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Abstract

This study proposes the Chebyshev Wavelet Colocation method for solving a class of rth-
order Boundary-Value Problems (BVPs) with nonlocal boundary conditions. This method
is an extension of the Chebyshev wavelet method to the linear and nonlinear BVPs with a
class of nonlocal boundary conditions. In this study, the method is tested on second and
fourth-order BVPs and approximate solutions are compared with the existing methods in
the literature and analytical solutions. The proposed method has promising results in terms
of the accuracy.

1. Introduction

Many physical phenomena may be modelled by differential equations with nonlocal boundary conditions. Therefore, they have a great
attention for researchers of mathematics and physics. Nonlocal conditions occur when values of a function on the boundary are depended on
values inside the domain or when direct measurements on the boundary are not taken. These problems with nonlocal boundary conditions
are found in many problems such as population dynamics, the process of heat conduction, control theory, theory of elastic stability, evolution
equation for species population densities, image processing, porous media flow and turbulence [1, 2]. Henderson et al[3] considered
uniqueness questions for certain nonlocal boundary value problems for the nth-order linear differential equation. Xue [4] studied the
existence of integral solutions for nonlinear differential equations with nonlocal initial conditions in Banach spaces. Babak [5] investigated
the uniqueness and existence of nonlocal initial problems for a system of nonlinear parabolic equations weakly coupled with ordinary
differential equations. Liang et al [6] established some new theorems about the existence and uniqueness of solutions for semilinear
integrodifferential equations with nonlocal initial conditions. Geng et al [7] gave an effective method for solving nonlocal fractional boundary
value problems based on the reproducing kernel theory. Zhou et al [8] discussed the nonlocal Cauchy problem for the fractional evolution
equations. All methods given here such as, Finite Difference Method (FDM) [9], Shooting Method [10, 11], Adomian Decomposition
Method (ADM) [12], Variational Iteration Method (VIM) [13], Homotopy Analysis Method (HAM) [14], Sinc-Collocation Method (SCM)
[15], Differential Transform Method (DTM) [16], Optimal Homotopy Asymptotic Method (OHAM) [17], combination of the VIM and the
Homotopy Perturbed Method (HPM) [18], Reproducing Kernel Method (RKM) [19, 20], Monotone Iterative [21] and a spectral method
based on operational matrices of Bernstein polynomials using collocation method [22] were used to solve multi-point BVPs. Tzanetis et
al [23] studied a nonlocal problem modelling Ohmic heating with variable thermal conductivity including an analysis of the asymptotic
behaviour and the blow-up of solutions. Bogoya et al [24] studied a nonlocal diffusion model analogous to heat equation with Neumann
boundary conditions and proved an existence and uniqueness of solutions. Pao [25] studied some dynamical property of a reaction-diffusion
equation with nonlocal boundary condition. Pao et al [26, 27] investigated a class of fourth-order nonlinear and semilinear elliptic boundary
value problem with nonlocal boundary condition.
The Legendre and Chebyshev wavelets operational matrixes of integration and product operation matrix have been introduced in [28, 29,
30, 31]. Our analyses show that there are some disadvantages in applying Legendre wavelet and Chebyshev wavelet. In[32, 33], these
disadvantages are eliminated by Çelik with the Chebyshev Wavelet Collocation Method.
This study presents a Chebyshev Wavelet Collocation Method for the solution of the rth-order linear and nonlinear BVPs given in the
following form:
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y(r)(x) =
r

∑
i=1

Ai(x)
dr−iy(x)

dxr−i +g(x) (1.1)

y(r)(x) = F
(

x,y(x),y′(x), ... , y(r−1)(x)
)

(1.2)

with the nonlocal boundary conditions {
y(i−1)(x j) = bi, j, 1≤ i≤ m j, 1≤ j ≤ β

y(xβ+1)− y(xβ+2) = br
(1.3)

where m1, m2, ... ,mβ are positive integers satisfied m1 +m2 + ... +mβ = r−1 and a < x1 < x2 < ... < xβ+2 < b, bi, j, br are real numbers.
The uniqueness of the BVP in Eqs. (1.1), (1.3) has been discussed in [4].
Chebyshev wavelet collocation method is based on the approximation by the truncated Chebyshev wavelets series. By using the Chebyshev
collocation points, algebraic equation system has been obtained. The coefficients of the Chebyshev wavelet series can be found from the
solution of the algebraic equation system. The method is applied to the linear and nonlinear boundary value problems with nonlocal boundary
conditions. Calculations demonstrated that the accuracy of the Chebyshev wavelet collocation method is quite good even for the case of a
small number of grid points.

2. Chebyshev Wavelet method

Wavelets have been used in many different fields of science and engineering in recent years. They constitute a family of functions constructed
from dilation and translation of a single function called the mother wavelet. If the dilation parameter a and the translation parameter b vary
continuously, the following family of continuous wavelets can be obtained [34]

ψa,b(x) = |a| 1/2 ψ

(
x−b

a

)
, a,b ∈ R, a 6= 0. (2.1)

Chebyshev wavelets are written as

ψnm(x) = ψ (k,n,m,x)

where k = 0, 1, 2, ... , n = 1, 2, ..., 2k, m is degree of Chebyshev polynomials of the first kind and x denotes the normalized time. They are
defined on the interval [0, 1) by:

ψnm(x) =

{
αm2k/2√

π
Tm(2k+1x−2n+1), n−1

2k ≤ x < n
2k ,

0 otherwise
(2.2)

where

αm =

{ √
2 m = 0

2 m = 1, 2, ...

and Tm(2k+1x−2n+1) are Chebyshev polynomials of the first kind of degree m orthogonal with respect to the weight function wn(x) =
w(2k+1x−2n+1 ) = 1√

1−(2k+1x−2n+1)2
on [−1, 1] [35].

