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ABSTRACT

ÖZET

Objective: This study investigates the interactions among key serum biomarkers—Hypoxia-inducible factor-1 alpha (HIF-1), 
Thrombospondin-1 (TSP1), Neuropilin-1 (NRP1), and Prostate-specific antigen (PSA)—and clinical parameters including age at 
diagnosis, diabetes mellitus (DM), hypertension (HT), and smoking status in patients with metastatic prostate cancer (mPCa). The 
objective was to identify structural and functional interdependencies among these variables using a network-based analytical ap-
proach.
Materials and Methods: Network analysis was conducted using JASP software (v0.19.3.0). Variables were modeled as nodes, and 
partial correlations between them as edges. Edge color represented the direction (positive or negative) of the correlation, while 
thickness indicated its strength. Network topology was evaluated using graph-theoretical metrics including degree, closeness, 
betweenness, and eigenvector centrality. Additional measures of density and sparsity were also calculated. Spatial visualization of 
the network was performed using the Fruchterman–Reingold algorithm.
Results: The network comprised eight variables and 27 connections, yielding a sparsity value of 0.036, indicating a highly dense 
structure. PSA and TSP1 exhibited the highest betweenness centrality, serving as critical bridging nodes. HT and DM had high 
degree and closeness centrality values, reflecting central positions within the network. NRP1 displayed the highest clustering coef-
ficient, suggesting a localized regulatory role. A strong negative association was observed between TSP1 and HT.
Conclusion: This study highlights the utility of network analysis as a systems-level tool to explore complex biomarker interactions 
in mPCa. PSA, TSP1, and NRP1 emerged as key molecular regulators, while systemic conditions such as HT and DM significantly 
influenced network architecture. These findings warrant further validation through mechanistic and hypothesis-driven statistical 
studies.

Amaç: Bu çalışma, metastatik prostat kanseri (mPK) hastalarında Hipoksiye duyarlı faktör-1 alfa (HIF-1), Trombospondin-1 (TSP1), 
Nöropilin-1 (NRP1) ve Prostat spesifik antijen (PSA) gibi temel serum biyobelirteçleri ile tanı yaşı, diyabetes mellitus, hipertansiyon 
ve sigara kullanımı gibi klinik parametreler arasındaki etkileşimleri ağ tabanlı analitik bir yaklaşımla değerlendirmeyi amaçlamaktadır.
Gereç ve Yöntemler: Analiz, JASP yazılımı (v0.19.3.0) ile gerçekleştirilmiştir. Değişkenler düğüm (node), kısmi korelasyonlar ise ke-
nar (edge) olarak modellenmiştir. Kenar renkleri ilişkinin yönünü (pozitif/negatif), kalınlıkları ise ilişkinin gücünü göstermektedir. Ağ 
yapısı; derece, yakınlık, aradalık ve özvektör merkezilik gibi grafik kuramı temelli ölçütlerle değerlendirilmiş; yoğunluk ve seyreklik 
değerleri hesaplanmıştır. Düğümlerin konumlandırılmasında Fruchterman–Reingold algoritması kullanılmıştır.
Bulgular: Toplam sekiz değişken ve 27 bağlantıdan oluşan ağın seyreklik değeri 0,036 olarak bulunmuştur; bu da yoğun bir yapı 
olduğunu göstermektedir. PSA ve TSP1 en yüksek aradalık merkezilik değerleriyle köprü rolü üstlenmiştir. Hipertansiyon ve diyabet, 
yüksek derece ve yakınlık merkezilik değerleriyle ağın merkezinde yer almıştır. NRP1 en yüksek kümeleme katsayısına sahip olup 
lokal bir düzenleyici rol üstlenmektedir. TSP1 ile hipertansiyon arasında güçlü negatif bir ilişki gözlenmiştir.
Sonuç: Bu çalışma, metastatik prostat kanserinde biyobelirteçler arası ilişkilerin sistem düzeyinde anlaşılmasında ağ analizinin etkili 
bir yöntem olduğunu ortaya koymaktadır. PSA, TSP1 ve NRP1 önemli moleküler düzenleyiciler olarak öne çıkarken; hipertansiyon 
ve diyabetes mellitus gibi sistemik hastalıklar ağ yapısının bütünlüğü üzerinde belirgin rol oynamaktadır. Bulguların mekanistik ve 
istatistiksel çalışmalarla doğrulanması gerekmektedir.
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Introduction

