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Density estimation of circular data with Bernstein
polynomials

J.A. Carnicero ∗, M.P. Wiper† and M.C. Ausín‡

Abstract
This paper introduces a new, non-parametric approach to the modeling
of circular data, based on the use of Bernstein polynomial densities.
The model generalizes the standard Bernstein polynomial model to
account for the specific characteristics of circular data. In particular,
it is shown that the trigonometric moments of the proposed circular
Bernstein polynomial distribution can all be derived in closed form.
Secondly, we introduce an approach to circular Bernstein polynomial
density estimation given a sample of data and examine the properties
of this estimator. Finally our method is illustrated with a simulation
study and a real data example.
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1. Introduction
Problems where the data are angular directions occur in many different scientific fields

such as biology (direction of movement of migrating animals), meteorology (wind direc-
tions) and geology (directions of joints and faults). Also, phenomena that are periodic
in time such as times of hospital admittance for births or the times when crimes are
committed may also be converted to angular data via a simple transformation modulo
some period. Data of this type are commonly known as circular data and are usu-
ally represented as points on the circumference of an unit circle or as angles, θ, where
0 ≤ θ < 2π radians, which represent the positive angle of rotation from some arbitrarily
chosen origin, θ = 0.

A number of parametric models for circular data have been developed using a variety of
techniques, see e.g. Mardia and Jupp (1999) for a full review. However, most parametric
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models developed for circular data are unimodal and symmetric but, in many cases, both
multimodal and asymmetric data may be encountered. In such cases, semi-parametric
or non-parametric approaches might be preferred. Semi-parametric approaches based
on trigonometric sums and mixtures of von Mises or circular normal distributions have
been introduced in Fernández-Durán (2004) and Mooney et al. (2003) respectively. Non-
parametric, kernel based approaches have also been studied in e.g. Hall et al. (1987), Bai
et al. (1988), Fisher (1989), Klemelä (2000) and Taylor (2008).

In this paper, we introduce an alternative non-parametric approach based on the use
of Bernstein polynomials. It is well known that the Bernstein polynomial is a useful
tool for interpolating functions defined on a closed interval and can therefore be used to
approximate a density function on such an interval. Furthermore, Bernstein polynomials
are an example of a polynomial approximation with a simple interpretation in terms of
probability and possess good shape preservation properties, see e.g. Carnicer and Peña
(1993). Bernstein polynomials have been proposed as density estimators for variables
with finite support in a number of articles, see e.g. Vitale (1975), Petrone (1999a,b),
Petrone and Wassermann (2002), Babu et al. (2002) and Kakizawa (2004).

Given that computations for kernel density estimations using standard circular densi-
ties such as the von Mises are often highly involved, this means that the use of Bernstein
polynomials, which are computationally straightforward is attractive in this context.
However, a problem with generalizing standard Bernstein polynomial density approaches
to circular data is that these can lead to fitted densities with discontinuities, which seems
unreasonable for continuous, circular data. The main objective of this paper is to show
that it is possible to adapt linear Bernstein polynomial estimators to ensure that circular
density estimators are produced. One advantage of the proposed Bernstein polynomial
density approach is then that circular moments can be calculated in a closed form.

The article is organized as follows. Firstly, in Section 2, we define the Bernstein
polynomial density approximation and show how this can be extended to circular vari-
ables. Secondly, in Section 3, we demonstrate how to calculate the circular moments of
a Bernstein polynomial density. Then, in Section 4, we introduce a circular Bernstein
polynomial density estimation procedure based on the linear estimator of Vitale (1975)
and examine the convergence properties of the proposed estimator in comparison with
the Vitale estimator. Our results are illustrated with a simulation study and a real data
set in Section 5. Finally, we draw conclusions and consider various extensions in Section
6.

2. Bernstein polynomial approximations for circular variables
Let F be a continuous function on [0, 1]. Then, the Bernstein polynomial of order k

for F is defined to be

(2.1) Bk(x) =

k∑
j=0

F

(
j

k

)(
k
j

)
xj(1− x)k−j for 0 ≤ x ≤ 1 and k ∈ N.

In particular, it is well known that Bk(x) converges uniformly to FX(x) as k goes to
infinity, see e.g. Lorentz (1997).