A function f (x) ∈ L2
w[0,1] may be expanded as:

f (x) =
∞

∑
n=1

∞

∑
m=0

fnm ψnm(x) (2.3)

where

fnm = 〈 f (x),ψnm(x)〉 (2.4)

and 〈 . , .〉 denotes the inner product with weight function wn(x) in Eq. (2.4).
Truncated form of Eq. (2.3) can be written as:

f (x)∼=
2k

∑
n=1

M−1

∑
m=0

fnm ψnm(x) =CT
Ψ(x) (2.5)

where C and Ψ(x) are 2kM×1 columns vectors given by:

CT = [ f10, f11, ..., f1M−1, f20, ..., f2M−1, ..., f2k0, ..., f2kM−1 ] (2.6)

Ψ(x) = [ψ10, ψ11, ..., ψ1M−1, ψ20, ..., ψ2M−1, ..., ψ2k0, ..., ψ2kM−1 ]
T (2.7)

The integration of the ψnm(x) given in Eq. (2.2) can be represented as

pnm(x) =
∫ x

0
ψnm(s)ds (2.8)
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For m = 0, m = 1 and m > 1, pnm(x) can be obtained as

pn0(x) =


0 0≤ x < n−1

2k

α02−k/2−1
√

π

[
T1(2k+1x−2n+1)+T0(2k+1x−2n+1)

] n−1
2k ≤ x < n

2k

α02−k/2√
π

T0(2k+1x−2n+1) n
2k ≤ x < 1

pn1(x) =


0 0≤ x < n−1

2k

α12−k/2−3
√

π

[
T2(2k+1x−2n+1)−T0(2k+1x−2n+1)

] n−1
2k ≤ x < n

2k

0 n
2k ≤ x < 1

pnm(x) =


0 0≤ x < n−1

2k

αm2−k/2−2
√

π

[
Tm+1(u)−(−1)m+1

m+1 − Tm−1(u)−(−1)m−1

m−1

]
n−1
2k ≤ x < n

2k

αm2−k/2−2
√

π

[
1−(−1)m+1

m+1 − 1−(−1)m−1

m−1

]
n
2k ≤ x < 1

where u = 2k+1x−2n+1. The integration of the Ψ(x) can be represented as∫ x

0
Ψ(s)ds = [p10, p11, ..., p1M−1, p20, ..., p2M−1, ..., p2k0, ..., p2kM−1 ]

T = P1 Ψ1(x) (2.9)

where

Ψ1(x) = [ψ10, ψ11, ..., ψ1M , ψ20, ..., ψ2M , ..., ψ2k0, ..., ψ2kM ]T

L1 =



1
√

2
2 0 0 · · · 0 0 0 0

−
√

2
4 0 1

4 0 · · · 0 0 0 0

−
√

2
3 − 1

2 0 1
6 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...
√

2
2 (

(−1)M−3

M−3 −
(−1)M−1

M−1 ) 0 0 0 · · · − 1
2(M−3) 0 1

2(M−1) 0

√
2

2 (
(−1)M−2

M−2 −
(−1)M

M ) 0 0 0 · · · 0 − 1
2(M−2) 0 1

2M



F1 =



2 0 · · · 0

0 0 · · · 0
2
√

2
3 0 · · · 0
...

...
. . .

...√
2

2 (
1−(−1)M−1

M−1 − 1−(−1)M−3

M−3 ) 0 · · · 0
√

2
2 (

1−(−1)M

M − 1−(−1)M−2

M−2 ) 0 · · · 0


P1 =

1
2k+1


L1 F1 F1 · · · F1 F1
0 L1 F1 · · · F1 F1
...

...
...

. . .
...

...
0 0 0 · · · L1 F1
0 0 0 · · · 0 L1



The second integrations of the Ψ(x)can be represented as∫ x

0

∫ x1

0
Ψ(s)dsdx1 =

∫ x

0
P1 Ψ1(x1)dx1 = P1

∫ x

0
Ψ1(x1)dx1 = P1P2Ψ2(x)

The rthintegrations of the Ψ(x)can be represented as∫ x

0

∫ x1

0

∫ x2

0
· · ·
∫ xr−1

0
Ψ(s)dsdxr−1dxr−2 · · ·dx1 = P1P2 · · ·Pr Ψr(x)

where

Lr =



1
√

2
2 0 0 · · · 0 0 0 0 · · · 0 0 0

−
√

2
4 0 1

4 0 · · · 0 0 0 0 · · · 0 0 0

−
√

2
3

−1
2 0 1

6 · · · 0 0 0 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...√

2
2 (

(−1)M−3

M−3 −
(−1)M−1

M−1 ) 0 0 0 · · · −1
2(M−3) 0 1

2(M−1) 0 · · · 0 0 0
√

2
2 (

(−1)M−2

M−2 −
(−1)M

M ) 0 0 0 · · · 0 −1
2(M−2) 0 1

2M · · · 0 0 0
√

2
2 (

(−1)M−1

M−1 −
(−1)M+1

M+1 ) 0 0 0 · · · 0 0 −1
2(M−1) 0 · · · 0 0 0

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...
√

2
2 (

(−1)M−3+r

M−3+r −
(−1)M+r−1

M+r−1 ) 0 0 0 · · · 0 0 0 0 · · · −1
2(M−3+r) 0 1

2(M−1+r)
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Fr =



2 0 · · · 0
0 0 · · · 0

2
√

2
3 0 · · · 0
... 0

. . . 0
√

2
2 (

1−(−1)M−1

M−1 − 1−(−1)M−3

M−3 ) 0 · · · 0
√

2
2 (

1−(−1)M

M − 1−(−1)M−2

M−2 ) 0 · · · 0
√

2
2 (

1−(−1)M+1

M+1 − 1−(−1)M−1

M−1 ) 0 · · · 0
... 0

. . . 0
√

2
2 (

1−(−1)M+r−1

M+r−1 − 1−(−1)M+r−3

M+r−3 ) 0 · · · 0



Pr =
1

2k+1


Lr Fr Fr · · · Fr Fr
0 Lr Fr · · · Fr Fr
...