Prostate cancer (PCa) is one of the most fre-
quently diagnosed malignancies and remains 
a leading cause of cancer-related mortality 
among men worldwide. The disease exhibits 
pronounced biological heterogeneity, with clin-
ical manifestations ranging from indolent, or-
gan-confined tumors to rapidly progressing and 
treatment-resistant metastatic lesions. This 
heterogeneity poses a significant challenge for 
accurate patient stratification and personalized 
therapeutic decision-making (1).

Currently, prostate-specific antigen (PSA) 
remains the cornerstone biomarker for PCa 
screening and disease monitoring. However, 
its limited specificity and prognostic utility are 
well-documented. PSA levels can fluctuate due 
to benign conditions such as benign prostatic 
hyperplasia (BPH), prostatitis, or even physical 
manipulation of the prostate. Moreover, PSA is 
often inadequate in distinguishing between in-
dolent and aggressive tumor forms, potentially 
resulting in both overdiagnosis and overtreat-
ment (2, 3). Consequently, the identification 
and integration of novel serum biomarkers with 
improved diagnostic and prognostic capabilities 
has become a key focus in PCa research (4).

In this context, accumulating evidence un-
derscores the central roles of hypoxia, angio-
genesis, and tumor microenvironmental remod-
eling in driving prostate cancer progression and 
therapeutic resistance. Among the biomarkers 
gaining increasing attention are Thrombos-
pondin-1 (TSP1), Neuropilin-1 (NRP1), and 
Hypoxia-inducible factor-1 alpha (HIF-1α)—
molecules involved in angiogenesis, hypoxia 
adaptation, and immune regulation.

TSP1 is a multifunctional matricellular gly-
coprotein known for its potent anti-angiogenic 
and tumor-suppressive properties, particularly 
through its interactions with CD36 and CD47, 
and modulation of TGF-β and VEGF signal-

ing pathways (5, 6). In prostate cancer, TSP1 
expression is frequently downregulated, cor-
relating with increased angiogenesis, higher 
microvessel density, and enhanced tumor ag-
gressiveness (7–9). NRP1 is a transmembrane 
glycoprotein that functions as a co-receptor for 
VEGF-A165 and semaphorins, facilitating an-
giogenesis, immune evasion, and tumor cell in-
vasion (10, 11). Upregulation of NRP1 has been 
associated with metastatic potential, elevated 
Gleason scores, treatment resistance, and poor 
clinical prognosis, particularly in castration-re-
sistant prostate cancer (12, 13). HIF-1α is a key 
transcription factor that orchestrates the cellu-
lar response to hypoxia. Its stabilization—either 
under low oxygen tension or due to oncogenic 
signaling—triggers metabolic reprogramming, 
angiogenesis, and resistance to apoptosis (14). 
Elevated HIF-1α expression has been linked to 
disease progression and resistance to androgen 
deprivation therapy and radiotherapy in PCa 
(15, 16).

Although traditional biostatistical methods 
and supervised machine learning models (e.g., 
random forest, decision trees) have offered 
valuable insights into biomarker performance, 
they often fall short in capturing the complex, 
non-linear, and multivariate interactions that 
define biological systems. In oncology, disease 
progression is seldom dictated by single bio-
markers in isolation; rather, it reflects the dy-
namic interplay among numerous molecular 
and clinical factors within a highly interconnect-
ed network (17, 18). Therefore, an analytical 
framework capable of modeling these interde-
pendencies is essential for developing a sys-
tems-level understanding of tumor behavior 
and biomarker function (19–21).

Network analysis has emerged as a powerful 
systems biology approach for visualizing, quan-
tifying, and interpreting complex relationships 
among biological variables (17). In network the-
ory, biomarkers or genes are represented as 
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nodes, while their pairwise associations—such 
as correlations, mutual information, or regula-
tory interactions—are represented as edges. 
Analysis of network topology, including metrics 
such as node degree, centrality, betweenness, 
and clustering coefficients, can reveal key regu-
latory hubs, identify modular subnetworks, and 
uncover latent biological signatures that may 
be overlooked by conventional methods (19, 
22, 23).