In particular, if X is a strictly continuous random variable with support [0, 1] and
cumulative distribution function F = FX(·), then (2.1) is also a distribution function.
Then, the derivative of this function is the Bernstein density function which is defined
as:

(2.2) bk(x) =

k∑
j=1

(
FX

(
j

k

)
− FX

(
j − 1

k

))
β(x | j, k − j + 1),
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where β(· | a, b) is a beta density function:

(2.3) β(x | a, b) =
1

B(a, b)
xa−1 (1− x)b−1

and B(a, b) = (a− 1)!(b− 1)!/(a+ b− 1)!, for a, b ∈ N, is the beta function.
Derivatives of Bernstein polynomials of a given function on the unit interval are also

well known to converge uniformly to the function derivatives, see e.g. Phillips (2003),
Chapter 7, and, in particular, from Butzer (1955), it is easy to show that, as long as fX
is twice differentiable over the unit interval, then

(2.4) bk(x)− fX(x) =
1

2k

[
(1− 2x)f ′X(x) + x(1− x)f ′′X(x)

]
+ o

(
1

k

)
.

Floater (1995) also gives an error bound for the Bernstein polynomial approximation as

(2.5) |bk(x)− f(x)| ≤ 1

2k

[
|1− 2x|||f ′X ||+ x(1− x)||f ′′X ||

]
where || · || is the max norm on [0, 1].

Clearly it is straightforward to extend the use of Bernstein polynomials to densities
defined on any closed interval, e.g. [0, 2π]. However, in order to define a distribution on
the circle, it is first necessary to formally define the density function of a circular random
variable.

The density function, fΘ(θ) of a continuous, circular random variable, Θ, is a non-
negative, continuous function such that

fΘ(θ + 2πr) = fΘ(θ), for θ ∈ R and any r ∈ Z

and
∫ 2π

0
fΘ(θ) dθ = 1.

In order to define a cumulative distribution function of a circular random variable,
it is necessary to establish an origin, say ν ∈ [0, 2π). Given this origin, the cumulative
distribution function is:

F νΘ(θ) =

∫ ν+θ

ν

fΘ(u) du, for 0 ≤ θ < 2π.

With respect to the origin ν, we shall also define the (shifted) density function

fνΘ(θ)
def
= fΘ(ν + θ) where f0

Θ(θ) = fΘ(θ).

If we wish to consider the Bernstein polynomial density approximation of order k,
with respect to the origin ν, that is

(2.6) bνk(θ) =
1

2π

k∑
j=1

(
F νΘ

(
2πj

k

)
− F νΘ

(
2π(j − 1)

k

))
β

(
θ

2π

∣∣∣∣ j, k − j + 1

)
for this to be a strictly continuous, circular density then it is necessary that,

(2.7) F νΘ

(
2π

k

)
= 1− F νΘ

(
2π(k − 1)

k

)
,

where F νΘ(θ) represents the cumulative distribution function with respect to the origin,
ν. The following theorem guarantees the existence of at least one origin satisfying (2.7).

2.1. Theorem. Let fΘ be a density function for a continuous, circular random variable,
Θ. Then, for any k ∈ N, there exists at least one point, ν = νk ∈ [0, 2π) such that,∫ ν+ 2π

k

ν

fΘ(θ) dθ =

∫ ν

ν− 2π
k

fΘ(θ) dθ.
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Proof. Define G(ν) =
∫ ν+ 2π

k
ν

fΘ(θ) dθ −
∫ ν
ν− 2π

k
fΘ(θ) dθ. If there exist two points, 0 ≤

ν1 6= ν2 < 2π such that G(ν1) ≤ 0 and G(ν2) ≥ 0, then by Bolzano’s intermediate value
theorem, there exists at least one point, 0 ≤ ν0 < 2π such that G(ν0) = 0. Otherwise,
suppose that G(ν) is always positive. Then, we have∫ ν

ν− 2π
k

fΘ(θ) dθ <

∫ ν+ 2π
k

ν

fΘ(θ) dθ <

∫ ν+2π

ν+2π− 2π
k

fΘ(θ) dθ

which is impossible, as, due to the periodicity of f , we have that∫ ν

ν− 2π
k

fΘ(θ) dθ =

∫ ν+2π

ν+2π− 2π
k

fΘ(θ) dθ.

Similarly, G cannot always be negative and so the theorem is proved. �

For many distributions, the set of origins, which satisfy the conditions of Theorem
2.1 may contain more than one, or even an uncountable number of elements. Define νk
to be this set of origins. Then, for example, a density which is symmetric about π has
νk ⊇ {0, π} and for a uniform density, νk = {ν : ν ∈ [0, 2π)}.

