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Coefficient inequalities for Janowski-Sakaguchi
type functions associated with conic regions
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Abstract
The purpose of the present paper is to introduce and study some new
subclasses of Sakaguchi-type functions defined by using the concept
of Janowski functions in conic regions. Various interesting properties
such as sufficiency criteria, coefficient estimates and distortion result
are investigated for these function classes.
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1. Introduction
Let A be the class of functions f of the form

(1.1) f (z) = z +

∞∑
n=2

anz
n,

which are analytic in the open unit disk D = {z ∈ C : |z| < 1}. As usual, S represents
the class of all functions in A which are univalent in D.

If f and g are analytic functions in D, then we say that f is subordinate to g, denoted
by f ≺ g or f (z) ≺ g (z) , if there exists an analytic function w in D with |w(z)| < |z|
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such that f(z) = g (w(z)). Furthermore, if the function g is univalent in D, then we have
the following equivalence:

f (z) ≺ g (z)⇐⇒ f(0) = g(0) and f(D) ⊂ g(D).

For arbitrary fixed numbers A,B and σ satisfying −1 ≤ B < A ≤ 1, 0 ≤ σ < 1, let
P (A,B, σ) denote the family of functions

q(z) = 1 +

∞∑
n=1

qnz
n (z ∈ D).

The function q belongs to the class P (A,B, σ) if and only if

q(z) ≺ (1− σ)

(
1 +Az

1 +Bz

)
+ σ.

Thus, q ∈ P (A,B, σ) if and only if for some w with |w(z)| < |z| , we have

q(z) =
(1− σ) (1 +Aw(z)) + σ (1 +Bw(z))

(1 +Bw(z))
.

This class was investigated by Polatoglu [18], and further by putting σ = 0 in P (A,B, σ) ,
we get the class P (A,B) intoduced by Janowski [6]. Also we note that P (1,−1, σ) ≡ P(σ)
denotes the familiar class of functions with positive real part greater than σ (see, for
details, [4]). The classes P and P[A,B] are connected by

p (z) ∈ P(σ)⇐⇒ (A+ 1) p (z)− (A− 1)

(B + 1) p (z)− (B − 1)
∈ P[A,B, σ].

Janowski functions are studied by several researchers like Cho [2], Liu and Noor [10], Liu
and Srivastava [12], Noor and Arif [13], Polatoğlu [17], Shams et al. [21] and Wang et al.
[24], see also [3, 11].

Consider the domain

(1.2) Ωk =

{
u+ iv : u > k

√
(u− 1)2 + v2

}
,

for fixed k, Ωk represents the conic region bounded by the imaginary axis (k = 0), the
right branch of a hyperbola (0 < k < 1) and a parabola (k = 1) and an ellipse (k > 1).
Also, we note that, for no choice of k (k > 1), Ωk reduces to a disk. This domain was
studied by Kanas [7] and Kanas and Wisniowska [8, 9]. They also extended this domain
to Ωk,σ defined by

Ωk,σ = (1− σ) Ωk + σ (0 ≤ σ < 1).

The function pk,σ, with pk,σ (0) = 1, p′k,σ (0) > 0 plays the role of extremal for these
conic domain Ωk,σ and is given by

(1.3) pk,σ (z) =



1+(1−2σ)z
1−z , k = 0,

1 + 2(1−σ)
π2

(
log 1+

√
z

1−
√
z

)2
, k = 1,

1 + 2(1−σ)
1−k2 sinh2

[(
2
π

arccos k
)

arc tanh
√
z
]
, 0 < k < 1,

1 + (1−σ)
k2−1

sin

 π
2R(t)

u(z)√
t∫

0

1√
1−x2
√

1−(tx)2
dx

+ 1
k2−1

, k > 1,
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where u(z) = z−
√
t

1−
√
tz

(t ∈ (0, 1)) and t is chosen such that k = cosh
(
πR′(t)
4R(t)

)
, with R(t) is

Legendre’s complete elliptic integral of the first kind and R′(t) is complementary integral
of R(t). For details on related work about conic domains, see [1, 5, 8, 9, 14, 23].