In this study, we applied network analysis 
to systematically evaluate interactions among 
serum biomarkers (HIF-1α, TSP1, NRP1, and 
PSA) and clinical parameters (age at diagno-
sis, diabetes mellitus [DM], hypertension [HT], 
and smoking status) in patients with metastatic 
prostate cancer (mPCa). Our aim was to eluci-
date their central positions and potential reg-
ulatory influence within the disease network. 
By employing network-based algorithms, we 
sought to identify topological features that dif-
ferentiate localized from metastatic PCa phe-
notypes.

We hypothesize that metastatic progres-
sion is associated with distinct network pat-
terns—such as enhanced connectivity among 
pro-angiogenic factors and disruption of an-
ti-angiogenic regulation—reflecting underlying 
biological mechanisms of disease advancement. 
This network-based framework complements 
traditional statistical and machine learning 
methods by enabling the identification of emer-
gent properties within complex biomarker sys-
tems. Ultimately, by adopting a systems-level 
perspective, our goal is to improve the biological 
interpretability and clinical utility of biomarker 
data in prostate cancer stratification.

Materials and Methods

This study employed network analysis to 
uncover the structural relationships among 
clinical and demographic variables in patients 
with metastatic prostate cancer (mPCa). The 

aim was to characterize key network properties, 
identify strong and weak associations, quantify 
interaction intensity, and define the positional 
roles of each variable within the network. Net-
work construction and visualization were con-
ducted using JASP software (Version 0.19.3.0) 
[Computer software].

This retrospective observational study in-
cluded 90 male patients diagnosed with mPCa 
and treated at İzmir Katip Celebi University 
between January 2019 and December 2023. 
Inclusion criteria were: age ≥50 years, histo-
pathologically and radiologically confirmed 
mPCa according to international guidelines, 
availability of complete serum biomarker data 
(HIF-1α, TSP1, NRP1, PSA), and recorded clin-
ical parameters including age at diagnosis, di-
abetes mellitus (DM), hypertension (HT), and 
smoking status. Exclusion criteria comprised: 
history of a second primary malignancy, pros-
tate infection, rheumatologic, autoimmune, or 
metabolic disorders, uncontrolled comorbidi-
ties, ongoing immunosuppressive therapy, se-
vere hepatic or renal dysfunction, and incom-
plete clinical or laboratory data. All patient data 
were anonymized prior to analysis to ensure 
confidentiality. The study was approved by the 
Institutional Ethics Committee of İzmir Katip 
Çelebi University Atatürk Training and Research 
Hospital (Approval No: 0165) and conducted in 
accordance with the principles of the Declara-
tion of Helsinki.

In the constructed network, each variable 
was represented as a node, and partial correla-
tions—controlling for all other variables—were 
represented as edges. Edge colors denoted the 
direction of the correlation: blue for positive 
and red for negative. The thickness and satura-
tion of each edge reflected the strength of the 
partial correlation; thicker and more saturated 
edges indicated stronger associations. Edges 
with weights approaching zero were consid-
ered weak connections, potentially represent-
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ing spurious or indirect associations rather than 
true interactions.

Node importance was assessed through 
centrality measures commonly used in network 
theory, including strength, closeness, influence 
(eigenvector centrality), and betweenness.

•	Node strength reflects the total weight of 
connections associated with a node.

•	Closeness quantifies how near a node is to 
all other nodes, indicating its accessibility with-
in the network.

•	Betweenness measures how often a node 
lies on the shortest path between other nodes, 
identifying potential regulatory “bridges.”

•	Eigenvector centrality captures both the 
quantity and quality of a node’s connections, 
highlighting variables that are linked to other 
influential nodes.

This comprehensive analytical approach al-
lowed for the identification of key variables and 
structural patterns within the biomarker-clini-
cal parameter network of metastatic prostate 
cancer.

Results

In this study, the network positions of the 
variables HIF-1α, TSP1, NRP1, PSA, age at di-
agnosis, DM, HT, and smoking status were 
evaluated in patients with metastatic prostate 
cancer (mPCa). To assess their relative impor-
tance and connectivity within the network, 
core centrality measures—including degree, 
betweenness, closeness, and eigenvector cen-
trality—were applied alongside network den-
sity metrics. Each of these centrality indices 
is based on different theoretical assumptions 
regarding node influence, providing comple-
mentary insights into which variables act as key 
players within the system. These metrics were 
used to identify the most active, central, and in-
fluential variables in the biomarker-clinical pa-

rameter interaction network.