2.1. Asymptotic properties. It is important to examine how the convergence prop-
erties of the Bernstein polynomial approximation as k →∞ are influenced by the depen-
dence of the origin on k. From now on, we shall assume throughout that fΘ(θ) has finite
second derivative for all θ ∈ R. Then, applying (2.5) to the circular case and considering
a fixed point, θ, we have that for any origin, νk,

|bνkk (mod(θ − νk, 2π))− fΘ(θ)| ≤ 1

4πk

[
|1− 2x

νk
θ |max

ϑ
|f ′Θ(ϑ)|+

x
νk
θ (1− xνkθ ) max

ϑ
|f ′′Θ(ϑ)|

]
≤ 1

4πk

[
max
ϑ
|f ′Θ(ϑ)|+ 1

4
max
ϑ
|f ′′Θ(ϑ)|

]
(2.8)

for all θ, where mod(a, b) represents the value of a modulo b and, for brevity of notation,
we write

(2.9) x
νk
θ

def
= mod

(
θ − νk

2π
, 1

)
.

Thus, it is clear that however the origins, νk, are chosen, then the Bernstein polynomial
approximation still converges uniformly to fΘ with the same order of convergence as the
linear Bernstein polynomial although the exact error will depend on the procedure for
choosing the origins.

It is interesting to consider the asymptotic behaviour of the set of origins, νk, satisfying
Theorem 2.1. In particular, it is straightforward to see that as k →∞, then the origins
cluster around the turning points of the density fΘ.

2.2. Theorem. Let νk ∈ νk. Then, there exists at least one point, ν ∈
[
νk − 2π

k
, νk + 2π

k

]
such that f ′Θ(ν) = 0.

Proof. Suppose that f ′Θ(ν) > 0 for all ν in
[
νk − 2π

k
, νk + 2π

k

]
. Then this implies that

G(νk) =

∫ νk+ 2π
k

νk

fΘ(θ) dθ −
∫ νk

νk− 2π
k

fΘ(θ) dθ > 0

which is impossible from Theorem 2.1 and similarly if f ′Θ(ν) is negative over the whole
interval which is a contradiction. �
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2.2. An alternative approximation. The results of the previous section suggest that
an alternative Bernstein polynomial approximation based on using a fixed origin, ν, such
that f ′Θ(ν) = 0 can also be considered. As it may be that ν /∈ νk, for some k, then the
standard Bernstein polynomial approximation needs to be corrected to provide a circular
approximation. Thus, writing

bνk(θ) =

k∑
j=1

ωνkjβ

(
θ

2π

∣∣∣∣ j, k − j + 1

)

where ωνkj = F ν
(

2πj
k

)
−F ν

(
2π(j−1)

k

)
for j = 1, . . . , k, then the corrected approximation

is given by

cνk(θ) =

k∑
j=1

$ν
kjβ

(
θ

2π

∣∣∣∣ j, k − j + 1

)
.

where $ν
k1 = $ν

kk = (ωνk1 + ωνkk)/2 and $ν
kj = ωνkj for j = 2, . . . , k − 1. It is easy to

show that this corrected approximation preserves the asymptotic properties of the usual
Bernstein polynomial.

2.3. Theorem. Assume that ν ∈ [0, 2π) satisfies f ′Θ(ν) = 0. Then

|cνk(θ)− bνk(θ)| = o

(
1

k

)
.

Proof. We have

cνk(θ)− bνk(θ) =

k∑
j=1

(
$ν
kj − ωνkj

)
β

(
θ

2π

∣∣∣∣ j, k − j + 1

)

= ($ν
k1 − ωνk1)β

(
θ

2π

∣∣∣∣ 1, k)+ ($ν
kk − ωνkk)β

(
θ

2π

∣∣∣∣ k, 1)
=

ωνkk − ωνk1

2

(
β

(
θ

2π

∣∣∣∣ 1, k)− β( θ

2π

∣∣∣∣ k, 1))
so that

|cνk(θ)− bνk(θ)| ≤ k
∣∣∣∣ωνkk − ωνk1

2

∣∣∣∣ =
1

2

∣∣∣∣ωνkk − ωνk1

1/k

∣∣∣∣ .
Define G1(ϑ) =

∫ ν
ν−ϑ fΘ(θ) dθ = ωνkk and G2(ϑ) =

∫ ν+ϑ

ν
fΘ(θ) dθ = ωνk1 for ϑ > 0.

Observe that from Taylor’s theorem, we have that

Gi(ϑ) = Gi(0) + ϑG′i(0) + ϑ2G′′i (0) + o
(
ϑ2)

for i = 1, 2. Noting that Gi(0) = 0, G′i(0) = fνΘ(0) and, because f ′Θ(ν) = 0, we have
G′′i (0) = 0, for i = 1, 2, then we find

ωνkk − ωνk1

1/k
=
o
(

1
k2

)
1/k

= o

(
1

k

)
.