...
...

. . .
...

...
0 0 0 · · · Lr Fr
0 0 0 · · · 0 Lr



and

Ψr(x) = [ψ10, ψ11, ..., ψ1M+r−1, ψ20, ... , ψ2M+r−1, ... , ψ2k0, ... , ψ2kM+r−1 ]
T (2.10)

Dimensions of the matrices Lr and Fr are (M+ r−1)× (M+ r). Hence Pr has the dimension 2k(M+ r−1)×2k(M+ r).

3. Chebyshev Wavelet collocation method for BVPs with nonlocal conditions

Consider Eq. (1.1) or Eq. (1.2) with the nonlocal boundary conditions{
y(i−1)(x j) = bi, j, 1≤ i≤ m j, 1≤ j ≤ β

y(xβ+1)− y(xβ+2) = br

We assume that y(r)(x) can be expanded in terms of truncated Chebyshev wavelet series as

y(r)(x) =
2k

∑
n=1

M−1

∑
m=0

fnmψnm(x) =CT
Ψ(x). (3.1)

By successively integrating Eq. (3.1) from 0 to x, the following equations are obtained

y(r−1)(x) =
∫ x

0
CT

Ψ(s)ds+ y(r−1)(0) =CT P1Ψ1(x)+ y(r−1)(0) (3.2)

y(r−2)(x) =CT P1P2Ψ2(x)+ xy(r−1)(0)+ y(r−2)(0) (3.3)

y(r−3)(x) =CT P1P2P3Ψ3(x)+
x2

2
y(r−1)(0)+ xy(r−2)(0)+ y(r−3)(0) (3.4)

...

y(m j)(x) =CT P1P2P3 ...Pr−m j Ψr−m j (x)+
r−m j

∑
s=1

xs−1

(s−1)!
y(s+m j−1)(0) (3.5)

Theorem 3.1. Chebyshev wavelet expression for zth-order derivatives of unknown function y(x) satisfying nonlocal boundary conditions

{
y(i−1)(x j) = bi, j, 1≤ i≤ m j, 1≤ j ≤ β

y(xβ+1)− y(xβ+2) = br

are given as for z = 0,1, ..., m j−1:

y(z)(x) =CT
(

P1P2 ...Pr−zΨr−z(x)−∑
m j−z
h=1

(x−x j)
h−1

(h−1)! P1P2 ...Pr+1−z−h Ψr+1−z−h(x j)
)

+∑
r−m j
s=2

(
xs−1+m j−z

(s−1+m j−z)! −∑
m j−z
u=1

(x−x j)
u−1

(u−1)!
x

m j−z+s−u
j

(m j−z+s−u)!

)
y(s+m j−1)(0)

+
(x−x j)

m j−z

(m j−z)! y(m j)(0)+∑
m j−z
w=1

(x−x j)
w−1

(w−1)! bz+w, j

(3.6)

y(m j)(0), y(m j+1)(0), ..., y(r−1)(0) in Eq. (3.6) can be obtained the following algebraic equations system

∑
r−m j
s=2

(
x

s−1+m j
k+2 −x

s−1+m j
k+1

(s−1+m j)!
−∑

m j
u=1

(xk+2−x j)
u−(xk+1−x j)

u

u!
x

m j+s−u
j

(m j+s−u)!

)
y(s+m j−1)(0)

+
(
(xk+2−x j)

m j−(xk+1−x j)
m j

m j!

)
y(m j)(0) =−br−∑

m j
w=1

(
(xk+2−x j)

w−1−(xk+1−x j)
w−1

(w−1)!

)
bw, j

−CT
(

P1 ...PrΨr(xk+2)−P1P2 ...PrΨr(xk+1)−∑
m j
h=1

(
(xk+2−x j)

h−1−(xk+1−x j)
h−1

(h−1)! P1...Pr+1−hΨr+1−h(x j)
))

where m1 +m2 + ... +mβ = r−1.
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Proof. By successively integrating Eq. (3.5) from x j to x and using boundary conditions

y(i−1)(x j) = bi, j, 1≤ i≤ m j, 1≤ j ≤ β

the following expressions are obtained:

y(m j−1)(x) =CT P1P2P3 ...Pr−m j+1
(
Ψr−m j+1(x)−Ψr−m j+1(x j)

)
+(x− x j)y(m j)(0)+∑

r−m j
s=2

xs−xs
j

s! y(s+m j−1)(0)+bm j , j

y(m j−2)(x) =CT (P1...Pr−m j+2
(
Ψr−m j+2(x)−Ψr−m j+2(x j)

)
− (x− x j)P1...Pr−m j+1Ψr−m j+1(x j)

)
+

(x−x j)
2

2 y(m j)(0)+∑
r−m j
s=2

(
xs+1−xs+1

j
(s+1)! −

(x−x j)xs
j

s!