The relationships among variables were vi-
sualized using a network diagram, presented in 
Figure 1. Each node represents one of the eight 
studied variables: Hypoxia-inducible factor-1 
alpha (HIF-1α), Thrombospondin-1 (TSP1), 
Neuropilin-1 (NRP1), Prostate-specific antigen 
(PSA), age at diagnosis, diabetes mellitus (DM), 
hypertension (HT), and smoking status. Edges 
represent the partial correlations between vari-
able pairs, controlled for all other variables in 
the network.

The layout of the network was generated 
using the Fruchterman–Reingold algorithm, 
a force-directed layout method that positions 
nodes based on the strength of their intercon-
nections. Nodes that are more strongly con-
nected are positioned closer together, while 
those with weaker or fewer connections are 
spaced farther apart. Edge thickness reflects 
the strength of partial correlations, with thicker 
lines indicating stronger associations. The di-
rection of the correlation is indicated by color: 
blue edges represent positive correlations, and 
red edges represent negative correlations.

This network visualization provides a spatial 
representation of the interdependence among 
clinical and molecular variables, enabling the 
identification of both central hubs and periph-
eral actors within the mPCa interaction frame-
work.
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Figure 1. Interaction network of serum biomarkers and 
clinical variables in metastatic prostate cancer.

Interaction network of serum biomarkers and clinical 
variables in metastatic prostate cancer. Nodes represent 
individual variables: Hypoxia-inducible factor-1 alpha 
(HIF-1α), Thrombospondin-1 (TSP1), Neuropilin-1 (NRP1), 
Prostate-specific antigen (PSA), age at diagnosis, DM, HT, 
and smoking status. Edges represent partial correlations 
between variables, controlled for all other nodes. Edge col-
or: Blue indicates positive correlation; red indicates nega-
tive correlation. Edge thickness: Represents the strength 
of the correlation (thicker = stronger).

In this study, the relationships among HIF-
1α, TSP1, NRP1, PSA, age at diagnosis, diabetes 
mellitus (DM), hypertension (HT), and smoking 
status were evaluated within a network frame-
work in patients with metastatic prostate can-
cer (mPCa). Graph-theoretic measures—in-
cluding degree, closeness, and betweenness 
centrality—were applied to assess the influ-
ence and network position of each variable, 
alongside global metrics such as network den-
sity and sparsity.

Centrality measures are essential for inter-
preting a node’s functional role in the network.

•	Degree centrality reflects the number of 
direct connections a node has.

•	Closeness centrality captures how ef-
ficiently a node can be reached from all other 
nodes.

•	Betweenness centrality measures how of-
ten a node lies on the shortest paths between 
other node pairs, identifying potential “gate-
keeper” variables (24).

In this analysis, HT and DM emerged as 
centrally positioned variables. Notably, HT dis-
played strong connections in both positive and 
negative directions, suggesting a high degree 
of interaction with other clinical and molecular 
markers. DMalso exhibited meaningful associ-
ations, visually represented in Figure 1 through 
the thickness of connecting lines—where thick 
blue edges denote strong positive partial cor-
relations, and thick red edges indicate strong 
negative associations.

The Fruchterman–Reingold algorithm was 
used for network visualization (25), optimizing 
node placement based on connection strength 
and achieving a balanced, interpretable layout. 
Spatial proximity between nodes in the diagram 
reflects the degree of interconnectivity.

In this context:

•	Blue edges = positive partial correlations

•	Red edges = negative partial correlations

•	Edge thickness = strength of the associa-
tion

For example, strong positive correlations 
were observed between PSA–DM and PSA–HT 
(thick blue edges), while a strong negative cor-
relation was identified between HT and TSP1 
(thick red edge), suggesting a possible inverse 
clinical or biological relationship. These findings 
warrant further mechanistic and statistical val-
idation.