�
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2.3. Trigonometric moments. For a circular random variable, Θ, the p’th trigono-
metric moment is defined to be

µ′p = E
[
eipΘ

]
= E[cos pΘ] + iE[sin pΘ] where i =

√
−1

def
= ρp

(
cosµ′p + i sinµ′p

)
where

ρp =
√
E[cos pΘ]2 + E[sin pΘ]2 and(2.10)

µ′p =


tan−1 E[sin pΘ]

E[cos pΘ]
if E[sin pΘ] > 0 and E[cos pΘ] > 0

tan−1 E[sin pΘ]
E[cos pΘ]

+ π if E[cos pΘ] < 0

tan−1 E[sin pΘ]
E[cos pΘ]

+ 2π if E[sin pΘ] < 0 and E[cos pΘ] > 0

(2.11)

for p = 1, 2, . . .. In particular, when p = 1, we write µ for µ′1 and ρ for ρ1. Then, µ is the
mean direction and ρ is the mean resultant length, see e.g. Mardia and Jupp (1999) for
more details.

For some variables, exact calculation of the circular moments may be difficult and
then, an alternative may be to use the circular Bernstein polynomial approximation of
sufficiently high order to approximate these moments. The trigonometric moments of
a circular variable with a Bernstein polynomial density can be easily derived from the
following theorem.

2.4. Theorem. Assume that Θ is a circular random variable with density fΘ(θ) =∑k
j=1 $

0
kjβ

(
θ

2π
| j, k − j + 1

)
. The p’th trigonometric moments of Θ are given by

µ′p =

k∑
j=1

$0
kj (E[cos 2πpBj ] + iE[sin 2πpBj ])

where Bj is a beta random variable with density function β(· | j, k − j + 1) as defined in
(2.3) such that

E[cos(2πpBj)] = 1
B(j,k−j+1)

∑k−j
r=0(−1)r

(
k − j
r

)
Ip(j + r − 1)(2.12)

= 1
B(j,k−j+1)

∑j−1
r=0(−1)r

(
j − 1
r

)
Ip(k − j + r)(2.13)

E[sin(2πpBj)] = 1
B(j,k−j+1)

∑k−j
r=0(−1)r

(
k − j
r

)
Jp(j + r − 1)(2.14)

= 1
B(j,k−j+1)

∑j−1
r=0(−1)r+1

(
j − 1
r

)
Jp(k − j + r)(2.15)

where Ip(0) = Jp(0) = Ip(1) = 0, Jp(1) = − 1
2πp

and for C = 2, 3, 4, . . .,

Ip(C) =
∑bC

2
c

c=1 (−1)c−1 C!
(C−2c+1)!

1
(2πp)2c

(2.16)

Jp(C) =
∑bC+1

2
c

c=1 (−1)c C!
(C−2c+2)!

1
(2πp)2c−1 .(2.17)

Proof. The expressions for the circular moments in terms of the Ip and Jp functions are
immediate by expanding the polynomial terms of the beta density and then, the values
of these functions can be found in standard collections of integrals, e.g. Gradshteyn and
Ryzhik (2007). �

The moments of a variable distributed as a Bernstein polynomial density with an
origin distinct from zero can be derived immediately from the previous theorem by using
the expressions for sine and cosine of a sum.



279

3. Estimation for the Circular Bernstein Polynomial
Given a sample of n data generated from a linear variable, X, with support [0, 1], then

from (2.2), the natural Bernstein polynomial estimator of order k for the density of X is
given by,

b̂k(x) =

k∑
j=1

(
F̂X

(
j

k

)
− F̂X

(
j − 1

k

))
β(x | j, k − j + 1),

for x ∈ [0, 1], where F̂X(·) is the empirical distribution function, see e.g. Vitale (1975).
Vitale (1975) demonstrates that as long as the true density function, fX , is twice

differentiable, then the bias of this estimator is,

(3.1) E
[
b̂k(x)− fX(x)

]
=

1

2k

[
(1− 2x)f ′X(x) + x(1− x)f ′′X(x)

]
+ o

(
1

k

)
where, in particular the estimator is free of boundary bias as the o term is uniform in
[0, 1]. Furthermore, the variance of the estimator is

(3.2) V
[
b̂k(x)

]
=

√
k

n

f(x)

2
√
πx(1− x)

+ o

(√
k

n

)

Vitale shows that the optimal choice of k is to set k = O
(
n2/5

)
and shows that in

this case, the estimator converges at a rate n−4/5, which is the same rate of convergence
as the alternative, kernel based estimators.

