aspect of a variable's structural impor-
tance. Nodes with high betweenness centrality
act as bridges between clusters of nodes that
are otherwise not directly connected and are
considered to have the potential to control the
flow of information within the network. In the
metastatic group, PSA and TSP1 exhibited the
highest betweenness centrality values. There-
fore, they can be regarded as relatively more in-
fluential. Accordingly, PSA and TSP1 appear to
function as key active variables within the net-
work, acting as bridges among otherwise un-
connected variables (see Figure 1). As a result,
it can be concluded that the overall network is
composed of highly interrelated variables, with
PSA and TSP1 representing the two most criti-
cal variables.

Erbak Yilmaz et al. *

Closeness centrality indicates the proximity
of one variable to all others. It is calculated as
the reciprocal of the sum of the shortest dis-
tances to all other variables. A high closeness
value reflects how quickly a node can interact
with others, and also provides a measure of a
node's independence or influence. According
to the analysis, the variables with the highest
closeness values are PSA and HT, while the
lowest values are seen in HIF-1a and Smoking.
This implies that PSA and HT are the most easi-
ly reachable nodes in the network, and reaching
these nodes may also facilitate access to other
nodes, suggesting their strategic position.

Degree centrality, which is calculated based
on the number of direct connections, was high-
est for PSA with a value of 1.200, while the
lowest value was observed for Smoking, with
-1.462.

When eigenvector centrality (influence) val-
ues were examined, the variables with the high-
est influence were HT and NRP1, respectively.
This indicates that HT and NRP1 exert a rela-
tively higher influence over the rest of the net-
work variables.

The clustering coefficient measures local
group cohesion and is defined as the proportion
of a node’s neighbors that are also connected to
each other. It reveals the strength of association
among a node’s immediate neighbors. This co-
efficient can also be interpreted as an indicator
of network cohesiveness, measuring the densi-
ty of triadic relationships. A low clustering coef-
ficient suggests a higher level of interconnec-
tivity among variables, whereas a higher value
reflects more sparse or isolated connections.
The clustering coefficients for each variable are
presented in Table 3. Clustering coefficient val-
ues of individual variables across four algorith-
mic estimators: Barrat, Onnela, Watts—Strogatz
(WS), and Zhang methods. The clustering coef-
ficient quantifies the degree to which a node’s
neighbors are interconnected, reflecting local
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network cohesion. Positive values indicate a
tightly knit local structure, while negative val-
ues may result from normalization techniques.

Table 3. Clustering Coefficients of Variables in the Met-
astatic Prostate Cancer Network

Variable Barrat |Onnela| WS | Zhang
DM -0.906 | 0.626 |-0.540 | -0.062
HIF-1a | -0.305 | -1.016 | -0.540 | -0.181
HT -0.843 | 0.755 |-0.540| -0.336
NRP1 1360 | 0.069 | 0.620 | 1.813
PSA -0.896 | 1.043 |-0.540| -0.745
Smoking | 0.765 |-1.920|-0.540] -0.902
TSP1 -0.536 | 0.474 | -0.540 | -0.821

Ageatdiag- | 4360 | 0031 1.620 | 1234
nosis

Note: Clustering coefficients were calculated using four
algorithms—Barrat, Onnela, Watts-Strogatz (WS), and
Zhang—to quantify the degree of interconnection among
each node’s neighbors, reflecting local network cohesion.
Positive values indicate a tightly knit local structure, while
negative values may result from normalization and indi-
cate below-average local connectivity. Higher clustering
coefficient values suggest a denser pattern of interactions
among the variable's immediate neighbors.

Upon examining the clustering coefficients
presented in Table 3, it was observed that NRP1
had the highest local density among its neigh-
boring variables when all four coefficients were
evaluated together. In contrast, smoking had
the lowest clustering coefficient. These findings
are consistent with the influence values report-
ed in Table 2 and indicate that both variables
exert substantial effects on other nodes in the
network.