A key global network property—sparsity—
was also calculated. Sparsity is defined as one 
minus the ratio of observed edges to the maxi-
mum possible number of edges in the network 
(Newman, 2010). For a network of 8 variables, 
the total possible number of edges is 28. In 
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this study, 27 edges were observed, yielding a 
sparsity value of 0.036, which indicates a high-
ly dense and interconnected structure. A low 
sparsity value reflects a tightly structured sys-
tem, potentially indicative of strong underlying 
clinical or biological associations.

Table 1 summarizes the key topological fea-
tures of the network constructed for mPCa pa-
tients, including:

•	Total number of nodes: 8

•	Observed edges: 27

•	Maximum possible edges: 28

•	Calculated sparsity: 0.036

This high-density configuration supports the 
hypothesis that systemic conditions such as HT 
and DM, along with molecular biomarkers, in-
teract within a cohesive and highly integrated 
clinical network in metastatic prostate cancer.

Table 1. Descriptive Metrics of the Serum Biomark-
er–Clinical Variable Interaction Network in Metastatic 

Prostate Cancer

Number 
of nodes 

Number of 
non-zero edges Sparsity 

Metastasis 8 27 / 28 0.036

Note: Number of nodes indicates the total number of 
variables included in the network (serum biomarkers and 
clinical parameters). Observed edges represent the num-
ber of non-zero partial correlations between variables, 
controlling for all other variables. Maximum possible edg-
es are calculated using the formula n(n–1)/2 for an undi-
rected network, where n is the number of nodes. Sparsity 
is defined as 1 – (observed edges / maximum possible 
edges); lower sparsity values indicate denser network 
structures. In this study, a sparsity value of 0.036 for a 
network of 8 variables suggests a highly connected and 
meaningful interaction structure.

Four types of centrality measures were 
used to determine the centrality levels of the 
variables. Structural features of the serum bio-
marker network in metastatic prostate can-
cer. Includes total number of nodes (variables), 
number of partial correlation edges, and cal-

culated sparsity value. Sparsity is defined as 
1 – (number of observed edges / number of 
possible edges); lower values indicate a dens-
er network. These measures include degree 
centrality, closeness centrality, influence, and 
betweenness centrality. The centrality values 
for each variable are presented in Table 2. Cen-
trality measures of serum biomarkers and clin-
ical variables in the metastatic prostate cancer 
network. Metrics include: Betweenness cen-
trality: Node’s role as a bridge between other 
nodes. Closeness centrality: Average distance 
to all other nodes (higher = more central). De-
gree: Number of direct connections. Expected 
influence (eigenvector centrality): Influence of 
a node based on its connections to other in-
fluential nodes. Note: Some centrality values 
are normalized; negative values may reflect 
mean-centered or z-score transformed metrics 
and should be interpreted accordingly.

Table 2. Graph-theoretical centrality metrics of the 
network nodes (standardized values using z-scores)

 Metastasis

Variable

Be
tw

ee
nn

es
s

Cl
os

en
es

s

De
gr

ee

Ex
pe

ct
ed

 
in

flu
en

ce
DM 0.114 0.769 0.833 -0.343
HIF-1α -0.800 -1.414 -1.069 0.059
HT 0.114 1.018 0.967 1.980
NRP1 -0.800 -0.442 -0.403 0.844
PSA 1.486 1.210 1.200 -0.033
Smoking -0.800 -1.163 -1.462 -0.825
TSP1 1.486 0.436 0.461 -1.117
Age at diagno-
sis -0.800 -0.414 -0.527 -0.565

Note: Betweenness, closeness, degree, and expected 
influence (eigenvector centrality) metrics were used to 
evaluate the structural importance of each variable with-
in the metastatic prostate cancer network. Betweenness 
centrality reflects how often a node acts as a bridge be-
tween other nodes; closeness centrality indicates the in-
verse of the average shortest distance from a node to all 
others; degree centrality represents the number of direct 

CJMR
Biomarker Networks in Prostate Cancer



Erbak Yilmaz et al.

Volume: 5 - Issue: 2 Ağustos|August 2025 13

connections a node has; and expected influence measures 
the relative influence of a node based on its connections 
to other influential nodes. Negative values result from 
z-score normalization and indicate variables with be-
low-average centrality relative to the network mean.