Let Ppk,σ denote the class of all functions p which are analytic in D with p (0) = 1
and p (z) ≺ pk,σ (z) for z ∈ D. Clearly, it can be seen that Ppk,σ ⊂ P.

1.1. Definition. (See [15]) A function p ∈ k − P [A,B] if and only if

(1.4) p (z) ≺ (A+ 1) pk(z)− (A− 1)

(B + 1) pk(z)− (B − 1)
(k ≥ 0),

where pk(z) = pk,0 (z) and −1 ≤ B < A ≤ 1.

Geometrically, the function p ∈ k−P [A,B] takes all values in conic domain Ωk [A,B] , −1 ≤
B < A ≤ 1, k ≥ 0 such that for w ∈ Ωk [A,B], we have

(1.5) <
(

(B − 1)w(z)− (A− 1)

(B + 1)w(z)− (A+ 1)

)
> k

∣∣∣∣ (B − 1)w(z)− (A− 1)

(B + 1)w(z)− (A+ 1)
− 1

∣∣∣∣ ,
or equivalently,

Ωk [A,B] =
{
u+ iv :

[(
B2 − 1

) (
u2 + v2

)
− 2 (AB − 1)u+

(
A2 − 1

)]2
> k2

[
− 2 (B + 1)

(
u2 + v2

)
+ 2 (A+B + 2)u− 2 (A+ 1)2

+ 4 (A−B)2 v2
]}
.

The domain Ωk [A,B] contains the conic domain Ωk inside the circular region defined
by Ω [A,B] . The impact of Ω [A,B] on the conic domain Ωk changes the original shape
of the conic regions. The ends of hyperbola and parabola get closer to each other but
never meet anywhere and the ellipse gets the shape of oval. When A = 1, B = −1, the
radius of the circular disk defined by Ω [A,B] tends to infinity, consequently the arms of
hyperbola and parabola expand and the oval turns into ellipse.

Motivated essentially by the recent paper of Noor and Malik [15], we define some
classes of analytic functions associated with conic domains as follows:

1.2. Definition. A function p ∈ k − P [A,B, σ] if and only if

p (z) ≺ (A+ 1) pk,σ (z)− (A− 1)

(B + 1) pk,σ (z)− (B − 1)
,

where pk,σ (z) is defined by (1.3) and 0 ≤ σ < 1, k ≥ 0 and −1 ≤ B < A ≤ 1.

1.3. Definition. Let f ∈ A. Then f ∈ k−US [A,B, σ, t] if and only if

(1− t) zf ′ (z)
f (z)− f (tz)

∈ k − P [A,B, σ] ,

for some 0 ≤ σ < 1, −1 ≤ B < A ≤ 1, |t| ≤ 1, t 6= 1 and k ≥ 0.

1.4. Definition. Let f ∈ A. Then f ∈ k−UC [A,B, σ, t] if and only if

(1− t) (zf ′ (z))
′

f ′ (z)− tf ′ (tz) ∈ k − P [A,B, σ] ,

for some 0 ≤ σ < 1, −1 ≤ B < A ≤ 1, |t| ≤ 1, t 6= 1 and k ≥ 0.

It can easily be seen that

(1.6) f ∈ k−UC [A,B, σ, t]⇐⇒ zf ′ ∈ k−US [A,B, σ, t] .

We here present several special cases of the above mentioned function classes.
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(1) For σ = 0 and t = 0 the above classes reduce to the classes k−ST [A,B] and
k−UC [A,B] studied recently by Noor and Malik [15];

(2) For k = 0, A = 1, B = −1, we obtain the classes S (σ, t) and T (σ, t) discussed
in [16];

(3) The classes 0−US [1,−1, σ,−1] = S (σ,−1) and 0−UC [1,−1, σ,−1] = T (σ,−1)
were introduced and studied by Owa et al. [16];

(4) The classes 0−US [1,−1, 0,−1] = S (0,−1) and 0−UC [1,−1, 0,−1] = T (0,−1)
were defined by Sakaguchi [20];

(5) The classes 0−ST [A,B] = S∗ [A,B] and 0−UC [A,B] = C [A,B] , were intro-
duced and studied by Janowski [6].