Suppose now that we have a sample of n data, {θ1, . . . , θn} , observed from a continu-
ous, unknown, circular density, fΘ (θ). Then, for any origin, ν, a standard, linear Vitale
estimator having the same asymptotic properties could be defined by,

b̂νk(θ) =
1

2π

k∑
j=1

(
F̂ νΘ

(
2πj

k

)
− F̂ νΘ

(
2π(j − 1)

k

))
β

(
θ

2π

∣∣∣∣ j, k − j + 1

)

=
1

2π

k∑
j=1

ω̂νkjβ

(
θ

2π

∣∣∣∣ j, k − j + 1

)
(3.3)

where F̂ νΘ(·) is the empirical distribution function defined from an origin ν and ω̂νkj =

F̂ νΘ
(

2πj
k

)
− F̂ νΘ

(
2π(j−1)

k

)
for j = 1, . . . , k.

However, similar to (2.7), this estimator will only be circular if ω̂νk1 = ω̂νkk and, in
contrast to Theorem 2.1, it may be that there exists no origin ν ∈ [0, 2π) which leads to
a circular density estimate. For example, in the case that k = 2, if an odd number of data
are observed, then no origin, ν, satisfies F̂ νΘ (π) = 1/2. Therefore, in order to produce a
valid, circular, density estimator, a modification of the Vitale estimator is required. We
propose the following procedure.

Firstly, for a given order, k, we need to select a suitable origin. To do this, define

(3.4) d (ν) = ω̂νk1 − ω̂νkk, for 0 ≤ ν < 2π,

which measures the difference between the first and the last weight of the beta mixture
density in (3.3).

Now let ν̂k = arg min |d(ν)| be the set of origins which minimize the absolute distance
between the first and last weights. Then for ν̂k ∈ ν̂k, we can define a circular Bernstein
polynomial estimator as

ĉν̂k(θ) =
1

2π

k∑
j=1

$̂
ν̂k
kj β

(
θ

2π

∣∣∣∣ j, k − j + 1

)



280

where $̂ν̂k
k1 = $̂

ν̂k
kk =

ω̂νk1+ω̂νkk
2

and $̂ν̂k
kj = ω̂

ν̂k
kj for j = 2, . . . , k − 1. Thus, this estimator

modifies the standard Bernstein polynomial estimator by averaging the first and last
weights, analogous to the approach introduced in Section 2.2.

3.1. Asymptotic properties. Here we shall examine the asymptotic properties of the
proposed estimator. In order to do this, we decompose the difference between the esti-
mator and the underlying circular density as follows:

ĉ
ν̂k
k (mod(θ − ν̂k, 2π))− fΘ(θ) = A (θ, ν̂k) +B (θ, ν̂k) + C (θ, ν̂k) where

A (θ, ν̂k) = ĉ
ν̂k
k (mod(θ − ν̂k, 2π))− b̂ν̂kk (mod(θ − ν̂k, 2π))

B (θ, ν̂k) = b̂
ν̂k
k (mod(θ − ν̂k, 2π))− bν̂kk (mod(θ − ν̂k, 2π))

C (θ, ν̂k) = b
ν̂k
k (mod(θ − ν̂k, 2π))− fΘ(θ)(3.5)

Now we can estimate the mean and variance of each component of the above decom-
position individually. Firstly, we shall show that the difference between the corrected and
uncorrected estimators in A(·) is always small. To do this, we introduce the following
generalization of a continuous function taken from Burgin (2010).

3.1. Definition. A function f : R→ R is called r-continuous at a point a ∈ R if f(x) is
defined at a and for any ε > 0 there is a δ > 0 such that for any x with |a− x| < δ, we
have that |f(x)− f(a)| < r + ε.

Thus, an r-continuous function is basically a non-continuous function with jumps smaller
than a quantity r. The following result, taken from Burgin (2010), is Bolzano’s interme-
diate value theorem for r-continuous functions,

3.1. Lemma. Let f : [a, b]→ R be an r-continuous function. If f(a) < 0 and f(b) > 0,
then there is at least one point c ∈ [a, b] such that |f(c)| < r.

Proof. See Burgin (2010). �

Now we can demonstrate the existence of an origin ν̂k such that |d(ν̂k)| ≤ 1/n.

3.2. Lemma. Let {θ1, . . . , θn} be a random sample from a strictly continuous, circular,
random variable, Θ, with density function fΘ (·). Then, for k = 2, 3, . . ., there exists at
least one point ν̂k ∈ [0, 2π) such that |d (ν̂k) | ≤ 1/n.