In the current analysis, betweenness cen-
trality values were derived using a standardized 
metric, specifically z-score normalization, in 
order to enhance interpretability and compa-
rability across variables with differing scales. 
This approach may yield negative values, which 
reflect below-average centrality relative to 
the network’s overall distribution. While raw 
betweenness values are inherently non-neg-
ative, normalization allows for more nuanced 
interpretation of relative node influence. There-
fore, the presence of negative values in Table 2 
should not be misinterpreted as computational 
error. This normalization procedure has been 
noted in the text and reflected in the updated 
table caption for clarity.

As shown in Table 2, four centrality mea-
sures—degree, closeness, betweenness, and 
influence (eigenvector centrality)—were used 
to evaluate the role of each variable within the 
metastatic network. Each measure reflects a 
different aspect of a variable’s structural impor-
tance. Nodes with high betweenness centrality 
act as bridges between clusters of nodes that 
are otherwise not directly connected and are 
considered to have the potential to control the 
flow of information within the network. In the 
metastatic group, PSA and TSP1 exhibited the 
highest betweenness centrality values. There-
fore, they can be regarded as relatively more in-
fluential. Accordingly, PSA and TSP1 appear to 
function as key active variables within the net-
work, acting as bridges among otherwise un-
connected variables (see Figure 1). As a result, 
it can be concluded that the overall network is 
composed of highly interrelated variables, with 
PSA and TSP1 representing the two most criti-
cal variables.

Closeness centrality indicates the proximity 
of one variable to all others. It is calculated as 
the reciprocal of the sum of the shortest dis-
tances to all other variables. A high closeness 
value reflects how quickly a node can interact 
with others, and also provides a measure of a 
node’s independence or influence. According 
to the analysis, the variables with the highest 
closeness values are PSA and HT, while the 
lowest values are seen in HIF-1α and Smoking. 
This implies that PSA and HT are the most easi-
ly reachable nodes in the network, and reaching 
these nodes may also facilitate access to other 
nodes, suggesting their strategic position.

Degree centrality, which is calculated based 
on the number of direct connections, was high-
est for PSA with a value of 1.200, while the 
lowest value was observed for Smoking, with 
–1.462.

When eigenvector centrality (influence) val-
ues were examined, the variables with the high-
est influence were HT and NRP1, respectively. 
This indicates that HT and NRP1 exert a rela-
tively higher influence over the rest of the net-
work variables.

The clustering coefficient measures local 
group cohesion and is defined as the proportion 
of a node’s neighbors that are also connected to 
each other. It reveals the strength of association 
among a node’s immediate neighbors. This co-
efficient can also be interpreted as an indicator 
of network cohesiveness, measuring the densi-
ty of triadic relationships. A low clustering coef-
ficient suggests a higher level of interconnec-
tivity among variables, whereas a higher value 
reflects more sparse or isolated connections. 
The clustering coefficients for each variable are 
presented in Table 3. Clustering coefficient val-
ues of individual variables across four algorith-
mic estimators: Barrat, Onnela, Watts–Strogatz 
(WS), and Zhang methods. The clustering coef-
ficient quantifies the degree to which a node’s 
neighbors are interconnected, reflecting local 
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network cohesion. Positive values indicate a 
tightly knit local structure, while negative val-
ues may result from normalization techniques.

Table 3. Clustering Coefficients of Variables in the Met-
astatic Prostate Cancer Network

Variable Barrat Onnela WS Zhang
DM -0.906 0.626 -0.540 -0.062

HIF-1α -0.305 -1.016 -0.540 -0.181
HT -0.843 0.755 -0.540 -0.336

NRP1 1.360 0.069 0.620 1.813
PSA -0.896 1.043 -0.540 -0.745

Smoking 0.765 -1.920 -0.540 -0.902
TSP1 -0.536 0.474 -0.540 -0.821

Age at diag-
nosis 1.360 -0.031 1.620 1.234

Note: Clustering coefficients were calculated using four 
algorithms—Barrat, Onnela, Watts–Strogatz (WS), and 
Zhang—to quantify the degree of interconnection among 
each node’s neighbors, reflecting local network cohesion. 
Positive values indicate a tightly knit local structure, while 
negative values may result from normalization and indi-
cate below-average local connectivity. Higher clustering 
coefficient values suggest a denser pattern of interactions 
among the variable’s immediate neighbors.