Unless otherwise mentioned, throughout this paper, we assume that

0 ≤ σ < 1, −1 ≤ B < A ≤ 1, |t| ≤ 1, t 6= 1 and k ≥ 0.

The main objective of the present paper is to introduce and study some new subclasses
of Sakaguchi-type functions defined by using the concept of Janowski functions in conic
regions. Various interesting properties such as sufficiency criteria, coefficient estimates
and distortion result are investigated for these function classes.

2. Main Results
To prove our main results, we need the following two lemmas.

2.1. Lemma. (See [19]) Let

p (z) = 1 +

∞∑
n=1

pnz
n ≺ F (z) = 1 +

∞∑
n=1

dnz
n (z ∈ D).

If F is univalent in D and F (D) is convex, then

|pn| ≤ |d1| (n ≥ 1).

2.2. Lemma. (See [15]) Let p (z) = 1 +
∞∑
n=1

cnz
n ∈ k − P [A,B, σ] . Then

|cn| ≤ |δAB | ,
where

(2.1) |δAB | =
(A−B) |δk,σ|

2
,

and

(2.2) δk,σ =


8(1−σ)(arccos k)2

π2(1−k2)
, 0 ≤ k < 1,

8(1−σ)
π2 , k = 1,

π2(1−σ)
4
√
t(k2−1)R2(t)(1+t)

, k > 1.

We begin by deriving the following result.

2.3. Theorem. Let f ∈ k−US [A,B, σ, t]. Then

|a2| ≤
|δAB |
|2− u2|

,

and for n ≥ 3

|an| ≤
|δAB |
|vn|


1 + |δAB |

n−1∑
j=2

|uj |
|vj | + |δAB |2

n−1∑
j2>j1

n−2∑
j1=2

|uj1uj2 |
|vj1vj2 |

+

|δAB |3
n−1∑
j3>j2

n−2∑
j2>j1

n−3∑
j1=2

|uj1uj2uj3 |
|vj1vj2vj3 |

+ · · ·+ |δAB |n−2
n−1∏
j=2

|uj |
|vj |

 ,
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where δAB is defined by (2.1) and

(2.3) un = 1 + t+ t2 + · · ·+ tn−1 and vn = n− un.

Proof. Consider

(2.4) (1− t) zf ′ (z) = (f (z)− f (tz)) p (z) ,

where p ∈ k − P [A,B, σ]. Let p (z) = 1 +
∞∑
n=1

cnz
n. It follows from (2.4) that

z +

∞∑
n=2

nanz
n =

(
z +

∞∑
n=2

unanz
n

)(
1 +

∞∑
n=1

cnz
n

)
.

Equating the coefficients of zn on both sides of the above equation, we have

nan = unan +

n−1∑
j=1

an−jun−jcj ,

which implies that

(2.5) |n− un| |an| ≤
n−1∑
j=1

|un−j | |an−j | |cj | .

Since p ∈ k − P [A,B, σ], by Lemma 2.2, we obtain

|cn| ≤ |δAB | ,

where δAB is defined by (2.1). Hence (2.5) reduces to

(2.6) |an| ≤
|δAB |
|n− un|

n−1∑
j=1

|un−j | |an−j | (n ≥ 2).

It is clear from (2.6) that for n ≥ 2, we see that

|a2| ≤
|δAB |
|2− u2|

,

|a3| ≤
|δAB |
|3− u3|

[
1 + |δAB |

|u2|
|2− u2|

]
,

and

|a4| ≤
|δAB |
|4− u4|

[
1 + |δAB |

{
|u2|
|2− u2|

+
|u3|
|3− u3|

}
+ |δAB |2

{
|u2| |u3|

|2− u2| |3− u3|

}]
.

Hence by using mathematical induction, we obtain the desired result.

For t = 0 and σ = 0, we get the following result obtained in [15].