Proof. For any 0 ≤ ν < 2π, write d(ν) = d1(ν) − d2(ν) such that d1(ν) = F̂ νΘ
(

2π
k

)
and

d2(ν) = 1 − F̂ νΘ
(

2π(k−1)
k

)
. For a sample from a strictly continuous density, then d1(ν)

and d2(ν) are both step functions with steps of size 1/n and therefore, d(ν) is a step
function taking steps of size 1/n or 2/n so that d(ν) is 2/n-continuous.

Now, assume that there exist two points, 0 ≤ ν1 6= ν2 < 2π such that d(ν1) < 0 and
d (ν2) > 0. Then from Lemma 3.1 there exists at least one point, 0 ≤ ν̂k < 2π, such that
|d (ν̂k)| < 2/n and recalling that d̂ (·) is a step function, we have that |d (ν̂k)| ≤ 1/n.

On the contrary, suppose that d (ν) is always positive. Observe that

d1(ν) =
1

n

n∑
i=1

I(ν,ν+2π/k](θi) and d2(ν) =
1

n

n∑
i=1

I(ν−2π/k,ν](θi)

where I(θ)(a,b] is an indicator function taking the value 1 if θ ∈ (a, b] and 0 otherwise.
Then, we have that,∑n

i=1
I(ν− 2π

k
,ν] (θi) <

∑n

i=1
I(ν,ν+ 2π

k ] (θi) <
∑n

i=1
I(ν+2π− 2π

k
,ν+2π] (θi)

which is impossible, as we have that,∑n

i=1
I(ν− 2π

k
,ν] (θi) =

∑n

i=1
I(ν+2π− 2π

k
,ν+2π] (θi) .
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Equally, d (ν) cannot always be negative and so the lemma is proved. �

Finally, we can now show that, in a similar way to Theorem 2.3 the difference between
the corrected and uncorrected estimators is small.

3.3. Lemma. Let {θ1, . . . , θn} be a random sample from a strictly continuous, circular,
random variable, Θ, with density function fΘ (·) and let ν̂k ∈ ν̂k. Then we have that∣∣∣ĉν̂kk (θ)− b̂ν̂k (θ)

∣∣∣ ≤ k

4πn
.

Proof. We have:

ĉ
ν̂k
k (θ)− b̂ν̂kk (θ) = 1

4π

{
F̂ ν̂k

(
2π
k

)
+ F̂ ν̂k

(
2π(k−1)

k

)
− 1
}(
β
(
θ

2π

∣∣ k, 1)− β ( θ
2π

∣∣ 1, k))
and the maximum difference between the two estimators occurs when either θ = 0 or
θ = 2π, so that

max
∣∣∣f̂ ν̂kk (θ)− b̂ν̂kk (θ)

∣∣∣ ≤ k

4π

∣∣∣∣F̂ ν̂k (2π

k

)
+ F̂ ν̂k

(
2π(k − 1)

k

)
− 1

∣∣∣∣ ≤ k

4πn
,

from Theorem 3.2. �

In particular, Lemma 3.3 implies:

3.4. Corollary.

|E [A (θ, ν̂k)]| ≤ k

4πn

V [A (θ, ν̂k)] ≤ k2

16π2n2

Now consider the second component, B(·), of (3.5).

3.5. Lemma.

E [B (θ, ν̂k)] = 0

V [B (θ, ν̂k)] ≤ 1

n

(
fΘ(θ) +

1

4πk

[
max
ϑ
|f ′Θ(ϑ)|+ 1

4
max
ϑ
|f ′′Θ(ϑ)|

])2

+
k

2πn

(
fΘ(θ) +

1

4πk

[
max
ϑ
|f ′Θ(ϑ)|+ 1

4
max
ϑ
|f ′′Θ(ϑ)|

])
Proof. The proof for the mean is immediate by recalling that for any variables, X, Y ,
then E[X] = E[E[X|Y ]] and noting that here, we have

E [B (θ, ν̂k) | ν̂k] = 0

as the expected value of the empirical cumulative distribution function is equal to the
true distribution function.

For the variance term, recall that V [X] = V [E[X|Y ]] + E[V [X|Y ]] and given that in
our case, the first term is zero, we only need to consider

E [V [B (θ, ν̂k) | ν̂k]] = E
[
V
[
b̂
ν̂k
k (mod(θ − ν̂k, 2π)) | ν̂k

]]
.