Upon examining the clustering coefficients 
presented in Table 3, it was observed that NRP1 
had the highest local density among its neigh-
boring variables when all four coefficients were 
evaluated together. In contrast, smoking had 
the lowest clustering coefficient. These findings 
are consistent with the influence values report-
ed in Table 2 and indicate that both variables 
exert substantial effects on other nodes in the 
network.

In this study, relationships among the vari-
ables HIF-1α, TSP1, NRP1, PSA, Age at Diagno-
sis, DM, HT, and Smoking in metastatic patients 
were evaluated within a network structure. 
The analysis was conducted using graph the-
ory-based metrics such as centrality (degree, 
closeness, and betweenness), connection den-
sity, and sparsity.

Centrality measures are important for un-
derstanding the role of a variable within the 
network—specifically, its influence on infor-
mation flow (24). Degree centrality refers to the 
total number of connections a node has; close-
ness centrality indicates how easily a node can 
be reached from other nodes; and betweenness 
centrality measures the extent to which a node 
lies on the shortest paths between other nodes. 
In this study, HT and DM emerged as variables 
occupying central positions in the network. In 
particular, HT showed strong connections in 
both positive and negative directions.

Discussion

In this study, the relationships between key 
serum biomarkers (HIF-1α, TSP1, NRP1, and 
PSA) and clinical variables (age at diagnosis, DM, 
HT, and smoking) in patients with mPCa were 
evaluated using a network-based approach. 
Through the application of graph theory-based 
metrics such as centrality measures, clustering 
coefficients, and sparsity, a systems-level anal-
ysis was conducted to explore how these vari-
ables interact within a biological context. The 
findings offer important insights into prostate 
cancer progression, biomarker evaluation, and 
clinical management. 

One of the most notable findings is the 
central placement of PSA and TSP1 within the 
network, as evidenced by their high between-
ness centrality scores. Nodes with elevated be-
tweenness centrality function as critical bridges 
connecting otherwise unlinked clusters, thereby 
contributing significantly to the structural cohe-
sion of the network. The prominent role of PSA 
aligns with its established status as a primary 
biomarker in the clinical screening of prostate 
cancer (1, 26). However, the comparable cen-
trality of TSP1 highlights its potential signifi-
cance in prostate cancer progression, particu-
larly given its well-documented anti-angiogenic 
and immunomodulatory properties. This finding 
underscores the need for increased attention to 
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TSP1 in both research and clinical settings (1, 
27, 28).

Previous studies have reported a downregu-
lation of TSP1 expression in advanced prostate 
cancer, which correlates with increased vascu-
larization and poor prognosis(29). The negative 
correlation identified in our network analysis 
supports the biological notion that as PSA lev-
els increase, indicative of tumor progression, 
TSP1 expression tends to decline, reflecting a 
loss of anti-angiogenic control. This pattern 
suggests a reciprocal regulatory relationship, 
where rising PSA may reflect a microenviron-
ment conducive to tumor growth, while falling 
TSP1 levels indicate diminished suppressive 
mechanisms (26). In support of our findings, 
TSP1 expression is significantly reduced in cas-
tration-resistant and neuroendocrine-trans-
formed prostate cancer tissues, showing a neg-
ative correlation with markers of progression 
and aggressiveness This reduction often coin-
cides with elevated PSA signaling, as androgen 
receptor (AR) activation indirectly promotes 
PSA expression while suppressing TSP1 tran-
scription—consistent with observations that 
androgens repress TSP1, and that TSP1 lev-
els rise following androgen deprivation(30, 31) 
.Functionally, the loss of TSP1 not only dimin-
ishes its anti-angiogenic suppression but may 
also facilitate VEGF-mediated neovasculariza-
tion, supporting tumor growth and metastasis. 
High PSA alongside low TSP1 may therefore re-
flect a shift in the tumor microenvironment fa-
voring angiogenesis and invasiveness (5, 6). The 
strong negative association observed between 
HT and TSP1 (indicated by a thick red edge) 
may suggest a biologically inverse regulatory 
mechanism. However, this relationship requires 
further biological validation. Notably, previous 
studies have also reported increased TSP1 lev-
els in patients with treated HT, supporting the 
possibility of a mechanistic link (32).