)
y(s+m j−1)(0)+(x− x j)bm j , j +bm j−1, j

...

y(z)(x) =CT
(

P1P2 ...Pr−zΨr−z(x)−∑
m j−z
h=1

(x−x j)
h−1

(h−1)! P1P2 ...Pr+1−z−h Ψr+1−z−h(x j)
)

+∑
r−m j
s=2

(
xs−1+m j−z

(s−1+m j−z)! −∑
m j−z
u=1

(x−x j)
u−1

(u−1)!
x

m j−z+s−u
j

(m j−z+s−u)!

)
y(s+m j−1)(0)

+
(x−x j)

m j−z

(m j−z)! y(m j)(0)+∑
m j−z
w=1

(x−x j)
w−1

(w−1)! bz+w, j

where z = 0, 1, ..., m j−1. This is Eq. (3.6) given in Theorem 3.1. For z = 0, the following equation can be obtained.

y(x) =CT
(

P1P2 ...PrΨr(x)−∑
m j
h=1

(x−x j)
h−1

(h−1)! P1P2 ...Pr+1−h Ψr+1−h(x j)
)

+∑
r−m j
s=2

(
xs−1+m j

(s−1+m j)!
−∑

m j
u=1

(x−x j)
u

u!
x

m j+s−u
j

(m j+s−u)!

)
y(s+m j−1)(0)

+
(x−x j)

m j

m j! y(m j)(0)+∑
m j
w=1

(x−x j)
w−1

(w−1)! bw, j

If boundary condition y(xβ+1)− y(xβ+2) = brcan be satisfied, the following equation can be obtained as:

∑
r−m j
s=2

(
x

s−1+m j
k+2 −x

s−1+m j
k+1

(s−1+m j)!
−∑

m j
u=1

(xk+2−x j)
u−(xk+1−x j)

u

u!
x

m j+s−u
j

(m j+s−u)!

)
y(s+m j−1)(0)

+
(
(xk+2−x j)

m j−(xk+1−x j)
m j

m j !

)
y(m j)(0) =−br−∑

m j
w=1

(
(xk+2−x j)

w−1−(xk+1−x j)
w−1

(w−1)!

)
bw, j

−CT
(

P1 ...PrΨr(xk+2)−P1P2 ...PrΨr(xk+1)−∑
m j
h=1

(
(xk+2−x j)

h−1−(xk+1−x j)
h−1

(h−1)! P1...Pr+1−hΨr+1−h(x j)
))

where m1 +m2 + ... +mβ = r−1.

Conclusion 3.2. If β = 1 then j = 1 and m1 = r−1 are obtained. Hence

y(x) =CT
(

P1P2 ...PrΨr(x)−∑
r−1
h=1

(x−x1)
h−1

(h−1)! P1P2 ...Pr+1−h Ψr+1−h(x1)
)

+
(x−x1)

r−1

(r−1)! y(r−1)(0)+∑
r−1
w=1

(x−x1)
w−1

(w−1)! bw,1

is obtained, where y(t−1)(0) is obtain as

(
(x3−x1)

r−1−(x2−x1)
r−1

(r−1)!

)
y(r−1)(0) =−br−∑

r−1
w=1

(
(x3−x1)

w−1−(x2−x2)
w−1

(w−1)!

)
bw,1

−CT
(

P1 ...PrΨr(x3)−P1P2 ...PrΨr(x2)−∑
r−1
h=1

(
(x3−x1)

h−1−(x2−x j)
h−1

(h−1)! P1...Pr+1−hΨr+1−h(x1)
))

Replacing (3.1)-(3.6) into Eq. (1.1) or Eq. (1.2), we have linear or nonlinear algebraic equations respectively.
The collocation points can be taken as 2k+1xni−2n+1 = cos ((M+1)−i)π

(M+1) or

xni =
1

2k+1

(
2n−1+ cos

((M+1)− i)π
(M+1)

)
, i = 1, 2, ..., M,n = 1, 2, ..., 2k (3.7)

which are also called the turning points of TM+1(2k+1x−2n+1). Substituting the Chebyshev collocation points into linear or nonlinear
algebraic equations, a discretizised form of the vectors Ψ(xni),Ψ1(xni) and Ψr(xni) can be obtained. Hence, we obtain linear or nonlinear
algebraic equations systems. By solving linear or nonlinear algebraic equation systems, we can find the coefficients of the Chebyshev wavelet
series that satisfied differential equation and its initial or boundary conditions.
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4. Error analysis

For error analysis of Chebyshev wavelet method, the following Lemma and Theorems are given.

Lemma 4.1. (See [36]) If the Chebyshev wavelet expansion of a continuous function f (x) converges uniformly, then the Chebyshev wavelet
expansion converges to a function f (x) .

Theorem 4.2. (See [36]) A function f (x) ∈ L2
ω ([0, 1]) with bounded second derivative | f ′′(x)| ≤ N, can be expanded as an infinite sum of

Chebyshev wavelets, and the series converges uniformly to f (x) . That is

f (x) =
∞

∑
n=1

∞

∑
m=0

fnmψnm(x).

Since the truncated Chebyshev wavelets series

CT
Ψ(x) =

2k

∑
n=1

M−1

∑
m=0

cnmψnm(x)

is an approximate solution of given problem and y(x) is an exact solution, an error function f (x) can be given as:

E(x) =
∣∣∣y(x)−CT

Ψ(x)
∣∣∣ .

The error bound of the approximate solution obtained by using truncated Chebyshev wavelets series is given by the following theorem.