2.4. Corollary. Let f ∈ k−ST [A,B]. Then

|an| ≤
n−2∏
j=0

|δk (A−B)− 2jB|
2 (j + 1)

(n ≥ 2).

Furthermore, by taking A = 1 and B = −1 in the last Corollary 2.4, we obtain the
following result for the class k−ST, which was introduced by Kanas and Wisniowska [8].

2.5. Corollary. Let f ∈ k−ST. Then

|an| ≤
n−2∏
j=0

|δk + j|
(j + 1)

(n ≥ 2).
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By putting A = 1 − 2β, 0 ≤ β < 1, B = −1, t = 0 and σ = 0 in Theorem 2.3, we
obtain the coefficient bounds for SD (k, β), defined by Shams et al. [21].

2.6. Corollary. Let f ∈ SD (k, β). Then

(2.7) |an| ≤
n−2∏
j=0

|δk (1− β) + j|
(j + 1)

(n ≥ 2).

The inequality (2.7) is better than the result obtained by Owa et al. [16].

By setting t = 0, σ = 0, k = 0 and δk = 2 in Theorem 2.3, we get the following
coefficient bounds which was proved by Janowski [6].

2.7. Corollary. Let f ∈ S∗ [A,B]. Then

|an| ≤
n−2∏
j=0

|(A−B)− jB|
(j + 1)

(n ≥ 2).

Further by setting A = 1 − 2β with 0 ≤ β < 1, B = −1, we obatin the coefficient
estimates for the class S∗(β), introduced by Robertson [4].

2.8. Theorem. Let f ∈ k−UC [A,B, σ, t]. Then, for n ≥ 2

|an| ≤
|δAB |
n |vn|


1 + |δAB |

n−1∑
j=2

|uj |
|vj | + |δAB |2

n−1∑
j2>j1

n−2∑
j1=2

|uj1uj2 |
|vj1vi2 |

+ |δAB |3
n−1∑
j3>j2

n−2∑
j2>j1

n−3∑
j1=2

|uj1uj2uj3 |
|vj1vj2vj3 |

+ · · · |δAB |n−2
n−1∏
j=2

|uj |
|vj |

 ,

where δAB, un and vn are defined by (2.1) and (2.3), respectively.

Proof. By virtue of Theorem 2.3 and the relationship (1.6) , we get the required result.

2.9. Theorem. Let f ∈ A satisfies the condition

(2.8)
∞∑
n=2

[
2 (k + 1)

(1− σ)
|n− un|+ |n (B + 1)− (A+ 1)un|

]
|an| < (A−B) .

Then f ∈ k−US [A,B, σ, t] .
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Proof. Assume that (2.8) holds. Let us consider

(2.9)

k

∣∣∣∣∣∣ (B − 1) (1−t)zf ′(z)
f(z)−f(tz) − (A− 1)

(B + 1) (1−t)zf ′(z)
f(z)−f(tz) − (A+ 1)

− 1

∣∣∣∣∣∣
=k

∣∣∣∣ (B − 1) (1− t) zf ′ (z)− (A− 1) (f (z)− f (tz))

(B + 1) (1− t) zf ′ (z)− (A+ 1) (f (z)− f (tz))
− 1

∣∣∣∣
=2k

∣∣∣∣ (1− t) zf ′ (z)− (f (z)− f (tz))

(B + 1) (1− t) zf ′ (z)− (A+ 1) (f (z)− f (tz))

∣∣∣∣
=2k

∣∣∣∣∣∣∣∣
∞∑
n=2

(n− un) anz
n

(B −A) z +
∞∑
n=2

(n (B + 1)− (A+ 1)un) anzn

∣∣∣∣∣∣∣∣
≤

2k
∞∑
n=2

|(n− un) an| |zn|

(A−B) |z| −
∞∑
n=2

|n (B + 1)− (A+ 1)un| |an| |zn|

≤
2k
∞∑
n=2

|(n− un) an|

(A−B)−
∞∑
n=2

|n (B + 1)− (A+ 1)un| |an|
,

it follows from (2.8) that

(A−B)−
∞∑
n=2

|n (B + 1)− (A+ 1)un| |an| > 0.