Now following Vitale (1975), consider

V
[
b̂
ν̂k
k (mod(θ − ν̂k, 2π)) | ν̂k

]
= V

[
1

2π

k∑
j=1

ω̂
ν̂k
kj β

(
x
ν̂k
θ

∣∣∣ j, k − j + 1
)∣∣∣∣∣ ν̂k

]
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where xνθ is as in (2.9),

=
1

4π2n

( k∑
j=1

ω
ν̂k
kj β

(
x
ν̂k
θ

∣∣∣ j, k − j + 1
))2

+

k∑
j=1

ω
ν̂k
kj β

(
x
ν̂k
θ

∣∣∣ j, k − j + 1
)2
]

≤ 1

n

(
fΘ(θ) +

1

4πk

[
max
ϑ
|f ′Θ(ϑ)|+ 1

4
max
ϑ
|f ′′Θ(ϑ)|

])2

+
1

4π2n

k∑
j=1

ω
ν̂k
kj β

(
x
ν̂k
θ

∣∣∣ j, k − j + 1
)2

applying (2.8) to the first term and, then recalling that β(x|j, k−j+1) ≤ k for 0 ≤ x ≤ 1
and applying (2.8) to the second term, we have:

V
[
b̂
ν̂k
k (mod(θ − ν̂k, 2π)) | ν̂k

]
≤ 1

n

(
fΘ(θ) +

1

4πk

[
max
ϑ
|f ′Θ(ϑ)|+ 1

4
max
ϑ
|f ′′Θ(ϑ)|

])2

+
k

2πn

(
fΘ(θ) +

1

4πk

[
max
ϑ
|f ′Θ(ϑ)|+ 1

4
max
ϑ
|f ′′Θ(ϑ)|

])
�

Finally, consider C(·) in (3.5). The following result is a direct consequence of (2.8).

3.6. Corollary.

|E [C (θ, ν̂k)]| ≤ 1

4πk

[
max
ϑ
|f ′Θ(ϑ)|+ 1

4
max
ϑ
|f ′′Θ(ϑ)|

]
V [C (θ, ν̂k)] ≤ 1

16π2k2

[
max
ϑ
|f ′Θ(ϑ)|+ 1

4
max
ϑ
|f ′′Θ(ϑ)|

]2

.

The previous results can be combined to give the following theorem.

3.7. Theorem. Let k, n→∞ where k ≤
√
n. Then∣∣∣E [ĉν̂kk (mod(θ − ν̂k, 2π))− fΘ(θ)

]∣∣∣ ≤ 1

4πk

[
max
ϑ
|f ′Θ(ϑ)|+ 1

4
max
ϑ
|f ′′Θ(ϑ)|

]
+ o

(
1

k

)
.

Letting k →∞ such that kn
1
3 → 1 then

E

[(
ĉ
ν̂k
k (mod(θ − ν̂k, 2π))− fΘ(θ)

)2
]

=
fΘ(θ)

n2/3
+ o

(
n−

2
3

)
.

Proof. The proof for the mean is immediate by summing the formulae for the means
in Lemma 3.5 and Corollaries 3.4 and 3.6. Recalling that the mean squared error of
the proposed estimator is composed of the bias squared and the variance and observing
that the dominant term in the variance comes from V

[
b̂
ν̂k
k (mod(θ − ν̂k, 2π))

]
gives the

result. �

We should note that work in e.g. Hall et al (1987) that optimal, circular kernel based
estimators achieve the same convergence rate of n−4/5 as linear kernel based estimates and
that therefore, in contrast to the linear case, the Bernstein polynomial based estimators
have slightly poorer convergence properties than the circular kernel estimators.

Two further comments are in order here. Firstly note that the previous results are
valid for any choice of origin, ν̂k, in ν̂k and that, typically, the cardinality of ν̂k will
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be greater than 1. In order to define a unique origin, we suggest selecting the origin,
ν̂k ∈ ν̂k, which maximizes the (pseudo) log-likelihood estimate,

n∑
i=1

log

k∑
j=1

f̂
ν̂k
k (θi).

Of course, many alternative criteria could also be used, e.g. maximizing the p value for
some goodness of fit test. Secondly, in order to choose k in practice, we propose using
standard, least squares, cross validation (LSCV) as in e.g. Wand and Jones (1995).

4. Examples
In this section, we carry out both a simulation study to compare our approach with

some of the alternatives and we also illustrate our approach with a real data example.

4.1. Simulated examples. Here, we compare the performance of the use of Bernstein
polynomials with respect to some non-parametric alternatives, that is kernel density
estimation (Bai et al, 1988) and non-negative trigonometric sums (Fernández-Durán,
2004). To do this, we have simulated 500 samples of size 500 of the following models:

(1) A cosine or cardioid distribution with circular mean π. See e.g. Mardia and
Jupp (1999).