Theorem 4.3. (See [37]) Suppose that y(x) ∈Cm[0,1] and CT Ψ(x) is the approximate solution of problem using the Chebyshev wavelets
method. Then the error bound can be obtained as follows:

E(x)≤
∥∥∥∥ 2

m!4m2m(k−1)
max

x∈[0,1]

∣∣∣y(m)(x)
∣∣∣∥∥∥∥2

.

5. Numerical results

Example 5.1. Consider the forth order linear boundary value problem [19]


y(4)(x)− exy′′′(x)+ y(x) = 1− ex cosh(x)+2sinh(x), 0≤ x≤ 1

y
( 1

4
)
= 1+ sinh

( 1
4
)
, y′

( 1
4
)
= cosh

( 1
4
)
,

y′′
( 1

4
)
= sinh

( 1
4
)
, y

( 1
2
)
− y
( 3

4
)
= sinh

( 1
2
)
− sinh

( 3
4
)
.

(5.1)

with analytic solution y(x) = 1+ sinh(x). It is assumed that y4(x) can be expanded in terms of truncated Chebyshev wavelet series as

y(4)(x) =
2k

∑
n=1

M−1

∑
m=0

fnmψnm(x) =CT
Ψ(x) (5.2)

By integrating this equation from 0 to xand using boundary condition,

y′′′(x) =
∫ x

0
CT

Ψ(s)ds+ y′′′(0) =CT P1Ψ1(x)+ y′′′(0) (5.3)

is obtained. By integrating this equation three times from 1
4 to x and using boundary conditions, following equations are obtained.

y′′(x) =CT (P1P2Ψ2(x)−P1P2Ψ2(
1
4 )
)
+(x− 1

4 )y
′′′(0)+ sinh( 1

4 )

y′(x) =CT P1P2
(
P3Ψ3(x)−P3Ψ3(

1
4 )− (x− 1

4 )Ψ2(
1
4 )
)
+

(x− 1
4 )

2

2
y′′′(0)+(x− 1

4 )sinh( 1
4 )+ cosh( 1

4 )

y(x) =CT
(

P1P2P3P4Ψ4(x)−P1P2P3P4Ψ4(
1
4 )− (x− 1

4 )P1P2P3Ψ3(
1
4 )−

(x− 1
4 )

2

2 P1P2Ψ2(
1
4 )

)
+

(x− 1
4 )

3

3! y′′′(0)+
(x− 1

4 )
2

2! sinh( 1
4 )+(x− 1

4 )cosh( 1
4 )+1+ sinh( 1

4 )

(5.4)

By using boundary condition y
( 1

2
)
− y
( 3

4
)
= sinh

( 1
2
)
− sinh

( 3
4
)
, y′′′(0)is obtained as:

y′′′(0) = 384
7 CT (P1P2P3P4Ψ4(

1
2 )−P1P2P3P4Ψ4(

3
4 )+

1
4 P1P2P3Ψ3(

1
4 )+

3
32 P1P2Ψ2(

1
4 )
)

− 384
7
(
sinh( 1

2 )− sinh( 3
4 )+

1
4 cosh( 1

4 )+
3
32 sinh( 1

4 )
) (5.5)

Hence, replacing Eq. (5.5) into the Eqs. (5.3) and (5.4), we have
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Table 1: Comparisons of the absolute errors of [19] and proposed method for various values of M, k andx

x M = 4,k = 0 M = 4,k = 1 M = 4,k = 2 M = 8,k = 0 M = 16,k = 0 |y− y101|[19] |y− y151| [19]
0 1.57537 e-8 4.63339 e-10 2.61472 e-11 6.32711 e-15 1e-19 0.0000255 1.13356E−6
0.1 2.38097 e-9 1.04070 e-10 5.93744 e-12 3.38417 e-15 1e-19 4.53581E−6 2.01715E−7
0.2 3.88574 e-11 3.13685 e-12 2.31892 e-13 2.12340 e-16 3e-19 1.32679E−7 5.90784E−9
0.3 5.15129 e-12 1.90014 e-12 1.48048 e-14 2.20110 e-17 2e-19 9.91385E−8 4.39712E−9
0.4 9.21096 e-10 2.86581 e-11 8.51610 e-13 4.11361 e-15 3e-19 1.90635E−6 8.46552E−8
0.5 5.55451 e-9 1.46005 e-10 5.70554 e-12 8.99446 e-15 1e-19 5.92446E−6 2.63147E−7
0.6 1.28454 e-8 4.31240 e-10 1.38779 e-11 8.47493 e-15 2e-19 9.75828E−6 4.33469E−7
0.7 1.30931 e-8 3.93193 e-10 1.42221 e-11 7.79239 e-15 2e-19 9.32982E−6 4.14438E−7
0.8 9.97851 e-9 3.11259 e-10 1.24207 e-11 1.01678 e-14 2e-19 5.99989E−7 2.67207E−8
0.9 7.17676 e-8 2.30928 e-9 1.02985 e-10 8.93500 e-15 0 0.0000265 1.17736E−6
1.0 1.81832 e-7 6.63219 e-9 3.16336 e-10 6.03590 e-15 0 0.0000765 3.39732E−6

y′′′(x) =CT (P1Ψ1(x)+ 384
7 CT P1P2

(
P3P4Ψ4(

1
2 )−P3P4Ψ4(

3
4 )+

1
4 P3Ψ3(

1
4 )+

3
32 Ψ2(

1
4 )
))