To show that f ∈ k−US [A,B, σ, t] , it is sufficient to show that

k

∣∣∣∣∣∣ (B − 1) (1−t)zf ′(z)
f(z)−f(tz) − (A− 1)

(B + 1) (1−t)zf ′(z)
f(z)−f(tz) − (A+ 1)

− 1

∣∣∣∣∣∣−<
 (B − 1) (1−t)zf ′(z)

f(z)−f(tz) − (A− 1)

(B + 1) (1−t)zf ′(z)
f(z)−f(tz) − (A+ 1)

− 1

 < 1−σ.

From (2.9), we obtain

k

∣∣∣∣∣∣ (B − 1) 2zf ′(z)
f(z)−f(−z) − (A− 1)

(B + 1) 2zf ′(z)
f(z)−f(−z) − (A+ 1)

− 1

∣∣∣∣∣∣−<
 (B − 1) 2zf ′(z)

f(z)−f(−z) − (A− 1)

(B + 1) 2zf ′(z)
f(z)−f(−z) − (A+ 1)

− 1


≤ (k + 1)

∣∣∣∣∣∣ (B − 1) 2zf ′(z)
f(z)−f(tz) − (A− 1)

(B + 1) 2zf ′(z)
f(z)−f(tz) − (A+ 1)

− 1

∣∣∣∣∣∣
≤

2 (k + 1)
∞∑
n=2

|(n− un) an|

(A−B)−
∞∑
n=2

|n (B + 1)− (A+ 1)un| |an|
.

Last inequality is bounded by 1− σ if

2 (k + 1)

∞∑
n=2

|(n− un) an| < (1− σ)

(
(A−B)−

∞∑
n=2

|n (B + 1)− (A+ 1)un| |an|

)
.

Hence, we have
∞∑
n=2

[
2 (k + 1)

(1− σ)
|n− un|+ |n (B + 1)− (A+ 1)un|

]
|an| < (A−B) .
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This completes the proof.

Taking t = 0, σ = 0, A = 1 and B = −1 in Theorem 2.9, then we get the following
known result, proved by Kanas and Wisniowska [8].

2.10. Corollary. If f ∈ A satisfies the condition
∞∑
n=2

[n+ k (n− 1)] |an| < 1 (k ≥ 0),

then f ∈ k−ST.

When we put t = 0, σ = 0, A = 1 − 2β and B = −1 in the Theorem 2.9, we obtain
the following result proved by Shams et al. [21].

2.11. Corollary. If f ∈ A satisfies the condition
∞∑
n=2

[n(k + 1)− (k + β)] |an| < 1− β (k ≥ 0),

then f ∈ SD (k, β) .

Moreover, by taking k = 0 in Corollary 2.11, we get the following known result proved
by Silverman [22].

2.12. Corollary. If f ∈ A satisfies the condition
∞∑
n=2

[n− β] |an| < 1− β (0 ≤ β < 1),

then f ∈ S∗(β).

2.13. Theorem. If f ∈ A satisfies the condition

(2.10)
∞∑
n=2

n

[
2 (k + 1)

(1− σ)
|n− un|+ |n (B + 1)− (A+ 1)un|

]
|an| < (A−B) ,

then f ∈ k−UC [A,B, σ, t].

Proof. The proof follows directly by Theorem 2.9 and (1.6) .

When t = 0 and σ = 0, we obtain the following result proved in [15].

2.14. Corollary. If f ∈ A satisfies the condition
∞∑
n=2

n [2 (k + 1) (n− 1) + |n (B + 1)− (A+ 1)|] |an| ≤ (A−B) ,

then f ∈ k−UC [A,B].