Another key finding of the study is the central 
positioning of HT and DM within the network, 
as indicated by their high closeness and degree 
centrality values. This suggests that systemic 
diseases are not merely coexisting comorbidi-
ties, but also active contributors that shape tu-
mor biology. HT and DM are known to influence 
the tumor microenvironment by promoting 
processes such as chronic inflammation, angio-
genesis, and metabolic reprogramming(33, 34). 
TSP1, which typically inhibits angiogenesis and 
suppresses tumor development, is often down-
regulated in various tissues under conditions of 
elevated blood glucose levels (35, 36). In this 
study, the prominent positioning of these two 
variables within the network underscores the 
importance of considering them jointly in bio-
marker-based risk stratification and personal-
ized clinical decision support systems.

NRP1 was identified in this study as the vari-
able with the highest clustering coefficient. This 
finding indicates that NRP1 is highly interactive 
with its neighboring variables and functions as 
a local regulatory hub within the network struc-
ture. Studies have revealed that NRP1 plays a 
significant oncogenic role in PCa. It has been 
observed that NRP1 is highly expressed in PCa 
and positively associated with poor clinicopath-
ological factors (12, 13, 37)

Furthermore, existing literature emphasizes 
the role of NRP1 as a pivotal regulatory mol-
ecule not only in angiogenesis but also in key 
oncogenic processes such as epithelial-mesen-
chymal transition (EMT), cellular migration and 
invasion, and the maintenance of stem cell-like 
phenotypes (38). From a methodological per-
spective, the calculated sparsity value of 0.036 
reflects a highly interconnected network, in-
dicating robust associations among variables. 
This result underscores the utility of network 
analysis as a complementary methodology to 
conventional statistical and machine learning 
approaches. In particular, for datasets charac-
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terized by multicollinearity, variable synergy, or 
non-linear interactions, network-based meth-
ods provide a powerful framework for revealing 
biologically meaningful patterns that may be 
overlooked by traditional analyses.

Limitation

This study has several limitations that 
should be acknowledged. First, its single-center 
design may limit the generalizability of the find-
ings to broader patient populations. Second, al-
though network analysis provides valuable in-
sights into the structural relationships between 
biomarkers and clinical parameters, it does not 
establish causality. The observed correlations 
may have been influenced by unmeasured con-
founding factors or secondary biological pro-
cesses. The direction and biological significance 
of the observed positive and negative correla-
tions require further mechanistic investigation. 
For instance, the negative association between 
HT and TSP1, or the dense connectivity pattern 
surrounding DM, may result not from direct ef-
fects but from secondary processes, compen-
satory responses, or confounding factors. It is 
therefore recommended that these relation-
ships be validated using experimental models 
or longitudinal omics-based datasets. Third, 
statistical significance testing for network mea-
sures (e.g., permutation or bootstrap methods) 
was not performed, and such tests could have 
enhanced the robustness and reproducibility of 
the results. Finally, the analysis was restrict-
ed to serum biomarkers and selected clinical 
variables; the inclusion of additional molecular 
markers, genetic data, or longitudinal follow-up 
would allow for a more comprehensive under-
standing of biomarker interactions in metastat-
ic prostate cancer.

Conclusion 

This study demonstrates that network anal-
ysis is a powerful tool for understanding the 
interactions between clinical and molecular 

variables in the context of metastatic prostate 
cancer. The findings underscore the impor-
tance of integrating systemic conditions such 
as HT and DM into biomarker-based models 
and highlight molecules like TSP1 and NRP1 as 
promising candidates for further in-depth in-
vestigation. Future research is encouraged to 
validate the network structures identified here 
using experimental, longitudinal, and statisti-
cally robust data sources.

However, further discussion is warranted 
regarding the biological mechanisms underly-
ing the direction and causality of the observed 
positive and negative associations. Additional-
ly, it should be noted that the statistical signif-
icance of the network analysis findings—such 
as through permutation testing or bootstrap 
methods—was not reported, which represents 
a methodological limitation of the study. Future 
studies should incorporate permutation-based 
statistical testing or bootstrapping to validate 
the stability and robustness of network cen-
trality metrics, thereby minimizing the risk of 
spurious associations.
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