− 384
7
(
sinh( 1

2 )− sinh( 3
4 )+

1
4 cosh( 1

4 )+
3
32 sinh( 1

4 )
) (5.6)

y(x) =CT

 P1P2P3P4Ψ4(x)−P1P2P3P4Ψ4(
1
4 )− (x− 1

4 )P1P2P3Ψ3(
1
4 )−

(x− 1
4 )

2

2 P1P2Ψ2(
1
4 )

+
384(x− 1

4 )
3

42
(
P1P2P3P4Ψ4(

1
2 )−P1P2P3P4Ψ4(

3
4 )+

1
4 P1P2P3Ψ3(

1
4 )+

3
32 P1P2Ψ2(

1
4 )
)


− 384(x− 1
4 )

3

42
(
sinh( 1

2 )− sinh( 3
4 )+

1
4 cosh( 1

4 )+
3

32 sinh( 1
4 )
)
+

(x− 1
4 )

2

2 sinh( 1
4 )

+(x− 1
4 )cosh( 1

4 )+1+ sinh( 1
4 )

(5.7)

Replacing Eqs. (5.2), (5.6) and (5.7) into Eq. (5.1), we have

CT

 Ψ(x)+P1P2P3P4
(
Ψ4(x)−Ψ4(

1
4 )
)
− (x− 1

4 )P1P2P3Ψ3(
1
4 )−

(x− 1
4 )

2

2 P1P2Ψ2(
1
4 )− exP1Ψ1(x)

+ 384
7

(
(x− 1

4 )
3

6 − ex
)(

P1P2P3P4Ψ4(
1
2 )−P1P2P3P4Ψ4(

3
4 )+

1
4 P1P2P3Ψ3(

1
4 )+

3
32 P1P2Ψ2(

1
4 )
)


= 384
7

(
(x− 1

4 )
3

6 − ex
)(

sinh( 1
2 )− sinh( 3

4 )+
1
4 cosh( 1

4 )+
3
32 sinh( 1

4 )
)
− (x− 1

4 )
2

2 sinh( 1
4 )

−(x− 1
4 )cosh( 1

4 )− sinh( 1
4 )− ex cosh(x)+2sinh(x)

(5.8)

Algebraic equation system achieved in Eq. (5.8) by using Chebyshev collocation points can be solved and the coefficients CT in Eq. (5.7)
which is satisfied differential equation and whose boundary conditions can be obtained. Table 1 shows the absolute errors for M = 4, k = 0,
M = 4, k = 1, M = 4, k = 2, M = 8, k = 0 and M = 16, k = 0. As can be seen in Table 1, the results obtained by the proposed method are
superior from Reproducing Kernel Method [19] for small grid points such as M = 4, k = 0.

Example 5.2. Consider the second order nonlinear boundary value problem [21].

{
y′′(x)+

√
2

8 y(x)+ 1
32 y2(x) = 32

9 x2− 16
3 x, 0≤ x≤ 1

y(0) = 0, y(1)− y
( 1

2
)
= 0.

(5.9)

It is assumed that y′′(x) can be expanded in terms of truncated Chebyshev wavelet series as

y′′(x) =
2k

∑
n=1

M−1

∑
m=0

fnmψnm(x) =CT
Ψ(x)

Similar process given in Example 5.1, the following equations can be obtained

y(x) =CT (P1P2Ψ2(x)−2xP1P2Ψ2(1)+2xP1P2Ψ2(
1
2 )
)

(5.10)

CT
(

Ψ(x)+
√

2
8 P1P2Ψ2(x)− x

√
2

4 P1P2Ψ2(1)+ x
√

2
4 P1P2Ψ2(

1
2 )
)

+ 1
32
(
CT (P1P2Ψ2(x)−2xP1P2Ψ2(1)+2x(x− 1

4 )P1P2Ψ2(
1
2 )
))2− 32

9 x2 + 16
3 x = 0

(5.11)

Nonlinear algebraic equation system achieved from Eq. (5.11) by using collocation points can be solved and the coefficients CT in Eq.
(5.10) which is satisfied differential equation and whose boundary conditions are obtained. Table 2 shows the approximate solutions for
M = 4, k = 0, M = 4, k = 1, M = 4, k = 2, M = 8, k = 0 and M = 16, k = 0. As can be seen in Table 2 that the results obtained by the
proposed method are satisfied the boundary condition y(1)− y

( 1
2
)
= 0. When number of grid points increase, the precisions of approximate

solutions increase. The results obtained by the proposed method for small grid points such as M = 4, k = 0 are also superior from Monotone
Iterative Method [21] not satisfying the boundary condition y(1)− y

( 1
2
)
= 0 exactly
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Table 2: Approximate solutions of proposed method for various values of M, k andx and [21]

x M = 4,k = 0 M = 4,k = 1 M = 4,k = 2 M = 8,k = 0 M = 16,k = 0 [21] Third Term
0 0.260929

e-19
0.949067
e-21

0.157524
e-21

0.260974
e-19

0.260974 e-19 0

0.1 0.1035508429 0.1035501266 0.1035502791 0.1035502920 0.1035502920 0.1040764497
0.2 0.2019974623 0.2019955359 0.2019958847 0.2019959102 0.2019959103 0.2027652843
0.3 0.2908872022 0.2908870108 0.2908875266 0.2908875633 0.2908875632 0.2916751511
0.4 0.3664960100 0.3664989187 0.3664995714 0.3664996188 0.3664996189 0.3671584606
0.5 0.4258337040 0.4258381953 0.4258390441 0.4258391011 0.4258391014 0.4263068077
0.6 0.4666492402 0.4666527782 0.4666535640 0.4666536253 0.4666536254 0.4669454120
0.7 0.4874359792 0.4874368797 0.4874377503 0.4874378143 0.4874378143 0.4876278426
0.8 0.4874369540 0.4874368797 0.4874377503 0.4874378140 0.4874378143 0.4876319741
0.9 0.4666501363 0.4666527782 0.4666535639 0.4666536252 0.4666536254 0.4669578065
1.0 0.4258337040 0.4258381953 0.4258390441 0.4258391011 0.4258391014 0.4263274652