In this study, relationships among the vari-
ables HIF-1a, TSP1, NRP1, PSA, Age at Diagno-
sis, DM, HT, and Smoking in metastatic patients
were evaluated within a network structure.
The analysis was conducted using graph the-
ory-based metrics such as centrality (degree,
closeness, and betweenness), connection den-
sity, and sparsity.
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Centrality measures are important for un-
derstanding the role of a variable within the
network—specifically, its influence on infor-
mation flow (24). Degree centrality refers to the
total number of connections a node has; close-
ness centrality indicates how easily a node can
be reached from other nodes; and betweenness
centrality measures the extent to which a node
lies on the shortest paths between other nodes.
In this study, HT and DM emerged as variables
occupying central positions in the network. In
particular, HT showed strong connections in
both positive and negative directions.

Discussion

In this study, the relationships between key
serum biomarkers (HIF-1a, TSP1, NRP1, and
PSA) and clinical variables (age at diagnosis, DM,
HT, and smoking) in patients with mPCa were
evaluated using a network-based approach.
Through the application of graph theory-based
metrics such as centrality measures, clustering
coefficients, and sparsity, a systems-level anal-
ysis was conducted to explore how these vari-
ables interact within a biological context. The
findings offer important insights into prostate
cancer progression, biomarker evaluation, and
clinical management.

One of the most notable findings is the
central placement of PSA and TSP1 within the
network, as evidenced by their high between-
ness centrality scores. Nodes with elevated be-
tweenness centrality function as critical bridges
connecting otherwise unlinked clusters, thereby
contributing significantly to the structural cohe-
sion of the network. The prominent role of PSA
aligns with its established status as a primary
biomarker in the clinical screening of prostate
cancer (1, 26). However, the comparable cen-
trality of TSP1 highlights its potential signifi-
cance in prostate cancer progression, particu-
larly given its well-documented anti-angiogenic
and immunomodulatory properties. This finding
underscores the need for increased attention to



TSP1 in both research and clinical settings (1,
27,28).

Previous studies have reported a downregu-
lation of TSP1 expression in advanced prostate
cancer, which correlates with increased vascu-
larization and poor prognosis(29). The negative
correlation identified in our network analysis
supports the biological notion that as PSA lev-
els increase, indicative of tumor progression,
TSP1 expression tends to decline, reflecting a
loss of anti-angiogenic control. This pattern
suggests a reciprocal regulatory relationship,
where rising PSA may reflect a microenviron-
ment conducive to tumor growth, while falling
TSP1 levels indicate diminished suppressive
mechanisms (26). In support of our findings,
TSP1 expression is significantly reduced in cas-
tration-resistant and neuroendocrine-trans-
formed prostate cancer tissues, showing a neg-
ative correlation with markers of progression
and aggressiveness This reduction often coin-
cides with elevated PSA signaling, as androgen
receptor (AR) activation indirectly promotes
PSA expression while suppressing TSP1 tran-
scription—consistent with observations that
androgens repress TSP1, and that TSP1 lev-
els rise following androgen deprivation(30, 31)
.Functionally, the loss of TSP1 not only dimin-
ishes its anti-angiogenic suppression but may
also facilitate VEGF-mediated neovasculariza-
tion, supporting tumor growth and metastasis.
High PSA alongside low TSP1 may therefore re-
flect a shift in the tumor microenvironment fa-
voring angiogenesis and invasiveness (5, 6). The
strong negative association observed between
HT and TSP1 (indicated by a thick red edge)
may suggest a biologically inverse regulatory
mechanism. However, this relationship requires
further biological validation. Notably, previous
studies have also reported increased TSP1 lev-
els in patients with treated HT, supporting the
possibility of a mechanistic link (32).
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Another key finding of the study is the central
positioning of HT and DM within the network,
as indicated by their high closeness and degree
centrality values. This suggests that systemic
diseases are not merely coexisting comorbidi-
ties, but also active contributors that shape tu-
mor biology. HT and DM are known to influence
the tumor microenvironment by promoting
processes such as chronic inflammation, angio-
genesis, and metabolic reprogramming(33, 34).
TSP1, which typically inhibits angiogenesis and
suppresses tumor development, is often down-
regulated in various tissues under conditions of
elevated blood glucose levels (35, 36). In this
study, the prominent positioning of these two
variables within the network underscores the
importance of considering them jointly in bio-
marker-based risk stratification and personal-
ized clinical decision support systems.