(2) A von Mises distribution, VM(π,1), with circular mean π and concentration
parameter 1. See e.g. Mardia and Jupp (1999).

(3) A wrapped normal Laplace distribution, WNL(π,0.0001,0.25,1). See Reed and
Pewsey (2009).

(4) A distribution based on non-negative trigonometric sums with density

fΘ(θ) =
1 + 0.6 cos(2θ − π) + 0.4 sin(3θ − π

2
)

2π
.

(5) A mixture of two von Mises distributions: 0.7VM
(
π
3
, 0.5

)
+ 0.3VM

(
2π
3
, 2
)
.

(6) A mixture of two wrapped normal Laplace distributions:
0.5WNL(π, 0.0001, 0.25, 1) + 0.5WNL( 9

5
π, 0.0001, 0.25, 1).

For each sample, we have used LSCV to choose the bandwidth for the kernel method
and the degree of the polynomial for the Bernstein polynomial and the trigonometric
sums. Then, the underlying distribution is fitted and the empirical mean integrated
square error (MISE) is computed. Table 1 shows the values of one minus the mean
empirical MISE (which approximates the expected MSE). The optimal model is given in
bold.

Table 1. Estimated values of one minus the average empirical mean
integrated square error

model BP Kernel TS
1 0.9980 0.9972 0.9962
2 0.9986 0.9986 0.9960
3 0.9912 0.9951 0.9959
4 0.9987 0.9970 0.9976
5 0.9987 0.9986 0.9977
6 0.9921 0.9957 0.9951

As we can observe in Table 1 the simulations suggest that the circular Bernstein
polynomial approach is competitive with existing nonparametric approaches.
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4.2. Real data example. Here we consider data obtained from the Chicago Police De-
partment website, http://gis.chicagopolice.org/ which correspond to the reported,
twenty four hour clock times of 1297 crimes perpetrated in Chicago on May 11th, 2007.
A Bernstein polynomial density approximation of order k = 20 was fitted to these data.
Also, a kernel density estimate based on a von Mises kernel was fitted for comparison.
In both cases, LSCV was used for model selection. Figure 1 shows a rose plot and a
histogram of the data of the data and the corresponding fitted densities based on an
origin corresponding to midnight. It can be observed that both fits are quite similar
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Figure 1. Roseplot (left hand side) and histogram of the Chicago
crime data with fitted Bernstein polynomial (solid line) and kernel
density (dashed line) approximations.

in nature although the Bernstein polynomial approach appears to provide a somewhat
closer approach at the "boundary" points.

Finally, the fitted mean direction for the Bernstein polynomial model, calculated using
the results of Section 3, and the empirical mean direction are 17:45 hours and 17:42
hours and the fitted and empirical mean circular resultant lengths calculated for the
Bernstein polynomial approximation are 0.200 and 0.189 respectively. Thus, as should
be expected, there is good agreement between the fitted and empirical moments. Note
that an interesting further line of research would be to examine the convergence properties
of the moments of the Bernstein polynomial approximation.

5. Conclusions
In this work we have demonstrated how Bernstein polynomial density estimators can

be adapted to the case of circular data. A number of extensions are possible.
Firstly, the results presented in Section 3.1 have not considered the convergence prop-

erties of the selected origin, ν̂k. In particular, it would be interesting to explore the
convergence of the origin and to see if this can be used in order to provide an improved
convergence rate for the fitted Bernstein polynomial. Also, as we know that in the the-
oretical case, the valid origins cluster around the turning points of the density function,
then it would also be reasonable to consider the use of non-parametric approaches to the
estimation of turning points of a density, for example the mode, see e.g. Eddy (1980).
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Secondly, various modifications designed to reduce the bias of the linear Vitale estima-
tor have been proposed, see e.g. Kakizawa (2004). It would be useful to examine whether
such approaches can be applied to the circular case. Furthermore, Bayesian, Bernstein
polynomial density estimates are analyzed in e.g. Petrone (1999b) and the adaption of
this approach to the circular data case could also be explored.

Thirdly, we could also consider extensions to spherical data or data defined on the
torus. Such approaches could be implemented by exploring generalizations of multivariate
Bernstein polynomial density estimators as in e.g. Babu and Chaubey (2006).

Finally, it is interesting to consider modeling correlated circular circular or circular
linear data by combining the marginal density estimation techniques developed here with
the use of non-parametric Bernstein polynomial copula estimates (Sancetta and Satchell,
2004) to develop a non-parametric approach to bivariate directional data modeling and
to directional regression. See also Carnicero et al (2013) for work in this direction.
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