Table 3: Approximate solutions of proposed method for various values of M, k andx and [17]

x M = 4,k = 0 M = 4,k = 2 M = 16,k = 0 M = 16,k = 1 [17] OHAM
Second Order

[17] HPM
Second Order

0 0.188293
e-19

0.734306
e-23

0.188296 e-19 0.129858 e-20 0 0

0.1 0.0656100870 0.0656099762 0.0656099772 0.0656099772 0.0656099707 0.0655919115
0.2 0.1209706322 0.1209703634 0.1209703654 0.1209703653 0.1209703640 0.1209353047
0.3 0.1658758980 0.1658757275 0.1658757303 0.1658757303 0.1658757339 0.1658256598
0.4 0.2001594201 0.2001594622 0.2001594656 0.2001594656 0.2001594697 0.2000971743
0.5 0.2236942481 0.2236943874 0.2236943913 0.2236943913 0.2236943923 0.2236233202
0.6 0.2363931859 0.2363932068 0.2363932109 0.2363932109 0.2363932086 0.2363172683
0.7 0.2382090332 0.2382088205 0.2382088245 0.2382088245 0.2382088217 0.2381321777
0.8 0.2291348258 0.2291344944 0.2291344982 0.2291344982 0.2291344982 0.2290613518
0.9 0.2092040768 0.2092038847 0.2092038882 0.2092038882 0.2092038920 0.2091382608
1.0 0.1784910170 0.1784909168 0.1784909199 0.1784909199 0.1784909250 0.1784364302

Example 5.3. Consider the second order nonlinear boundary value problem [17]

{
y′′(x)+ 3

8 y(x)+ 2
1089 (y

′(x))2 +1 = 0, 0≤ x≤ 1
y(0) = 0, y(1)− y

( 1
3
)
= 0.

(5.12)

It is assumed that y′′(x) can be expanded in terms of truncated Chebyshev wavelet series as

y′′(x) =
2k

∑
n=1

M−1

∑
m=0

fnmψnm(x) =CT
Ψ(x)

Similar process given in Example 5.1, the following equations can be obtained

y(x) =CT (P1P2Ψ2(x)− 3x
2 P1P2Ψ2(1)+ 3x

2 P1P2Ψ2(
1
3 )
)

(5.13)

CT (Ψ(x)+ 3
8 P1P2Ψ2(x)− 9x

16 P1P2Ψ2(1)+ 9x
16 P1P2Ψ2(

1
3 )
)

+ 2
1089

(
CT (P1Ψ1(x)− 3

2 P1P2Ψ2(1)+ 3
2 P1P2Ψ2(

1
3 )
))2

+1 = 0
(5.14)

Nonlinear algebraic equation system achieved from Eq. (5.14) by using collocation points can be solved and the coefficients CT in Eq. (5.13)
satisfied differential equation and whose boundary conditions are obtained. Table 3 shows the approximate solutions for M = 4, k = 0,
M = 4, k = 2, M = 16, k = 0 and M = 16, k = 1. As can be seen in Table 3, the precisions of approximate solutions obtained by the
proposed method increase when number of grid points increase. The results obtained by the proposed method for small grid points such as
M = 4, k = 0 are superior from Homotopy Perturbation Method and Optimal Homotopy Asymptotic Method in [17].

Example 5.4. Consider the forth order nonlinear boundary value problem


y(4)(x)− sin(x)y′′(x)+ y(x)+ sin(y(x)) = 1+ sin(1+ sin(x))+(2+ sin(x))sin(x), 0≤ x≤ 1
y
( 1

4
)
= 1+ sin

( 1
4
)
, y′

( 1
4
)
= cos

( 1
4
)
,

y′′
( 1

4
)
=−sin

( 1
4
)
, y

( 1
2
)
− y
( 3

4
)
= sin

( 1
2
)
− sin

( 3
4
)
.

(5.15)

with analytic solution y(x) = 1+ sin(x).



Fundamental Journal of Mathematics and Applications 33

Table 4: The absolute errors of proposed method for various values of M, k andx

x M = 4,k = 0 M = 4,k = 1 M = 4,k = 2 M = 8,k = 0 M = 16,k = 0
0 1.305827 e-8 4.55634 e-10 2.69793 e-11 6.48270 e-15 1.0 e-19
0.1 1.889004 e-9 9.89746 e-11 5.96046 e-12 3.14499 e-15 7.0 e-21
0.2 2.754407 e-11 2.85912 e-12 2.25583 e-13 1.87940 e-16 6.0 e-20
0.3 8.825138 e-12 1.59099 e-12 1.50140 e-14 1.88610 e-16 1.0 e-20
0.4 8.503094 e-10 2.02999 e-11 8.22951 e-13 3.39057 e-15 3.0 e-20
0.5 4.775323 e-9 1.04675 e-10 5.14514 e-12 6.96137 e-15 3.0 e-20
0.6 1.061068 e-8 3.18029 e-10 1.20212 e-11 5.91620 e-15 0
0.7 1.058432 e-8 2.81752 e-10 1.20549 e-11 5.57247 e-15 1.3 e-19
0.8 6.632389 e-9 2.09432 e-10 8.86424 e-12 8.34323 e-15 7.0 e-20
0.9 4.857164 e-8 1.52893 e-9 7.46368 e-11 8.29286 e-15 1.4 e-19
1.0 1.148666 e-7 4.21506 e-9 2.18685 e-10 8.17725 e-15 1.5 e-19