We now define the classes k−US∗ [A,B, σ, t] and k−UC∗ [A,B, σ, t]:

k−US∗ [A,B, σ, t] = {f ∈ A : f satisfies the condition (2.8)} ,

and

k−UC∗ [A,B, σ, t] = {f ∈ A : f satisfies the condition (2.10)} .
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2.15. Theorem. If f ∈ k−US∗ [A,B, σ, t] , then

|z| −
∞∑
n=2

|an| |z|n −Al |z|l+1 ≤ |f (z)| ≤ |z|+
∞∑
n=2

|an| |z|n +Al |z|l+1 ,

where

Al =

(1− σ) (A−B)−
l∑

n=2

[2 (k + 1) |n− un|+ (1− σ) |(A+ 1)un − n (B + 1)|] |an|

{[2 (k + 1)− (1− σ) (B + 1)] (l + 1) + [(A+ 1) (1− σ)− 2 (k + 1)] |ul+1|}
.

Proof. From (2.8), we have

(2.11)
∞∑

n=l+1

[2 (k + 1) |n− un|+ (1− σ) |(A+ 1)un − n (B + 1)|] |an|

≤ (1− σ) (A−B)−
l∑

n=2

[2 (k + 1) |n− un|+ (1− σ) |(A+ 1)un − n (B + 1)|] |an| .

Since

(2.12)
[2 (k + 1) |n− un|+ (1− σ) |(A+ 1)un − n (B + 1)|]
≥ [2 (k + 1)− (1− σ) (B + 1)]n+ [(A+ 1) (1− σ)− 2 (k + 1)] |un| ,

and hence

[2 (k + 1)− (1− σ) (B + 1)]n+ [(A+ 1) (1− σ)− 2 (k + 1)] |un|

is monotonically increasing with respect to n. Thus, from (2.11) and (2.12), we get

(2.13)
∞∑

n=l+1

[[2 (k + 1)− (1− σ) (B + 1)]n+ [(A+ 1) (1− σ)− 2 (k + 1)] |un|] |an|

≤ (1− σ) (A−B)−
l∑

n=2

[2 (k + 1) |n− un|+ (1− σ) |(A+ 1)un − n (B + 1)|] |an| .

Moreover, we see that

(2.14)

{[2 (k + 1)− (1− σ) (B + 1)] (l + 1) + [(A+ 1) (1− σ)− 2 (k + 1)] |ul+1|}
∞∑

n=l+1

|an|

≤
∞∑

n=l+1

{[2 (k + 1)− (1− σ) (B + 1)]n+ [(A+ 1) (1− σ)− 2 (k + 1)] |un|} |an|

From (2.13) and (2.14), we can write
∞∑

n=l+1

|an| ≤ Al.

Therefore, we obtain

|f (z)| ≤ |z|+
l∑

n=2

|an| |z|n +

l∑
n=2

|an| |z|l+1 ≤ |z|+
l∑

n=2

|an| |z|n +Al |z|l+1
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and

|f (z)| ≥ |z| −
l∑

n=2

|an| |z|n −Al |z|l+1 .

This completes the proof.

Similarly, we get the following result.

2.16. Theorem. If f ∈ k−UC∗ [A,B, σ, t] , then

|z| −
l∑

n=2

|an| |z|n −Bl |z|l+1 ≤ |f (z)| ≤ |z|+
l∑

n=2

|an| |z|n +Bl |z|l+1 ,

and

1−
l∑

n=2

n |an| |z|n−1 − Cl |z|l ≤
∣∣f ′ (z)∣∣ ≤ 1 +

l∑
n=2

n |an| |z|n−1 + Cl |z|l ,

where

Bl =

(1− σ) (A−B)−
l∑

n=2

n [2 (k + 1) |n− un|+ (1− σ) |n (B + 1)− (A+ 1)un|] |an|

(l + 1) {[2 (k + 1)− (1− σ) (B + 1)] (l + 1) + [(A+ 1) (1− σ)− 2 (k + 1)] |ul+1|}
and

Cl =

(1− σ) (A−B)−
l∑

n=2

n [2 (k + 1) |n− un|+ (1− σ) |n (B + 1)− (A+ 1)un|] |an|

{[2 (k + 1)− (1− σ) (B + 1)] (l + 1) + [(A+ 1) (1− σ)− 2 (k + 1)] |ul+1|}
.
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