NRP1 was identified in this study as the vari-
able with the highest clustering coefficient. This
finding indicates that NRP1 is highly interactive
with its neighboring variables and functions as
a local regulatory hub within the network struc-
ture. Studies have revealed that NRP1 plays a
significant oncogenic role in PCa. It has been
observed that NRP1 is highly expressed in PCa
and positively associated with poor clinicopath-
ological factors (12, 13, 37)

Furthermore, existing literature emphasizes
the role of NRP1 as a pivotal regulatory mol-
ecule not only in angiogenesis but also in key
oncogenic processes such as epithelial-mesen-
chymal transition (EMT), cellular migration and
invasion, and the maintenance of stem cell-like
phenotypes (38). From a methodological per-
spective, the calculated sparsity value of 0.036
reflects a highly interconnected network, in-
dicating robust associations among variables.
This result underscores the utility of network
analysis as a complementary methodology to
conventional statistical and machine learning
approaches. In particular, for datasets charac-
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terized by multicollinearity, variable synergy, or
non-linear interactions, network-based meth-
ods provide a powerful framework for revealing
biologically meaningful patterns that may be
overlooked by traditional analyses.

Limitation

This study has several limitations that
should be acknowledged. First, its single-center
design may limit the generalizability of the find-
ings to broader patient populations. Second, al-
though network analysis provides valuable in-
sights into the structural relationships between
biomarkers and clinical parameters, it does not
establish causality. The observed correlations
may have been influenced by unmeasured con-
founding factors or secondary biological pro-
cesses. The direction and biological significance
of the observed positive and negative correla-
tions require further mechanistic investigation.
For instance, the negative association between
HT and TSP1, or the dense connectivity pattern
surrounding DM, may result not from direct ef-
fects but from secondary processes, compen-
satory responses, or confounding factors. It is
therefore recommended that these relation-
ships be validated using experimental models
or longitudinal omics-based datasets. Third,
statistical significance testing for network mea-
sures (e.g., permutation or bootstrap methods)
was not performed, and such tests could have
enhanced the robustness and reproducibility of
the results. Finally, the analysis was restrict-
ed to serum biomarkers and selected clinical
variables; the inclusion of additional molecular
markers, genetic data, or longitudinal follow-up
would allow for a more comprehensive under-
standing of biomarker interactions in metastat-
ic prostate cancer.

Conclusion

This study demonstrates that network anal-
ysis is a powerful tool for understanding the
interactions between clinical and molecular
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variables in the context of metastatic prostate
cancer. The findings underscore the impor-
tance of integrating systemic conditions such
as HT and DM into biomarker-based models
and highlight molecules like TSP1 and NRP1 as
promising candidates for further in-depth in-
vestigation. Future research is encouraged to
validate the network structures identified here
using experimental, longitudinal, and statisti-
cally robust data sources.

However, further discussion is warranted
regarding the biological mechanisms underly-
ing the direction and causality of the observed
positive and negative associations. Additional-
ly, it should be noted that the statistical signif-
icance of the network analysis findings—such
as through permutation testing or bootstrap
methods—was not reported, which represents
a methodological limitation of the study. Future
studies should incorporate permutation-based
statistical testing or bootstrapping to validate
the stability and robustness of network cen-
trality metrics, thereby minimizing the risk of
spurious associations.
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