Similar process given in Example 5.1, the following equations can be obtained

y(x) =CT

 P1P2P3P4Ψ4(x)−P1P2P3P4Ψ4(
1
4 )− (x− 1

4 )P1P2P3Ψ3(
1
4 )−

(x− 1
4 )

2

2 P1P2Ψ2(
1
4 )

+
384(x− 1

4 )
3

42
(
P1P2P3P4Ψ4(

1
2 )−P1P2P3P4Ψ4(

3
4 )+

1
4 P1P2P3Ψ3(

1
4 )+

3
32 P1P2Ψ2(

1
4 )
)


− 384(x− 1
4 )

3

42
(
sin( 1

2 )− sin( 3
4 )+

1
4 cos( 1

4 )−
3
32 sin( 1

4 )
)
− (x− 1

4 )
2

2 sin( 1
4 ) +(x− 1

4 )cos( 1
4 )+1+ sin( 1

4 )

(5.16)

CT


384
7

(
(x− 1

4 )
3

6 − (x− 1
4 )sin(x)

)(
P1P2P3P4Ψ4(

1
2 )−P1P2P3P4Ψ4(

3
4 )+

1
4 P1P2P3Ψ3(

1
4 )+

3
32 P1P2Ψ2(

1
4 )
)

+Ψ(x)+P1P2P3P4
(
Ψ4(x)−Ψ4(

1
4 )
)
− (x− 1

4 )P1P2P3Ψ3(
1
4 )−

(x− 1
4 )

2

2 P1P2Ψ2(
1
4 )

−sin(x)P1P2
(
Ψ2(x)−Ψ2(

1
4 )
)



+sin


CT

 P1P2P3P4Ψ4(x)−P1P2P3P4Ψ4(
1
4 )− (x− 1

4 )P1P2P3Ψ3(
1
4 )−

(x− 1
4 )

2

2 P1P2Ψ2(
1
4 )

+
384(x− 1

4 )
3

42
(
P1P2P3P4Ψ4(

1
2 )−P1P2P3P4Ψ4(

3
4 )+

1
4 P1P2P3Ψ3(

1
4 )+

3
32 P1P2Ψ2(

1
4 )
)


− 384(x− 1
4 )

3

42
(
sin( 1

2 )− sin( 3
4 )+

1
4 cos( 1

4 )−
3

32 sin( 1
4 )
)
+

(
1− (x− 1

4 )
2

2

)
sin( 1

4 ) +(x− 1
4 )cos( 1

4 )+1


− 384

7

(
(x− 1

4 )
3

6 − (x− 1
4 )sin(x)

)(
sin( 1

2 )− sin( 3
4 )+

1
4 cos( 1

4 )−
3

32 sin( 1
4 )
)
+(x− 1

4 )cos( 1
4 )

+

(
1+ sin(x)− (x− 1

4 )
2

2

)
sin( 1

4 )− sin(1+ sin(x))− (2+ sin(x))sinx = 0

(5.17)

Nonlinear algebraic equation system achieved from Eq. (5.17) by using collocation points can be solved and the coefficients CT in Eq.
(5.16) satisfied differential equation and whose boundary conditions are obtained. Table 4 shows the absolute errors for M = 4, k = 0,
M = 4, k = 1, M = 4, k = 2, M = 8, k = 0 and M = 16, k = 0. As can be seen in Table 4 and Fig. 1, absolute errors tend to zero when
number of grid points increase. The results obtained by the proposed method for small grid points such as M = 4, k = 0 are superior.

6. Conclusion

Chebyshev wavelet collocation method has been applied to the one linear and three nonlinear nonlocal boundary value problems. Approximate
and exact solutions of examples are correspondingly compared. For Example 1, the comparisons of the absolute errors given in Table 1, it is
clear that the results obtained by the proposed method are better than Reproducing Kernel Method [19]. Numerical results of Example 2
which is given in Table 2 are stable when number of grid points increase. It can be seen that results of proposed method for small grid points
such as M = 4, k = 0 are superior to the results of Monotone Iterative Method [21] as given in Table 2. Numeric solutions of Example 3 for
various values of M and k are given in Table 3. The precisions of approximate solutions obtained by the proposed method increase when
number of grid points increase as can be seen in Table 3. For small grid points such asM = 4, k = 0, the results of proposed method are
superior to the results of Homotopy Perturbation Method and Optimal Homotopy Asymptotic Method in [17]. Absolute errors of Example 4
are given in Table 4 and Fig 1 for various values of M and k. As can be seen from Table 4 and Fig 1, absolute errors tend to zero when
number of grid points increase and the proposed method is highly efficient and accurate. All of the calculations in this study have been
made by the Maple program. Newton Raphson method has been used to solve nonlinear algebraic equation systems. These calculations
demonstrate that the accuracy of the Chebyshev wavelet collocation method is quite good even for small number of grid points. In proposed
method, there are no complex integrals or methodology. Applications of this method are very simple. It is also very convenient for solving
the initial, boundary and nonlocal boundary value problems since the initial, boundary and nonlocal conditions are automatically taken in
the solution. In addition, it can be concluded that the proposed method is reliable, simple, fast, minimal computation costs, flexible, and
convenient alternative method.
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Figure 5.1: The absolute errors of Example 5.4 for various values of M and k
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